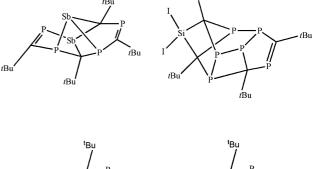
Specific insertion reactions of a germylene, stannylene and plumbylene into the unique P–P bond of the hexaphospha-pentaprismane cage, $P_6C_4^tBu_4$: Crystal and molecular structures of $P_6C_4^tBu_4ER_2$ (E = Ge, Sn, R = N(SiMe_3)_2; E = Pb, R = (C_6H_3(NMe_2)_2 - 2,6)^{\dagger}

Mahmoud M. Al-Ktaifani, Peter B. Hitchcock, Michael F. Lappert, John F. Nixon* and Philip Uiterweerd

Received 11th January 2008, Accepted 4th March 2008 First published as an Advance Article on the web 4th April 2008 DOI: 10.1039/b800458g

Treatment of the cage compound $P_6C_4^{t}Bu_4$ with $M\{N(SiMe_3)_2\}_2$ (M = Ge or Sn) or $Pb(C_6H_3(NMe_2)_{2-}2,6)$ at room temperature results in their specific insertion into the P–P bond connecting the two 5-membered $P_3C_2^{t}Bu_2$ rings. The products were fully characterised by multinuclear NMR spectroscopy and single crystal X-ray diffraction studies.

Introduction


Organo-phosphorus cage compounds have received considerable attention in recent years, the two major synthetic routes involving oxidative coupling of the polyphospholyl anions $P_n C_n R_{5-n}$ (n = 2, 3) and thermal or metal-mediated oligomerisation of phosphaalkynes, $P \equiv CR$, $(R = Bu^i)$.^{1,2} Cages involving tetramers, pentamers and hexamers of $P \equiv CBu^i$ are shown in Fig. 1 and cages containing one or more additional hetero-atoms such as antimony,³ silicon,⁴ germanium,⁴ sulfur,⁵ selenium⁵ and tellurium⁵ are shown in Fig. 2.

The chalcogen substituted organo-phosphorus systems P_6C_4 Bu_4E (E = S, Se Te) were easily prepared as shown in Fig. 3, by an unusually facile and specific insertion of the chalcogen into the P–P bond joining the two 5-membered rings of the hexaphosphapentaprismane 1.⁵ Theoretical calculations on $P_6C_4H_4$, at the HF/6-31G*//B3LYP/6-31G level, show that the central P–P bond is not only involved in both the HOMO and LUMO orbitals. but also in HOMO – 1, strongly suggesting that this bond is most likely to be involved in bond cleavage reactions of 1.

It was therefore of interest to examine the generality of this type of specific insertion reaction, by studying the interaction of 1 with other iso-electronic species such as germylenes, stannylenes and plumbylenes, MR_2 (M = Ge, Sn or Pb).

Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, Sussex, UK BN1 9QJ

† CCDC reference numbers 674809–674812. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b800458g

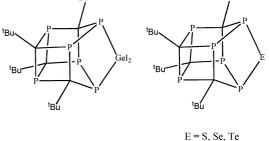


Fig. 2 Some organophosphorus cages containing other heteroatoms.

Results and discussion

Treatment of P_6C_4 'Bu₄ **1** with the stable germylene and stannylene $M\{N(SiMe_3)_2\}_2$, (M = Sn or Ge), or the plumbylene PbAr₂ (Ar = 2,6-(NMe_2)_2C_6H_3)^{6,7} in hexane at room temperature gave the expected products **2**, **3** and **4** *via* insertion of the MR₂ fragment into the unique P–P bond joining the two 5-membered rings

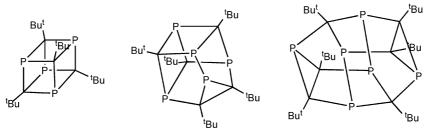
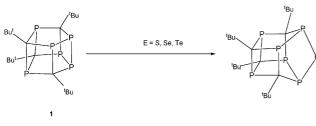
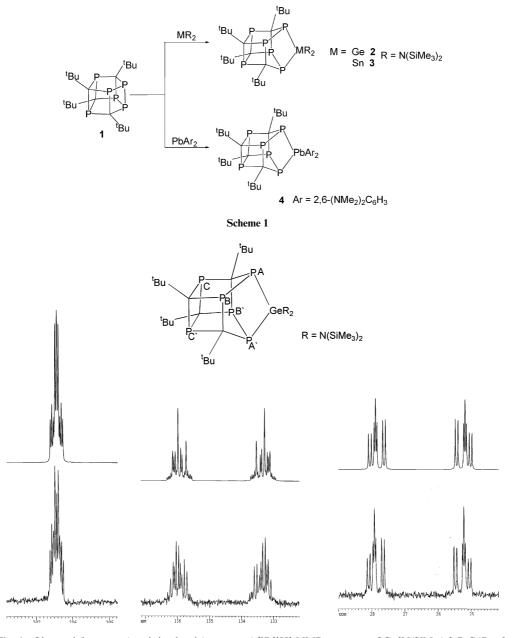



Fig. 1 Cage structures of the tetramer, pentamer and hexamer of the phosphaalkyne, P=CBu^t.



