MATRIXREAKTION VON SIO MIT F_2 . IR-SPEKTROSKOPISCHER NACHWEIS VON MOLEKULAREM $OSiF_2$

H. SCHNÖCKEL

Anorganisch-Chemisches Institut der Universität Münster (B.R.D.) (Eingegangen am 16. Oktober 1979)

ABSTRACT

SiO reacts with F_2 in an argon matrix after photolysis with a high-pressure mercury lamp to form OSiF₂. Isotopic splitting (¹⁶O/¹⁸O and ²⁸Si/²⁹Si) and force constant calculations show that the 6 fundamentals observed can be assigned to the planar molecule OSiF₂. The value of the force constant of the SiO double bond, which was calculated as approximately 9×10^2 N m⁻¹ in earlier investigations, is confirmed by this work.

ZUSAMMENFASSUNG

In einer Argonmatrix reagiert SiO mit F₂ nach Anregung mit einer Hg-Hochdrucklampe zu OSiF₂. Mit Hilfe von Isotopenverschiebungen (¹⁶O/¹⁸O und ²⁸Si/²⁹Si) und Kraftkonstantenrechnungen lassen sich die gemessenen 6 Grundschwingungsfrequenzen einem planaren Molekül OSiF₂ zuordnen. Der bei früheren Untersuchungen ermittelte Wert für die Kraftkonstante einer Si=O-Doppelbindung von etwa 9 × 10² N m⁻¹ wird durch diese Arbeit bestätigt.

EINLEITUNG

Stabile Verbindungen mit p_{π} - p_{π} -Mehrfachbindungen am Silicium sind bisher nicht bekannt. Dem Silicium fehlt also die Eigenschaft des Kohlenstoffs, niedrige Koordinationszahlen durch die Ausbildung von Mehrfachbindungen zu stabilisieren. Es bevorzugt stattdessen die Bildung vernetzter Strukturen. Erst in jüngster Zeit wurden Si=O-Doppelbindungen in den durch Matrixisolation bei tiefen Temperaturen erhaltenen monomeren Molekülen SiO_2 und $OSiCl_2$ nachgewiesen [1]. Außerdem wurde die Existenz von Si-C- und Si-Si-Doppelbindungen in einigen Verbindungen wahrscheinlich gemacht, die als instabile Zwischenprodukte auftreten [2]. Für eine vertiefte Diskussion von Si-X-Mehrfachbindungen sind neben den experimentell ermittelten Strukturdaten ab initio Rechnungen wünschenswert. Molekulares SiO_2 wurde bereits quantenchemisch berechnet [3]. Für eine ab initio Rechnung einer Verbindung mit dreifachkoordiniertem Silicium und Si=O-Doppelbindung ist wegen der relativ geringen Gesamtelektronenzahl das Molekül OSiF₂ geeignet. Um für diese Verbindung experimentelle Daten zu beschaffen, haben wir sie in einer Argonmatrix hergestellt. In der folgenden Arbeit

0022-2860/80/0000-0000/\$02.25 © 1980 Elsevier Scientific Publishing Company

werden die Schwingungsspektren und die Potentialfunktion von $OSiF_2$ beschrieben.

ZUORDNUNG

Werden SiO und F_2 gemeinsam mit Argon auf einer Kaltfläche abgeschieden, so beobachtet man im wesentlichen das Matrixspektrum von SiO mit wechselnden Anteilen von (SiO)₂ und (SiO)₃, wie es auch von anderen Autoren beschrieben wurde (Abb. 1) [4]. Zusätzlich erkennt man bei Spreizung der Wellenlängenskala ca. 3 cm⁻¹ unterhalb der SiO-Frequenz eine Satellitenbande, die auf eine lose Anlagerung von F_2 an SiO zurückzuführen ist. Neben einigen breiten Absorptionen, die nicht zu matrixisolierten Spezies gehören können, erkennt man bei ca. 1020 cm⁻¹ eine scharfe Absorption von SiF₄ [5], das wahrscheinlich durch Reaktion des Ofenmaterials mit zurückdiffundiertem F_2 stammt.

