Raman spectroscopic study of the ternary system Sb₂S₃-As₂S₃-Tl₂S M.A. El Idrissi Raghni^{a,c,*}, B. Bonnet^b, M.L. Hafid^c, J. Olivier-Fourcade^a, J.C. Jumas^a *Laboratoire de Physicochimie de la Matière Condensée (UMR 5617 CNRS), Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France bLaboratoire des Agrégats Moléculaires et Matériaux Inorganiques (ESA 5072 CNRS), Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France Laboratoire des Sciences des Matériaux, Département de Physique, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Marocco Received 14 January 1997 ### Abstract Raman spectroscopy has been used to study the local structure in glassy compositions of the ternary system As₂S₃-Sb₂S₃-Tl₂S. The evolution of the positions and shapes of the bands observed is attributed to modifications in the environment of arsenic and antimony corresponding to structural changes as the composition is varied. © 1997 Elsevier Science S.A. ### 1. Introduction A number of recent studies have been denoted to glasses formed from arsenic, antimony and thallium sulfides [1-8]. These have demonstrated that, as a function of the stochiometry, the properties [1,2] and structure [3-8] of the glass can be modified. Our particular interest in this ternary system springs form its broad glassy domain [1], which is shown in Fig. 1. Such glasses have high thermal stability, are transparent over a wide range in infrared [2], and present an absorption Fig. 1. The region of glass formation. edge which can be tuned between the near infrared to ca. 2.5 eV [3] by varying the composition. The use of a range of complementary techniques is necessary if a structural model of an amorphous solid is to be proposed. We present here results obtained on As₂S₃-Sb₂S₃-Tl₂S glasses using Raman spectroscopy, and propose a correlation between our conclusions and those of previous works [5-8]. # 2. Experimental section # 2.1. Glass preparation Binary antimony, arsenic and thallium sulfides were first prepared by direct reaction from the elements in sealed, evacuated (10⁻⁵ torr) silica tubes. Mixtures of the binary sulfides were then heated to 1173 K in sealed, evacuated silica tubes and stirred for 1 h. The tubes were quenched in a water-ice-salt bath. The glasses were then stabilised by heating at 50 °C below the glass transition temperature for 48 h, in order to eliminate the strain produced by quenching. The compositions of the samples studied are given in Table 1. ## 2.2. Characterisation The glassy nature of the samples can be shown by X-ray diffraction. Diffractograms are characterised by several diffusion rings and present no Bragg diffraction lines. Scanning electron microscopy was used to verify the homogeneity of the samples. ^{*}Corresponding author. Laboratoire des Sciences des Matériaux. Université Cadi Ayyad, Faculté des Sciences Semlalia, Departement de Physique, Boulevard Prince Moulay Abdellah, BP S15 Marrakech (Marocco). Table 1 Composition of amorphous samples. | Composition of a | iiposition of amorphous sumples. | | | |----------------------|----------------------------------|-----------|-------------------| | Vitreous
compound | Sb ₂ S ₃ | As_2S_2 | Ti ₂ S | | | | % | % | | 1 | 80 | 20 | 0 | | 2 | 60 | 40 | 0 | | 3 | 50 | 50 | 0 | | 4 | 0 | 100 | 0 | | 5 | 0 | 95 | 5 | | 6 | 0 | 90 | 10 | | 7 | 0 | 80 | 20 | | 8 | 0 | 70 | 30 | | 9 | 0 | 60 | 40 | | 10 | 0 | 50 | 50 | | 11 | 83.3 | 0 | 16.7 | | 12 | 80 | 0 | 20 | | 13 | 75 | 0 | 25 | | 20 | 50 | 30 | 20 | | 21 | 35 | 45 | 20 | | 22 | 20 | 60 | 20 | | 30 | 40 | 20 | 40 | | 31 | 20 | 4Ú | 40 | | 32 | 10 | 50 | 40 | ## 2.3. Raman spectroscopy Raman spectra were recorded at room temperature in the range 200-4000 cm⁻¹ using a Bomem FT spectrometer DA8. Spectra of samples 1, 2, 3 and 4 were obtained using a Dilor triple monochromator spectrometer. These instruments are equipped with YAG (1064 nm) and argon (488 nm) lasers respectively. ## 3. Results and discussion # 3.1. As, S,-Sb, S, Raman spectra of glasses in the As_2S_3 - Sb_2S_3 system are shown in Figure 2. That of glassy As_2S_3 (Figs. 2-4) presents a single broad ar 'intense line, denoted A. When Fig. 2. Raman spectra