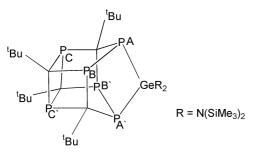
(E = S, Se Te)

Fig. 3 Insertion of chalcogens into the hexaphospha-pentaprismane, $P_6C_4\,{}^tBu_4.$

(Scheme 1). All the new compounds were fully characterised by multi-nuclear NMR spectroscopy, elemental analyses, and single crystal X-ray diffraction studies.

Compounds 2–4 all have a 2-fold rotational axis, resulting in only three different P environments and two 'Bu environments. Thus P_A and $P_{A'}$ are chemically equivalent (but magnetically non-equivalent), as are the pairs P_B and $P_{B'}$, and P_C and $P_{C'}$. The ³¹P{¹H} NMR spectra of 2–4, which are shown in Fig. 4, 6 and 8, are typical for AA'MM'XX' spin systems (compounds 2 and 4 also exhibit additional coupling to ¹¹⁹Sn and ²⁰⁷Pb nuclei respectively). Examples of this type of spin system involving six phosphorus centres are relatively uncommon and the resulting spectra are very sensitive to the magnitudes of the one and two bond J_{PP} coupling constants. The simulated spectra of 2–4 (using the shift and coupling constant data in Tables 1–4) gave reasonable fits with those experimentally observed and resulted in similar J_{PP} values within the series of compounds. The ¹¹⁹Sn{¹H} and ²⁰⁷Pb{¹H} NMR spectra of compounds 3 and 4 were also recorded directly.

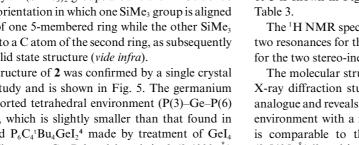
 $\label{eq:Fig.4} \textbf{Fig.4} \quad \textbf{Observed (lower part) and simulated (upper part) $^{31}P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum of $Ge{N(SiMe_3)_2}_2P_6C_4^{+}Bu_4$ 2.5 mm} \\ \textbf{But a simulated (upper part) } P{^{1}H} NMR spectrum$

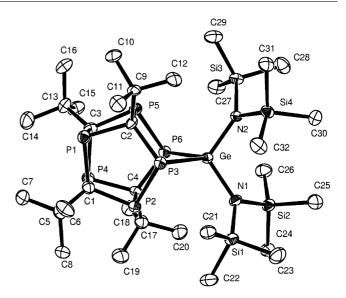

Table 1 ³¹P NMR data for compounds 2–4. Chemical shifts in ppm, coupling constants in Hz (for 3, M = Sn; For 4, M = Pb)

Compound	$\delta P_{\rm A,A'}$	$\delta P_{\rm B,B'}$	$\delta P_{\rm C,C'}$	$^{1}J(\mathbf{P}_{\mathrm{A}}\mathbf{P}_{\mathrm{B}})$	${}^{1}J(\mathbf{P}_{\mathbf{A}}\mathbf{M})$	$^{2}J(\mathbf{P}_{\mathbf{B}}\mathbf{M})$
2	26.5	134.5	206.4	320	_	_
3	-6.12	120.1	197.0	318	1352	
4	-19.3	127.1	188.9	343	1737	86
^t Bu tBu C	B P P B P A ' Bu	^t Bı 		P _A ,	MR ₂) C ₂

2 M=Ge; 3 M=Sn, R=N(SiMe₃)₂ 4 M=Pb, R =2,6-(NMe₂)₂C₆H₃

The ${}^{31}P{}^{1}H$ NMR spectrum of Ge{N(SiMe_3)_2}_2P_6C_4 Bu_4 2 shows the expected three sets of widely spaced multiplets (Fig. 4). The P_A resonance occurs as a large doublet of multiplets at 26.5 ppm as does the P_B resonance centered at 134.5 ppm with the same large coupling.


The $P_{\rm C}$ resonance exhibits a smaller multiplet at 206.4 ppm. The ${}^{31}P{}^{1}H$ NMR spectrum of **2** was simulated (Fig. 4) and the resulting J_{PP} coupling constants are listed in Table 2.


The ¹H NMR spectrum showed the expected two singlets for the different 'Bu environments at 1.21 and 1.49 ppm respectively, but interestingly two resonances for the SiMe₃ protons at 0.63 and 0.51 ppm. The latter behaviour presumably results from restricted rotation of the bulky -N(SiMe₃)₂ groups around the N-Ge bonds which results in an orientation in which one SiMe₃ group is aligned close to a P atom of one 5-membered ring while the other SiMe₃ group lies adjacent to a C atom of the second ring, as subsequently confirmed in the solid state structure (vide infra).