Nach einer Photolyse der Matrix mit einer Hg-Hochdrucklampe zeigen drastische Änderungen des Spektrums eine Reaktion an. Die Umsetzung wird noch gesteigert, wenn gleichzeitig mit der SiO-, F2-, Ar-Abscheidung photolytisch angeregt wird. Ein Spektrum einer so erzeugten Matrix ist in Abb. 2 wiedergegeben. Es enthält neben Banden von unumgesetztem SiO, (SiO), und $(SiO)_3$ verhältnismäßig scharfe Absorptionen bei 1332,2 cm⁻¹ ($\nu_4 + \nu_5$), $1309,4 \text{ cm}^{-1}$ (ν_1), 996,0 cm⁻¹ (ν_4), 835,1 cm⁻¹, (ν_2), 423 cm⁻¹ (ν_3), 344,3 cm⁻¹ (ν_6) und 332,6 cm⁻¹ (ν_5), die nach einer mit plausibel abgeschätzten Kraftkonstanten durchgeführten Normalkoordinatenanalyse der Erwartung für ein planares Molekül OSiF₂ sehr gut entsprechen. In Abb. 3 und 4 sind die äquivalenten Spektren von ¹⁸O- und ²⁹Si-angereichertem OSiF₂ wiedergegeben. Da in diesen beiden Spektren infolge der jeweiligen Isotopenanreicherung nur eine zweifache Aufspaltung (am deutlichsten an der SiO-Schwingung ν_1 zu erkennen) und keine dreifache Aufspaltung beobachtet wird, ist der Schluß auf ein Molekül mit einem O- und einem Si-Atom zwingend. Aus Analogiegründen zur Darstellung des OSiCl₂ [1b] (in diesem Molekül mußten auf Grund der ³⁵Cl/ ³⁷Cl-Aufspaltung 2 gleichwertige Chloratome gefordert werden) ist in diesem Fall die Annahme einer Verbindung mit 2 Fluoratomen plausibel. Eine Aussage über die Zusammensetzung des neuen Moleküls OSiF₂ ist also allein aus dem Aufspaltungsmuster der Spektren möglich. In Tabelle 1 sind die beobachteten Grundschwingungen für das Molekul ¹⁶O²⁸SiF₂ und einige Isotopenverschiebungen wiedergegeben.

KRAFTKONSTANTENRECHNUNG

 B_2

Da in der Rasse B_2 für das Molekül OSiF₂ nur eine Schwingung auftritt, können Isotopenverschiebungen eindeutig berechnet werden, wenn die Geometrie des Moleküls bekannt ist. Bei unbekannter Geometrie können

Abb. 1. IR-Argon-Matrixspektrum nach Kokondensation von Si¹⁶O and F₂. Der gespreizte Ausschnitt (1230–1210 cm⁻¹) zeigt die Absorptionen von ungestörtem sowie durch die Anlagerung von F₂ gestörtem SiO.

Abb. 2. IR-Argon-Matrixspektrum nach Kokondensation von Si¹⁶O und F₂ mit gleichzeitiger UV-Anregung.

Abb. 3. IR-Argon-Matrixspektrum nach Kokondensation von Si¹⁶O/Si¹⁸O und F₂ und anschließender UV-Anregung (30 Min).

Abb. 4. IR-Argon-Matrix spektrum nach Kokondensation von $^{28}\rm{Si}^{16}O/^{29}\rm{Si}^{16}O$ und F₂ und anschließender UV-Anregung (30 Min).

