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Energy dispersive high-pressure powder X-ray experiments have been performed for MnTe 2 up to a pressure of 20 GPa. 
MnTe 2 undergoes a discontinuous transformation from the cubic pyrite type structure to the orthorbombic marcasite type 
structure at 7.0 +0.5 GPa upon increasing pressure. The transformation is accompanied by a large reduction in the specific 
volume (AV/V= 0.18) which probably reflects different magnetic properties of the two modifications of MnTe 2. 

The TX 2 (T = Cr, Mn, Fe, Co, Ni; X = P, As, Sb, S, 
Se, Te) compounds often crystallize in one of several 
related structure types [1,2]. Among these, the py- 
rites (FeS2-P), marcasites (FeS2-m) and arsenopyrites 
(FeAsS-ap) have the largest number of  representatives. 
As a function of temperature and composition (e.g. 
in ternary solid solution phases) conversions m ~ p are 
well established [3,4] and continuous second-order 
transitions are found between m- and p-type phases 
[2]. The MnX 2 (X = S, Se, Te) compounds [1,5,6] 
crystallize in the p type structure over their entire 
temperature range of stability. However, recently a 
structural transformation (probably associated with a 
change in spin state) was found in MnS2-P, when 
hydrostatic pressure was applied [7,8]. The high pres. 
sure modification (not stable at ambient conditions) 
is of the m-type structure and is characterized relative 
to the p-type structure by taking a much lower unit 
cell volume per formula unit. Such relatively large 
variations in unit cell volume between different modi- 
fications most likely represent differences in physical 
(magnetic) properties [9]. A similar situation to that 
of MnS 2 may possibly exist for the isostructural 
phases MnSe 2 and MnTe 2. In this work we report on 
a high pressure energy dispersive X-ray diffraction 
study on MnTe 2. 

Powder samples of MnTe 2 were synthesized from 
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the elements (Mn, crushed flakes, 99.99%, Johnson, 
Matthey & Co.; Te, powder, 99.999%, Koch Light 
Laboratories) using the sealed silica capsule technique. 
After the first heat treatment at 650°C for 5 d the 
samples were cooled to room temperature and 
crushed before being subjected to two further similar 
annealing cycles (500°C, 10 d). The product obtained 
by this procedure contained only minor traces of free 
Te. 

Powder X-ray diffraction data were collected at 
ambient conditions with a Guinier camera (Cu Ka 1 
radiation, Si as internal standard). The cubic lattice 
constant for MnTe 2.p (space group Pa3) a = 
695.32(12) pm agrees with already reported values 
[1,10]. High-pressure powder X-ray diffraction data 
were obtained by the energy dispersive technique, us- 
ing a tungsten tube. Pressures up to 20 GPa were gen- 
erated in a gasketed diamond anvil cell [I 1], and the 
pressure was determined using the ruby fluorescence 
technique [ 12]. The spectra were partly masked by 
the presence of Te characteristic radiation peaks and 
reflections resulting from the inconel gasket material. 
The positions of the Bragg reflections of MnTe 2 were 
obtained through a curve fitting procedure. Calcu- 
lated powder X-ray intensities with the LAZY- 
PULVERIX programme [13] were used as guide in 
the indexing of the X-ray diagrams. 

411 



Volume 112A, number 8 PHYSICS LETTERS 11 November 1985 

85 

Q. 
65 

r,D 
I 

Q 55 

> 
45 

I I I i I | 

, ~y r i te  
MnTe2 

Marcasite 

I I I I 1 . I 

0 4 8 12 16 20 

p(GPa) 
Fig. 1. Variation of the specific volume of MnTe 2 for pres- 
sures up to 18 GPa. Open and filled symbols refer to increas- 
ing and decreasing pressures, respectively. The full lines repre- 
sent a fit of the Birch equation of state to the data points. 