The molecular structure of 2 was confirmed by a single crystal X-ray diffraction study and is shown in Fig. 5. The germanium centre lies in a distorted tetrahedral environment (P(3)–Ge–P(6)angle = $90.65(4)^{\circ}$), which is slightly smaller than that found in the cage compound $P_6C_4^{t}Bu_4GeI_2^{t}$ made by treatment of GeI_4 with $KP_3C_2^{t}Bu_2$. The mean Ge–P bond length in 2 (2.4003 Å) is longer than that in $P_6C_4^{t}Bu_4GeI_2$ (2.337 Å) or in $(H_3Ge)_3P^8$

Table 2 J_{PP} coupling constants (in Hz) for Ge{N(SiMe_3)_2}P_6C_4^{t}Bu_4 2

 $P_{A^{\prime}}$ P_{B} $P_{C'}$ $P_{\rm C}$ PB 0 7 52 10 320 0 13 -145

Fig. 5 Molecular structure of $Ge\{N(SiMe_3)_2\}_2P_6C_4^{t}Bu_4$ **2**. Selected bond distances (Å) and angles (°): Ge-N(1) 1.876(4), Ge-N(2) 1.883(4), Ge-P(3) 2.3915(12), Ge-P(6) 2.4091(12); P(3)-Ge-P(6) 90.65(4), N(1)-Ge-N(2) 109.28(1), N(1)-Ge-P(3) 110.33(11), N(1)-Ge-P(6) 117.79(11), N(2)-Ge-P(6) 111.06(11), N(2)-Ge-P(3) 110.33(10), Ge-P(3)-C(2) 101.53(14), Ge-P(3)-P(2) 91.60(5), C(2)-P(3)-P(2) 99.60(15), Ge-P(6)-C(4) 100.31(14), Ge-P(6)-P(5) 92.69(5), P(5)-P(6)-C(4) 99.21(15).

(2.308 Å). Interestingly there is hardly any change in the geometry of $Ge\{N(SiMe_3)_2\}_2$ in forming the insertion product 2 even though there is a formal oxidation state change of two for Ge. Thus, the mean Ge–N distance in Ge{N(SiMe₃)₂} is 1.876(5) Å⁹ and in **2** is 1.878(4) Å, while the N–Ge–N bond angle in $Ge\{N(SiMe_3)_2\}_2$ is 107.1(2)° and in **2** is 109.28(1)°.

The analogous tin compound $Sn\{N(SiMe_3)_2\}_2P_6C_4^{t}Bu_4$ 3 shows very similar ³¹P{¹H}, ¹H and ¹³C{¹H} NMR spectroscopic features to 2 (see Fig. 6). The P_A resonance is a widely spaced doublet of multiplets centered at -6.12 ppm as is the P_B resonance at 120.1 ppm both exhibiting the same large coupling. The P_{C} resonance gives a smaller multiplet at 197.0 ppm. The ¹¹⁹Sn{¹H} NMR spectrum shows a well-resolved triplet at 130.4 ppm ${^1J(P_ASn) = 1352 \text{ Hz}}$. The simulated ${^{31}P}{^{1}H}$ NMR spectrum of 3 is shown in Fig. 6 and J_{PP} coupling constants are listed in

The ¹H NMR spectrum of **3**, like that of **2**, showed the expected two resonances for the two 'Bu environments and two resonances for the two stereo-inequivalent SiMe₃ groups.

The molecular structure of **3** was confirmed by a single crystal X-ray diffraction study (Fig. 7). It is similar to that of the Ge analogue and reveals that the Sn centre is in a distorted tetrahedral environment with a mean Sn-P bond length of (2.589 Å) which is comparable to the Sn-P bond distance in [^tBu₂Sn(PPh)₃] (2.5435 Å),¹⁰ and in (^tBu₂SnPH)₂ (2.546 Å).¹¹ The P(3)–Sn–P(6) angle is 86.02(6)° and the N-Sn-N angle is 105.2(2)°.

Table 3 J_{PP} coupling constants (in Hz) for Sn{N(SiMe_3)_2}P_6C_4^{t}Bu_4 3

_	P_{C}	P _C	$P_{B^{\prime}}$	P_{B}	$P_{A^{\prime}}$
P _A	-4	5	8	318	51
P _B	23	-12	6		
Pc	-2				