of the vitreous compounds of the Sb₂S₃-As₂S₃ binary system. Fig. 3. Raman spectra of the vitreous compounds of the As_2S_3 - Tl_2S binary system. the concentration of Sb_2S_3 increases, the line shape of A is seen to broaden further, and its maximum is displaced to lower wavenumbers. As a first approximation, these spectra can be interpreted in terms of a molecular model [9], in which the Raman lines are assigned according to the constituent base units. In the case of glassy arsenic and antimony sulfides, the base unit generally used is pyramidal XY₃ (X=As or Sb; Y=S), having C_{3v} symmetry. Using this model, band A can be assigned to the symmetric stretching modes of the AsS₃ pyramid, which is in good agreement with previous studies [5-8]. Lucovsky et al. [10] have interpreted the four modes of pyramidal AsS₃ by reference to the AsCl₃ molecule. The broadening of band A and its shift to lower wavenumbers as the concentration of Sb₂S₃ increases can be explained by existence of the symmetric stretching mode of the pyramidal SbS₃ units. Several different positions are giver, in the literature for the latter. Using Raman spectroscopy on compounds similar to those studied here, Kato et al. [11] reported this mode at 297 cm⁻¹. Barnier et al. [12] assigned a shoulder at 330 cm⁻¹ in the infrared spectrum of amorphous Sb₂S₃ to symmetrical vibrations of the SbS₃ pyramid, by reference to the Fig. 4. Comparison of Raman spectra of the crystalline and vitreous compounds $TlAsS_2$. SbCl₃ molecule. Koudelka et al. [13] assign this mode to a line at 302 cm⁻¹ in the Raman spectra of Ge-Sb-S glasses. Analysis of these spectra indicate that there are two type of mode assigned to pyramidal (C_{3v}) AsS₃ and SbS₃. Previous studies [8] of this binary system have shown the substitution of arsenic by antimony. # 3.2. As 2S3-Tl2S The Raman spectra of representative samples $\mathrm{Tl}_{2x}\mathrm{As}_{2-2x}\mathrm{S}_{3-2x}$ for $0{<}x{<}0.5$ are shown in Fig. 3. On increase of the $\mathrm{Tl}_2\mathrm{S}$ content, a line (B) appears at 367 cm⁻¹. At the same time, intensity of the line A decrease. In addition, two shoulders at 270 and 390–400 cm⁻¹ appear, denoted C and D. A weak line at ca. 490 cm⁻¹ is seen in the spectra of samples rich in AsS₃, and is assigned to the symmetrical stretching vibration of As-S-S-As structural units [13]. Similar effects have been observed in the spectra of other chalcogenide glasses [14,15], and are reported to be related to the synthesis conditions used. Fig. 4 shows the Raman spectrum of polycrystalline and glassy TlAsS₂. The number of lines, and their maxima, are identical, suggesting that the local structure is analogous. This result agrees with those obtained using X-ray absorption spectroscopy, which demonstrated that arsenic maintained the same environment in the two phases. The spectrum of polycrystalline TlAsS₂ has lines at 275, 325, 375 and 395 cm⁻¹ but, in the absence of a single crystal, their precise assignment is difficult. Crystalline As₂S₃ [16] is characterised by two pyramidal arsenic sites (C_{3v} symmetry). Its Raman spectrum [17] has lines at 311, 352 and 382 cm⁻¹, the first two of which are assigned to stretching vibrations of the AsS₃ pyramid, and the last to a coupling mode between two AsS₃ units. The absence of band A in the spectra of TlAsS₂ phases might be interpreted as indicating the absence of AsS₃ units in these materials. It is known from X-ray diffraction that arsenic atoms occupy two different sites of C_s symmetry in TlAsS₂ [18]. In the crystal, the reduction in symmetry of pyramidal units AsS₃ from C_{3v} to C_s leads to degeneracy of the asymmetric modes E, which can be related to the appearance of additional lines in the spectrum of TlAsS₂. Table 2 shows the relationship between these symmetries. The intense line B, observed at 370 cm⁻¹, can be assigned to the vibration v_2' of type A' in symmetry C_s using the molecular model of AsS₃. The tine at 325 cm⁻¹, also reported by Liu Jun et al. [19] in the Raman spectra of Ag-As-S glasses, is assigned to the presence of short chains $(AsS_{3/2})_n$, and results from the ν'_1 vibration of type A' of AsS₃ units in C_s symmetry. Shoulders C and D have been related to the infrared active mode [8]. The shoulder C is assigned to a coupling mode between two AsS₃ units. The weak band D appears in a region intermediate between bending and stretching Table 2 Relationship between the C_{3v} and C_s symmetries. | C3v(XY3) | $\mathbf{V}_{1}(\mathbf{A}_{1}) \qquad \mathbf{V}_{2}(\mathbf{A}_{1})$ | | V ₃ (E) | | V ₄ (E) | | |------------------|--|----------------------|----------------------------|----------------------|---------------------------|----------------------| | 34. 