The p-type modification of MnTe 2 was found to 
exist at pressures up to 7.0 -+ 0.5 GPa. The variation in 
specific volume with pressure is shown in fig. 1. At 
pressures p > 7.0 GPa the reflections characteristic for 
the p-type structure disappeared and a new set of re- 
flections appeared. A meaningful interpretation of the 
pattern consisting of only 4 -5  reflections requires in- 
put of some structural informations. As the high pres- 
sure modification of MnS 2 is unambiguously of the 
m type [7,8], we assume this to hold also for MnTe 2. 
The intensity of the observed reflections were in good 
agreement with those calculated for MnTe2-m, using 
positional parameters for FeTe 2 [14] (space group 
Pnnm). The variation of the specific volume of 
MnTe 2-m with pressure is shown in fig. 1. The p -~ m 
transformation is accompanied by a volume decrease 
of about 18%. This volume collapse is somewhat larger 
than that found for MnS 2 (15%) [7]. However, the 
pressure required for triggering the transformation is 
lowered from 14 GPa for MnS 2 to 7 GPa for MnTe 2. 

A fit of the Birch equation of state [15] to the data 
t points yield the parametersB 0 = 14.9 GPa, B 0 = 16.3 

GPa, and B 0 = 9.2 GPa, B6 = 4.4 GPa for the p- and m- 
type modifications, respectively. Attempts to fit the 
data points to a zeroth.order Birch equation of state 
(B(~ = 4, fixed value; B 0 ~ 40 GPa) were not satisfac- 
tory, indicating that the unusual large value of B6 in 
the pyrite type structure may be real. Due to the large 
scattering of the data points which results from over- 

lapping characteristic lines, mentioned before, the 
values ofB 0 and B~ may have errors of about 20% to 
30%. Ultrasonic measurements should be made to im- 
prove the accuracy ofB 0 resulting in an improvement 
of the error of B6. The B 0 and B6 values in the mar- 
casite type high pressure structure have been deter- 
mined for completeness. However, they cannot be 
compared with the values in the pyrite type structure, 
as the marcasite structure is only hypothetical at low 
pressures. 

Some TX 2 compounds (e.g. FeS 2 [4], OsTe 2 [4]) 
are known to crystallize with both the m- and the p- 
type structures, and transformations m ~ p are estab- 
lished as a function of temperature. For FeS 2 and 
OsTe 2 the pyrite modifications take the smallest 
specific volume (AV= --2.9 × 106 pm 3 for OsTe2). 
This shows, that only small differences in the specific 
volume are connected with the different packings of 
the X 2 dumbbells in the p-, m-, and ap-type struc- 
tures. Therefore, the huge AV of the p ~ m transfor- 
mations in MnS 2 and MnTe 2 can probably not be at- 
tributed to the structural rearrangement (reorienta- 
tion of the X~- pair). 

A main distinction between the MnX2- p and other 
TX 2 compounds is the magnetic state of the metal 
atom. The MnX 2 compounds exhibit paramagnetic 
and long range antiferromagnetic properties associated 
with ~5 unpaired electrons [1,16,17] (d 5 high spin 
state) contrary to the diamagnetic properties found in 
e.g. FeX 2 [ 1]. This difference in the magnetic proper- 
ties is probably responsible for the observed reduction 
of the specific volume on going from MnX 2 to the 
corresponding FeX 2 compounds. Therefore we are 
tempted to conclude that the volume collapse accom- 
panying the p ~ m transformation in MnS 2 and 
MnTe 2 reflects mainly a change of the magnetic state. 
However, for verification, measurements of spin de- 
pendent properties at high pressures are required. The 
Mt3ssbauer data for 57Fe substitution in MnX 2 [18,19] 
demonstrate a high to low spin transition for the iron 
atoms upon increasing pressure (i.e. going from the p- 
to the m-type structure) and thus lend support to the 
assumption of coupled magnetic and structural trans- 
formations in MnX 2 . A similar high pressure X-ray 
diffraction study of MnSe 2 is in progress. 

One of us (I-IF) wants to thank the Max-Planck- 
Gesellschaft for support. 
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