 $\mathbf{P}_{\mathbf{A}}$

 \mathbf{P}_{B}

 \mathbf{P}_{C}

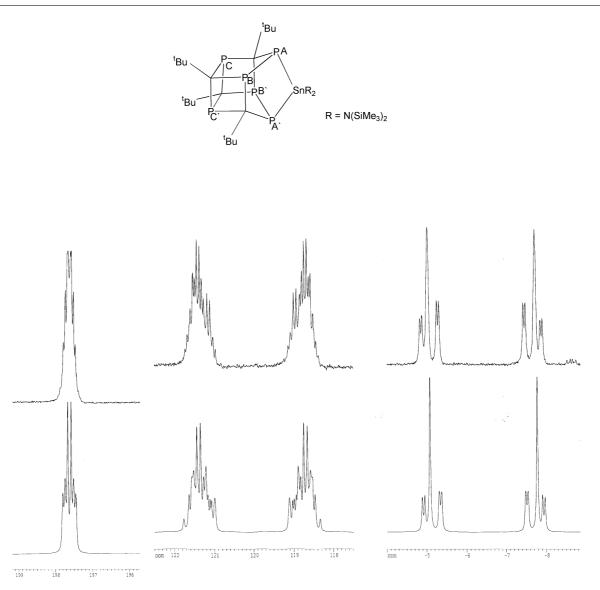


Fig. 6 Experimental (upper part) and simulated (lower part) ${}^{31}P{}^{1}H$ NMR spectra of Sn{N(SiMe_3)_2P_6C_4 Bu₄ 3.

Interestingly, as in the case of the Ge system, there is no significant change in the geometry of $Sn\{N(SiMe_3)_2\}_2$ in forming the insertion product **3**. The mean Sn–N distance in crystalline $Sn\{N(SiMe_3)_2\}_2$ is 2.09(1) Å¹² and in **3** is 2.080 Å, while the N–Sn–N bond angle in $Sn\{N(SiMe_3)_2\}_2$ is 104.7(2)° and in **3** is 105.2(2)°

The lead compound $Pb\{C_6H_3(NMe_2)_2-2,6\}_2P_6C_4^{T}Bu_4$ 4 was made from 1 by treatment with the plumbylene $Pb\{C_6H_3(NMe_2)_2\}_2$ and is a rather rare example of a compound containing a Pb(IV)–P bond. As can be seen in Fig. 8, its ³¹P{¹H} NMR spectrum is very similar to those discussed above for the Ge and Sn analogues 2 and 3 exhibiting doublets of multiplets at -19.3, 127.1 and 188.9 ppm for P_A, P_B and P_C respectively. The simulated ³¹P{¹H} NMR spectrum of 4 is shown in Fig. 8 and J_{PP} coupling constants are listed in Table 4.

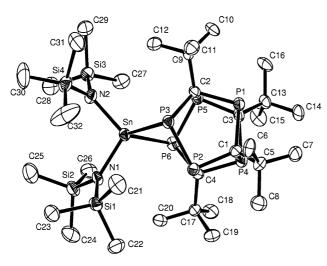
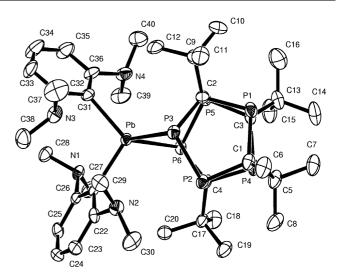
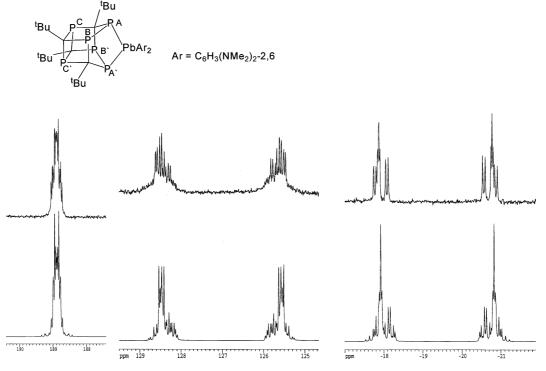

The ¹H NMR spectrum of **4** showed the expected two resonances for the ¹Bu groups and two resonances for the two stereoinequivalent NMe₂ groups (as a result of restriction of the free rotation around the C–Pb bond). The ²⁰⁷Pb{¹H} NMR spectrum showed a triplet of triplets, which corresponds to one bond

Table 4 $J_{\rm PP}$ couplingconstants(inHz)forPb{2,6-
(NMe_2)_2C_6H_3}_2P_6C_4'Bu_4 4


	$\mathbf{P}_{\mathbf{C}'}$	P _c	$P_{B^{\prime}}$	P_{B}	$P_{A^{\prime}}$
P _A P _B P _C	-13 11 -7	13 2	9 8	343	37

coupling ${}^{1}J(P_{A}Pb) = 1737$ Hz, and two bond coupling ${}^{2}J(P_{B}Pb) = 86$ Hz.


The molecular structure of Pb{2,6-(NMe₂)₂C₆H₃-2,6}₂P₆C₄'Bu₄ **4** was confirmed by a single crystal X-ray diffraction study (Fig. 9) and is similar to that of the analogous Sn and Ge structures. The Pb centre lies in a distorted tetrahedral environment with a P(3)–Pb–P(6) angle of 84.55(4)° and a mean Pb–P bond length of 2.6295 Å, which is comparable to the Pb–P bond distance (2.611 Å) in P₇[(PbMe₃)₃.¹³ The P–C and P–P distances in **2**, **3** and **4** are very close to their counterparts in P₆C₄'Bu₄ **1**.