3. | V _s (XY) | δ _(YXY) | V ₄ (XY) | | $\delta_{i}(YXY)$ | | | | 1 | 1 | /\ | | ^ | | | 1 | 1 | 1 | / \ | | / \ | | | į | 1 | 1 | 1 | \ | 1 | \ | | | ı | 1 | 1 | ١. | 1 | \ \ | | | * | ę. | 7 | à | 7 | 4 | | $C_{s}(ZXY_{2})$ | V₁ ⟨A') | ν ₃ (Α΄) | V₂(A') | V ₅ (A") | V ₄ (A') | V ₆ (A") | | · · | 1 | i | 1 | | 1 | 1 | | | ν _s (xz) | $\delta_{s^{(YXY)}}$ | V _s (XY) | V _{as} (XY) | δ _s (ΥΧΥ) | δ _{as} (YXY | modes of the AsS_3 pyramid and is provisionally assigned to the ν'_i vibration (A") in AsS_3 units in C_s symmetry. In the following, lines A and B will be used as a probe for the presence of AsS_3 motifs of symmetry either C_{3v} or C_s respectively. Their simultaneous presence in the spectra of other compounds shows the coexistence of entities with these symmetries. The inversion of intensity of these bands at high concentrations of Tl_2S is explained by the progressive transformation from an entity of symmetry C_{3v} to one of symmetry C_s . In glasses of the As₂S₃-Tl₂S system, the initial glassy matrix is dominated by a pyramidal AsS₃ arrangement of symmetry C_{3v}. The introduction of Tl-S bonds reduces the length of adjacent As-S covalent bonds, and is accomparied by a lowering of the local symmetry. EXAFS data at the arsenic K-edge [5] and XANES measurement at the sulphur K-edge [6], obtained on compounds of identical composition as these, confirm this hypothesis. 3.3. $$Sb_2S_3$$ - Tl_2S The glassy region in this binary system is limited to compositions rich in Sb₂S₃ [1]. Corresponding Raman spectra are shown in Fig. 5, where a broad line, denoted E, is seen, centred at 317 cm⁻¹, and bearing a shoulder (F) at Fig. 5. Raman spectra of the vitreous compounds of the Sb₂S₃-Tl₂S binary system. 285 cm⁻¹. The similarity of all spectra suggests that the local structure in all compositions is comparable. The spectra of polycrystalline and glassy TISb₃S₅ are compared in Fig. 6, where the assignment of lines at 270, 293, 308 and 330 cm⁻¹ remains tentative. TISb₃S₅ is characterised by three different sites for antimony, two SbS₃ units and one SbS₄ unit [20]. Comparison of the spectra of Fig. 6 shows that band E seen in the spectrum of the glass is split into two components at 308 and 330 cm⁻¹ in that of the crystalline compound. These two lines are observed also in the Raman spectrum of Ag₃SbS₃ and have been assigned [21] to the symmetric modes of the SbS₃ pyramid. The shoulder F and the broadening of line E towards lower wavenumbers can be explained by the presence of two other modes in the crystalline compound. The intensity of E suggests that the glassy matrix of these compounds is dominated by a structural arrangement of the SbS₃ type. EXAFS studies at the L_{III} edge of antimony [7] has indicated that the coordination shell corresponds largely to an SbS, pyramid, in good agreement with the results presented here. # 3.4. As_2S_3 - Sb_2S_3 - Tl_2S Two series of samples, having fixed Tl_2S contents of 20% (series I) and 40% (series II) were examined. Their Raman spectra are shown in Fig. 7 Fig. 8. The position of the intense line B is characteristic of the ν_2' mode (γ_2') of the AsS_3 entities; having C_s symmetry. Its intensity decreases as the Sb_2S_3 content increases, suggesting that the number of units of C_s symmetry is concomitantly reduced. A second line, denoted G, is observed between 350 and 317 cm⁻¹. Generally associated v ith AsS₃ and SbS₃ units of C_{3v} symmetry are observed in this region (345 and 317 cm⁻¹ respectively). Line G probably results from an overlap of lines given by both species. The shift of band G from 345 cm⁻¹ for