TABELLE 1

	^ν 1 1309,4	ν ₂ 835,1	ν ₃ 423,0	ν₄ 996,0	ν, 332,6	v ₆ 344,3
$\frac{16O^{28}SiF_2}{\Delta \nu _{18}^{16}O^{28}SiF_2}$	31,4 ± 0,2	12,1 ± 0,1	a	< 0,2	8,5 ± 0,5	3,6 ± 0,3
$\Delta \nu \frac{{}^{16}O^{28}SiF_2}{{}^{16}O^{29}SiF_2}$	$10,4 \pm 0,2$	0,6 ± 0,3	а	8,1 ± 0,4	0,9 ± 0,3	3,75 ± 0,3

Grundschwingungen und gemessene Isotopenverschiebungen von argonmatrixisoliertem ${\rm OSiF}_{\rm z}$

^aNicht meßbar, da Bande zu intensitätsschwach.

umgekehrt gemessene Isotopenverschiebungen Rückschlüsse auf Atomanordnungen zulassen. Im OSiF₂ werden die Abstände SiF, SiO und der Winkel α (FSiF) für eine Kraftkonstantenrechnung benötigt. In Tabelle 2 sind gemessene und berechnete ¹⁶O/¹⁸O- und ²⁸Si/²⁹Si-Isotopenverschiebungen in der Rasse B_2 für unterschiedliche Abstandsverhältnisse verglichen. Während die ²⁸Si/²⁹Si-Aufspaltung keine Eingrenzung erlaubt, läßt sich eine Vergrößerung des Winkels α (FSiF) über 110° auf Grund der ¹⁶O/¹⁸O-Verschiebung ausschließen. Ein unterer Grenzwert von α ist schwieriger festzulegen. Er ändert sich je nach vorgegebenem Abstandsverhältnis. Eine Übereinstimmung von berechneten und experimentell ermittelten Isotopenverschiebungen ist für ein Abstandsverhältnis (SiF/SiO) von 1,02 erst bei einem Wert für α von 100° möglich (Tabelle 2). Winkel um 100° sind jedoch angesichts der größeren Winkel im $OSiCl_2$ (110°) [1b], $OCCl_2$ (111,3°) [6] und OCF_2 (107,8°) [7] unwahrscheinlich. Ferner ergaben Überschlagsrechnungen in der Rasse B_1 , daß bei einem Winkel von 100° nur dann eine Übereinstimmung von berechneten und experimentell gefundenen Isotopenverschiebungen zu erreichen

TABELLE 2

F—Si—F	Δν ₆ ¹⁶ O ²⁸ SiF ₂ ¹⁸ O ²⁸ SiF ₂		Δν ₆ ¹⁶ O ²⁸ SiF ₂ ¹⁶ O ²⁹ SiF ₂	
	ber.	exp.	ber.	exp.
 102°	3,48		3,86	
	(3,36)		(3,87)	
		$3,6 \pm 0,3$		3,75 ± 0,3
112°	2,97		3,85	
	(2,85)		(3,86)	

Berechnete und gemessene Isotopenverschiebungen (cm⁻¹) in der Rasse B_2 (ν_6)^a

^aFür das Abstandsverhältnis SiF/SiO wurde ein Wert von 1,05 (vergl. Text) eingesetzt. Die in Klammern angegebenen Isotopenverschiebungen wurden mit einem Wert SiF/SiO = 1,02 berechnet. ist, wenn die Wechselwirkungskraftkonstante $F[\nu_a(SiF)/\rho(O)]$ mit ~ 0 (10² N m⁻¹) vorgegeben wird. Ein solcher Wert ist aber nach unseren Untersuchungen am OSiCl₂ auszuschließen. Wir haben deshalb für α den plausiblen Wert 107,5° eingesetzt, der auf befriedigende Werte der Wechselwirkungskraftkonstanten und auf 1,05 (SiF/SiO) als Abstandsverhältnis (SiO = 151; SiF = 159 pm) führt. Diese geometrischen Daten liegen auch den folgenden Rechnungen zugrunde.