We have also carried out a single crystal X-ray analysis of $Pb\{2,6-(NMe_2)_2C_6H_3\}_2$ **5** and its molecular structure is shown in Fig. 10. It can be seen that the structural features in **5** are hardly changed from those in the insertion product **4**. Thus, the Pb–C average distance in **4** is 2.232(5) Å and in **5** is 2.327(5) Å; likewise the C–Pb–C bond angle in **4** is 104.48(18)° and in **5** is 102.19(17)°. This behaviour parallels that of compounds **2** and **3** discussed earlier.

Several attempts were made to carry out analogous reactions of P_6C_4 'Bu₄ **1** with silylenes Si(NCH'Bu)₂(C_6H_4 -1,2)¹⁴ or Si(N'BuCH)₂¹⁵ under various reaction conditions, but unexpectedly no reaction was observed. Treatment of **1** with the carbene C(N'BuCH)₂¹⁶ gave an unidentified product with a very complicated ³¹P{¹H} NMR spectrum indicating no simple insertion of

 $\label{eq:Fig.8} \textbf{Fig.8} \quad \text{Experimental (upper part) and simulated (lower part) $^{31}P{^1H} NMR spectra of $Pb{C_6H_3(NMe_2)_2-2,6}_2P_6C_4$ $^{1}Bu_4 4.5$ $^{1}Bu_4$

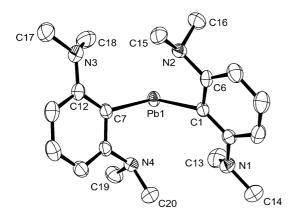


Fig. 10 Molecular structure of $Pb\{(NMe_2)_2C_6H_3-2,6\}_2$ 5. Selected bond distances (Å) and angles (°): Pb(1)-C(1) 2.328(5), Pb(1)-C(7) 2.325(5); C(1)-Pb-C(7) 102.19(17).

the carbene into the unique P–P bond of 1 had occurred as in the case of germylenes, stannylenes or plumbylenes.

Conclusions

The specific insertion of the "heavy carbenes" MR_2 (M = Ge, Sn or Pb) into the unique P–P bond between the two 5-membered rings of the pentaphospha-prismane cage P_6C_4 Bu₄. has been shown to parallel the behaviour of the isoelectronic chalcogen systems S, Se and Te suggesting that a common reaction mechanism obtains.

Experimental

All manipulations of air-and/or moisture-sensitive compounds were carried out under rigorously anhydrous and oxygen-free conditions using standard high vacuum Schlenk line techniques or in an inert atmosphere. Glassware and Schlenk tubes were flame dried before used. Solvents were dried and distilled before use. NMR solvents were purified by refluxing over a suitable drying agent, and vacuum-transferred into ampoules. ³¹P and ¹H NMR spectra were acquired on a Bruker Avance 300DPX spectrometer operating at 300 MHz for ¹H measurements, and 121.49 MHz for ³¹P measurements. ¹H NMR spectra are referenced to the residual proton chemical shift of the internal deuterated solvent (which in turn is referenced to TMS). ³¹P NMR spectra are referenced to H_3PO_4 (87% H_3PO_4 in D_2O as an external standard). All spectra were recorded at room temperature. Mass spectra (EI and FAB) were recorded by Dr A. Abdul-Sada at the University of Sussex. Single crystal X-ray diffraction studies were carried out using an Enraf Nonius KAPPACCD diffractometer.

 $Ge\{N(SiMe_3)_2\}_2,~Sn\{N(SiMe_3)_2\}$ and $Pb\{C_6H_3(NMe_2)_2\text{--}2,6\}_2$ were synthesised by literature methods.^{6,7}

Synthesis of P₆C₄^tBu₄ 1

In an alternative synthesis to those already described in the literature,¹ a THF solution of I₂ (0.47 g, 1.85 mmol in 10 ml THF) was added to K(P₃C₂'Bu₂) (1 g, 3.7 mmol in 15 ml THF) at -40 °C and the mixture warmed to room temperature. The solution became orange and was stirred for a further 96 h. Solvent was removed and the product extracted with hexane. Cooling to -40 °C afforded orange crystals of **1** (300 mg, 20%).

A mixture of P_6C_4 Bu₄ (0.06 g, 0.13 mmol) and $Ge\{N(SiMe_3)_2\}_2$ (0.05 g, 0.13 mmol) was stirred in hexane (15 ml) for 48 h. The solvent was then removed *in vacuo* to give $Ge\{N(SiMe_3)_2\}_2P_6C_4$ Bu₄, which was crystallised from Et₂O to afford colourless crystals (mp 225 °C, 0.66 g, 60%). Found: C 45.17, H 8.37, N 3.32. $C_{32}H_{72}N_2GeP_6Si_4$ requires C 44.92, H 8.48, N 3.27%.