composition 7 to 317 cm⁻¹ for composition 12 is explained by an inversion in the number Fig. 6. Comparison of Raman spectra of the crystalline and vitreous compounds $TISb_1S_4$. Fig. 7. Raman spec*ra of the vitreous compounds of the Sb₂S₃-As₂S₃-TI₃S ternary system for a constant concentration of 20%. Fig. 8. Raman spectra of the vitreous compounds of the Sb₂S₃-As₂S₃-Tl₂S ternary system for a constant concentration of 40%. of SbS_x (x=3, 4, 5) and AsS_3 units. Fig. 9 shows that the position of G moves non-linearly to lower frequencies as the SbS_3 content increases, and that two regions can be distinguished. For compositions with less than 30% Sb_2S_3 , Fig. 9. Wavenumbers of line G with Sb_2S_3 concentration in the Sb_2S_3 -As $_2S_3$ -Tl $_2S$ ternary system for constant concentration lines of 20% and 40% Tl $_2S$. the shift in the position of G is strongly correlated to the Sb₂S₃ content; water correlation is found above this composition, where a less shifted frequency is observed as the Sb_2S_3 content increases. ### 4. Conclusion Raman spectra of glasses in the binary system As₂S₃-Sb₂S₃ have been interpreted on the basis of a model making use of pyramidal AsS₃ and SbS₃ units, of C₃, symmetry. In As₂S₃-Tl₂S, the appearance of additional lines (B, C, D) is attributed to the presence of AsS, motifs of C_s symmetry, and the inversion of the intensity of lines A and B to transformation of the symmetry of these units. The dominant nature of band G in Raman spectra of glasses in the Sb₂S₃-Tl₂S binary system indicates that the glassy matrix is characterised by the presence of pyramidal SbS, units. The results obtained on the three binary systems have enabled, interpretation of the spectra given by the ternary system, and the evolution of the spectra as a function of Sb₂S₃ concentration at two different contents (20 and 40%) of Tl₂S have been described. The reduction in intensity of line B is interpreted as indicating a reduction in the number of AsS₃ units of symmetry C_s, and the shift of line G by a modification in the coordination at antimony. ## Acknowledgements This work was carried out the framework of the GdRE "Chalcogénures". One of the authors (M.A.E.) acknowledges the "Ministère de l'Education Nationale" of Morocco for its financial support. #### References - [1] A. Bouaza, A. Ibanez, J. Olivier-Fourcade, E. Philippot, M. Maurin, Mat. Res. Bull. 22 (1987) 973-984. - [2] J. Olivier-Fourcade, A. Bouaza, J.C. Jumas, M. Maurin, J. Non-Cryst. Solids 111 (1989) 277-284. - [3] A. Bouaza, T. Olivier-Fourcade, J.C. Jumas, M. Maurin, H. Dexpert, J. Chim. Phys. 86 (1989) 1579-1585. - [4] A. Gheorghiu, I. Lampre, S. Dupont, C. Sénémaud, M.A. El Idrissi Raghni, P.E. Lippens, J. Olivier-Fourcade, J. Alloys Comp. 228 (1995) 143-147. - [5] J.M. Durand, J. Olivier-Fourcade, J.C. Jumas, M. Womes, P. Parent submitted to J. Mater. Sci. - [6] J.M. Durand, P.E. Lippens, J. Olivier-Fourcade, J.C. Jumas, M. Womes, J. Non-Cryst. Solids, (1996) in press. - [7] J.M. Durand, P.E. Lippens, J. Olivier-Fourcade, J.C. Jumas, M. Womes, J. Non-Cryst. Solids 194 (1996) 109. - [8] M.A. EL Idrissi Raghni, J.M. Durand, B. Bonnet, L. Hafid, J. Olivier-Fourcade, J.C. Jumas, J. Alloys Comp. 239 (1996) 8. - G. Lukovsky, J.P. deNeufville, F.L. Galeener, Phys. Rev. B 9 (1974) 1591. - [10] G. Lucovsky, R.M. Martin, J. Non-Cryst. Solids 8-10 (1972) 185. - [11] M. Kato, S. Onari, T. Araï, Jpn. J. Appl. Phys. 22 (1983) 1382. - [12] S. Barnier, M. Guittard, C. Jullien, A. Chilouet, Mat. Res. Bull. 28 (1993) 399. - [13] L. Koudelka, M. Fruner, M. Pisarcik, J. Non-Cryst. Solids 41 (1980) 171. - [14] L. Koudelka, M. Pisarcik, J. Non-Cryst. Solids 64 (1984) 87. - [15] J. Zitkovsky, P. Boolchand, J. Non-Cryst, Solids 114 (1989) 70. - [16] D.J.E. Muller, W. Nowacki, Z. Kristallogr. 136 (1972) 48. - [17] R. Zallen, M.L. Slade, A.T. Ward, Phys. Rev. B 36 (1987) 980. - [18] M.E. Fleet, Z. Kristallogr. 138 (1973) 147. - [19] L. Jun, J.J. Videau, B. Tanguy, J. Partier, J.M. Reau. P. Hagenmuller, Mat. Res. Bull. 23 (1988) 1315. - [20] M.E. Fleet, Z. Kristallogr. 138 (1973) 147. - [21] H.H. Byer, L.C. Bobb, I. Lefkowitz, E.S. Denver, J. Ferroelec. 5 (1973) 207.