Spectroscopic data. $(C_6D_6, 25 \text{ °C}), {}^{31}P{}^{1}H}$ NMR (121.49 MHz): $\delta P_{A,A'} = 26.5$ (dm), $\delta P_{B,B'} = 134.5$ (dm), $\delta P_{C,C'} = 206.4$ (m). ${}^{1}H$ NMR (300 MHz): $\delta H({}^{'}Bu) = 1.49$ (s, 18H), $\delta H({}^{'}Bu) = 1.21$ (s, 18H), $\delta H(SiMe_3) = 0.63$ (s, 18H), $\delta H(SiMe_3) = 0.51$ (s, 18H). ${}^{29}Si{}^{1}H{}$ NMR (99.36 MHz): $\delta SiMe_3 = 6.11$ (s), $\delta SiMe_3 = 5.77$ (s). ${}^{13}C{}^{1}H{}$ NMR (125.76 MHz): $\delta C(SiMe_3) = 8.77$ and 8.69, $\delta C(CH_3) = 31.84$ and 27.53, $\delta C({}^{'}Bu) = 35.96$ and 37.81 ppm. MS (EI): m/z 856 (50%, [M]⁺), 841 (100%, [M - Me]⁺).

Crystal data for 2. $C_{32}H_{72}GeN_2P_6Si_4$, M = 855.69, triclinic, space group $P\overline{1}$ (No. 2), a = 18.0331(4), b = 18.1166(5), c = 24.3208(7) Å, a = 82.831(2), $\beta = 69.414(2)$, $\gamma = 65.093(2)^\circ$; V = 6743.9(3) Å³, T = 173(2) K, Z = 6, $D_{c=} 1.26$ Mg m⁻³, $\mu = 1.03$ mm⁻¹, $\lambda = 0.71073$ Å, F(000) = 2736, crystal size $0.20 \times 0.20 \times 0.05$ mm, 46958 measured reflections, 23675 independent reflections ($R_{int} = 0.063$), 16354 reflections with $I > 2\sigma(I)$, Final indices R1 = 0.053, wR2 = 0.100 for $I > 2\sigma(I)$, R1 = 0.094, wR2 = 0.116 for all data. Data collection: KappaCCD. Program package WinGX.¹⁷ Refinement using SHELXL-97.¹⁸

Synthesis of $Sn\{N(SiMe_3)_2\}_2P_6C_4^{t}Bu_4 3$

A mixture of P_6C_4 'Bu₄ (0.0 4 g, 0.09 mmol) and $Sn\{N(SiMe_3)_2\}_2$ (0.04 g, 0.09 mmol) was stirred in hexane (15 ml) for 24 h. The solvent was then removed *in vacuo* to give $Sn\{N(SiMe_3)_2\}_2P_6C_4$ 'Bu₄, which was crystallised from hexane at -35 °C to afford yellow crystals (mp 226 °C, 0.05 g, 60%). Found: C 42.10, H 7.51, N 2.97. C₃₂H₇₂ N₂P_6Si₄Sn requires C 42.62, H 8.05, N 3.11%.

Spectroscopic data. (C₆D₆, 25 °C), ³¹P{¹H} NMR (121.49 MHz): $\delta P_{A,A'} = -6.12$ (dm), $\delta P_{B,B'} = 120.1$ (dm), $\delta P_{C,C'} = 197$ (m). ¹H NMR (300 MHz): $\delta H(^{1}Bu) = 1.48$ (s, 18H), $\delta H(^{1}Bu) = 1.26$ (s, 18H), $\delta H(SiMe_3) = 0.52$ (s, 18H), $\delta H(SiMe_3) = 0.47$ (s, 18H). ²⁹Si{¹H} NMR (99.36 MHz): $\delta SiMe_3 = 5.4$ (s), $\delta SiMe_3 = 5.2$ (s). ¹³C{¹H} NMR (125.76 MHz): $\delta C(SiMe_3) = 7.55$ and 7.46, $\delta C(CH_3) = 27.5$ and 31.5, $\delta C(^{1}Bu) = 36.0$ and 37.9. ¹¹⁹Sn{¹H} NMR (186.5 MHz): $\delta Sn = 130.4$ (t) ppm. ¹*J*(P_ASn) = 1352 Hz. MS (EI), *m/z*: 902 (80%, [M]⁺).

Crystal data for 3. $C_{32}H_{72}N_2P_6Si_4Sn$, M = 901.79, triclinic, space group $P\bar{1}$ (No. 2), a = 11.9453(17), b = 13.7446(14), c = 15.126(2) Å, a = 114.191(7), $\beta = 93.524(5)$, $\gamma = 94.335(9)^\circ$; V = 2247.2(5) Å³, T = 173(2) K, Z = 2, $D_{c=} 1.33$ Mg m⁻³, $\mu = 0.91$ mm⁻¹, $\lambda = 0.71073$ Å, F(000) = 948, crystal size 0.40 × 0.05 × 0.02 mm, 13494 measured reflections, 6186 independent reflections ($R_{int} = 0.096$), 4261 reflections with $I > 2\sigma(I)$, Final indices R1 = 0.061, wR2 = 0.120 for $I > 2\sigma(I)$, R1 = 0.102, wR2 = 0.136 for all data. Data collection: KappaCCD. Program package WinGX. Refinement using SHELXL-97.

Synthesis of $Pb\{C_6H_3(NMe_2)_2-2,6\}_2P_6C_4$ ^t Bu_4 4

A solution of P_6C_4 'Bu₄ (0.07 g, 0.15 mmol) and $Pb\{C_6H_3(NMe_2)_2-2,6\}_2$ (0.08 g, 0.15 mmol) was stirred in hexane (20 ml) for 48 h. The solvent was then removed *in vacuo* to give $Pb\{C_6H_3(NMe_2)_2\}_2P_6C_4$ 'Bu₄ which was crystallised from Et₂O to give pale orange crystals (mp 140 °C decomp., 0.075 g, 50%). Found: C 48.13, H 6.66. $C_{40}H_{66}N_4P_6Pb$ requires C 48.24, H 6.68%.

Spectroscopic data. (C₆D₆, 25 °C), ³¹P{¹H} NMR (121.49 MHz): $\delta P_{A,A'} = -19.3$ (dm), $\delta P_{B,B'} = 127.1$ (dm), $\delta P_{C,C'} = 188.9$ (m). ¹H NMR (300 MHz): $\delta H(^{1}Bu) = 1.42$ (s, 18H), $\delta H(^{1}Bu) = 1.24$ (s, 18H), $\delta H(NMe_2) = 2.88$ (s, 12H), $\delta H(NMe_2) = 2.20$ (s, 12H), $\delta H(C_6H_3) = 6.9$ (m, 6H). ¹³C{¹H} (125.76 MHz): $\delta C(CH_3) = 28.20$ and 30.50, $\delta C(^{1}Bu) = 37.70$ and 36.00, $\delta C(NCH_3) = 40.60$ (m) and 46.41 (m). ²⁰⁷Pb{¹H} NMR (104.68 MHz): $\delta Pb = 530.9$ (tt) ppm ¹ $J(P_APb) = 1737$ Hz, ² $J(P_BPb) = 86$ Hz. MS (EI), *m/z*: 996 (10%, [M]⁺).

Crystal data for 4. $C_{40}H_{66}N_4P_6Pb$, M = 995.98, monoclinic, space group $P2_1/n$ (No. 14), a = 11.2177(3), b = 33.3392(11), c = 13.1175(4) Å, $\beta = 112.074(2)^\circ$, V = 4546.2(2) Å³, T = 173(2) K, Z = 4, $D_{c=} 1.46$ Mg m⁻³, $\mu = 3.95$ mm⁻¹, $\lambda = 0.71073$ Å, F(000) = 2024, crystal size $0.2 \times 0.1 \times 0.1$ mm, 23962 measured reflections, 10524 independent reflections ($R_{int} = 0.070$), 7750 reflections with $I > 2\sigma(I)$, Final indices R1 = 0.046, wR2 = 0.093 for $I > 2\sigma(I)$, R1 = 0.075, wR2 = 0.103 for all data. Data collection: KappaCCD. Program package WinGX. Refinement using SHELXL-97.

Crystal data for 56

C₂₃H₃₃N₄Pb, M = 572.72, monoclinic, space group $P2_1/n$ (No. 14), a = 13.714(4), b = 10.324(3), c = 17.259(5) Å, $\beta = 109.372(4)^{\circ}$, V = 2305.1(11) Å³, T = 173(2) K, Z = 4, $D_{c} = 1.65$ Mg m⁻³, $\mu = 7.334$ mm⁻¹, $\lambda = 0.71073$ Å, F(000) = 1124, crystal size $0.3 \times 0.2 \times 0.2$ mm, 14598 measured reflections, 5471 independent reflections ($R_{int} = 0.0494$), 4226 reflections with $I > 2\sigma(I)$, Final indices R1 = 0.0365, wR2 = 0.0837 for $I > 2\sigma(I)$, R1 = 0.0547, wR2 = 0.0962for all data. Data collection: Bruker SMART. Program package WinGX. Refinement using SHELXL-97.

Acknowledgements

We acknowledge Dr Peter Loennecke for determining the crystal and molecular structure of compound **5** and the late Dr A. G. Avent for the simulation of the ³¹P NMR spectra. M. M. Al-K. thanks the Syrian Atomic Energy Commission for a studentship and P.U. thanks the Euopean Commision for a TMR grant. J.F.N. acknowledges continuing financial support from the EPSRC for phospha-organometallic chemistry at Sussex University.

References

- (a) K. B. Dillon, F. Mathey and J. F. Nixon, *Phosphorus, The Carbon Copy: From Organophosphorus to Phospha-organic Chemistry*, Wiley, New York, 1998; (b) *Phosphorous-Carbon Heterocyclic Chemistry: The Rise of a New Domain*, ed. F. Mathey, Pergamon, Oxford, 2001; (c) F. Mathey, *Angew. Chem., Int. Ed.*, 2003, 42, 1578.
- 2 (a) R. Streubel, Angew. Chem., Int. Ed. Engl., 1995, 34, 436 and references therein; (b) A. Mack and M. Regitz, in Carbocyclic and Heterocyclic Cage Compounds and Their Building Blocks, ed. K. K. Laali, J. A. I. Press, Stamford, CT, USA, 1999, p. 199; (c) J. F. Nixon, in Carbocyclic and Heterocyclic Cage Compounds and Their Building Blocks, ed. K. K. Laali, J. A. I. Press, Stamford, CT, USA, 1999, p. 257; (d) L. Weber, Adv. Organomet. Chem., 1997, 41, 1; (e) M. Regitz, A. Hoffmann and U. Bergsträsser, in Modern Acetylene Chemistry, ed. P. J. Stang and F. Diederich, VCH, Weinheim, 1995; (f) R. Appel, in Multiple Bonds and Low Coordination in Phosphorus Chemistry, ed. M. Regitz and O. Scherer, Georg Thieme Verlag, New York, 1990, p. 153; (g) R. Bartsch, P. B. Hitchcock and J. F. Nixon, J. Organomet. Chem., 1989, 375, C31; (h) V. Caliman, P. B. Hitchcock, J. F. Nixon, M. Hofmann and P. von R. Schleyer, Angew. Chem., Int. Ed. Engl., 1994, 33, 2202; (i) B. Geissler, T. Wettling, S. Barth, P. Binger and M. Regitz, Synthesis, 1994, 1337; (j) F. Tabellion, A. Nachbauer, S. Leininger, C. Peters, F. Preuss and M. Regitz, Angew. Chem., Int. Ed., 1998, 37, 1233; (k) T. Wettling, J. Schneider, O. Wagner, C. G. Kreiter and M. Regitz, Angew. Chem., Int. Ed. Engl., 1989, 28, 1013; (1) B. Geissler, S. Barth, U. Bergsträsser, M. Slany, J. Durkin, P. B. Hitchcock, M. Hofmann, P. Binger, J. F. Nixon, P. von R. Schleyer and M. Regitz, Angew. Chem., Int. Ed. Engl., 1995, 34, 484; (m) M. M. Al-Ktaifani, W. Bauer, U. Bergsträsser, B. Breit, M. D. Francis, F. W. Heinemann, P. B. Hitchcock, A. Mack, J. F. Nixon, H. Pritzkow, M. Regitz, M. Zeller and U. Zenneck, Chem.-Eur. J., 2002, 8, 2622; (n) A. G. Avent, F. G. N. Cloke, M. D. Francis, P. B. Hitchcock and J. F. Nixon, Chem. Commun., 2000, 879; (o) M. M. Al- Ktaifani, P. B. Hitchcock and J. F. Nixon, Inorg. Chim. Acta, 2003, 356, 103.
- 3 S. J. Black, M. D. Francis and C. Jones, Chem. Commun., 1997, 305.
- 4 A. G. Avent, F. G. N. Cloke, M. D. Francis, P. B. Hitchcock and J. F. Nixon, *Chem. Commun.*, 2000, 879.
- 5 M. M. Al-Ktaifani, D. P. Chapman, M. D. Francis, P. B. Hitchcock, J. F. Nixon and L. Nyulászi, *Angew. Chem.*, *Int. Ed.*, 2001, **40**, 3474.
- 6 C. Drost, P. B. Hitchcock, M. F. Lappert and L. J- M. Pierssens, *Chem. Commun.*, 1997, 1141.
- 7 P. J. Davidson, D. H. Harris and M. F. Lappert, J. Chem. Soc., Dalton Trans., 1976, 2268.
- 8 D. W. H. Rankin, A. G. Robiette, G. M. Sheldrick, B. Beagley and T. G. Hewitt, J. Inorg. Nucl. Chem., 1969, 31, 2351.
- 9 R. W. Chorley, P. B. Hitchcock, M. F. Lappert, W.-P. Leung, P. P. Power and M. M. Olmstead, *Inorg. Chim. Acta*, 1992, 200, 203.
- 10 T. L. Breen and D. W. Stephan, Organometallics, 1997, 16, 365.
- 11 D. Hänssgen, H. Aldenhoven and M. Nieger, *Chem. Ber.*, 1990, **123**, 1837.
- 12 T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1983, 639.
- 13 D. Weber, C. Mujica and H. G. Schnering, Angew. Chem., Int. Ed. Engl., 1982, 21, 863.
- 14 B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese and D. Bläser, J. Chem. Soc., Chem. Commun., 1995, 1931.
- 15 R. West and M. Denk, Pure Appl. Chem., 1996, 68, 785.
- 16 A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem. Soc., 1991, 113, 361.
- 17 L. J. Farrugia, WinGX, J. Appl. Crystallogr., 1999, 32, 837.
- 18 G. M. Sheldrick, SHELXL-97, University of Gottingen, Gottingen, 1997.