B_1

Eine befriedigende Eingrenzung der Potentialfunktion in der Rasse B_1 ist nur dann möglich, wenn die Rechnung zeigt, daß eine Variation der Kraftkonstanten die Größe der Isotopenverschiebungen stark beeinflußt. Aus Tabelle 3 erkennt man, daß bei einer Veränderung der Kraftkonstanten in dieser Rasse die ¹⁶O/¹⁸O-Verschiebungen von ν_5 fast konstant bleiben. Demgegenüber sollten mit Hilfe der ²⁸Si/²⁹Si-Verschiebungen von ν_4 die Kraftkonstante in recht engen Grenzen festgelegt werden können. Leider läßt sich infolge der recht großen Halbwertbreite von ν_4 die Isotopenverschiebung nicht genau genug ausmessen und folglich ist die wünschenswerte Genauigkeit für die Bestimmung der Kraftkonstante so nicht zu erreichen. Da auch $\Delta \nu_5$ (²⁸Si/²⁹Si) (infolge einer großen Halbwertbreite verbunden mit einer sehr kleinen Isotopenverschiebung) nicht genügend genau festgelegt werden kann, läßt sich die Wechselwirkungskraftkonstante nur innerhalb recht großer Fehlergrenzen angeben. Demgegenüber ist die Fehlerbreite für die Hauptdiagonalglieder überraschend klein:

 $F[\nu(\text{SiF})] = 5,88 \pm 0,13 (10^2 \text{ N m}^{-1})$ $F[\rho(\text{O})] = 0,216 \pm 0,003 (10^2 \text{ N m}^{-1})$ $F[\nu(\text{SiF})/\rho(\text{O})] = 0,1 \pm 0,6 (10^2 \text{ N m}^{-1})$

TABELLE 3

F[v(SiF)]	$F[\nu(SiF)/\rho(O)]$	<i>F</i> [ρ(Ο)]	Δν ₄ ¹⁶ O ²⁸ SiF ₂ ¹⁶ O ²⁹ SiF ₂	Δν ₅ ¹⁶ O ²⁸ SiF ₂ ¹⁸ O ²⁸ SiF ₂	Δυ ₅ ¹⁶ O ²⁸ SiF ₂ ¹⁶ O ²⁸ SiF ₂
5,758	0,04	0,2188	8,62	8,42	1,08
5,844	0,08	0,2164	8,48	8.43	1,13
5,927	0,12	0,2147	8,34	8,44	1,18
6,007	0,16	0,2137	8,21	8,44	1,22
Gemessene l mit Anharm	lsotopenverschiebu onizitätskorrektur	ngen [12]	8,2 ± 0,4	8,6 ± 0,5	0,9 ± 0,3

Berechnete und gemessene Isotopenverschiebungen (cm⁻¹) in der Rasse B_1^{a}

^aKraftkonstanten in 10² N m⁻¹.

 A_1

In der Rasse A_1 sollte die Bestimmung der 6 Symmetriekraftkonstanten mit Hilfe von 3 Eigenwerten und 4 Isotopenverschiebungen (Tabelle 1) möglich sein, wenn Überschlagsrechnungen eine genügend große Abhängigkeit der Isotopenverschiebungen von den vorgegebenen Kraftkonstanten erkennen lassen. Obwohl diese Voraussetzung weitgehend erfüllt ist, stellen sich einer genauen Ermittlung der Potentialfunktion in dieser Rasse neue Schwierigkeiten entgegen, da Fermiresonanzen (vergl. weiter unten) besonders die sehr genauen meßbaren Isotopenverschiebungen von v_1 verfälschen. Wir haben mit plausibel abgeschätzten Wechselwirkungskraftkonstanten zahlreiche Rechnungen in A₁ durchgeführt und konnten so die Zuordnung der beobachteten Frequenzen bestätigen. Demgegenüber zeigten die berechneten ¹⁶O/¹⁶O-Verschiebungen von v_1 und v_2 in keinem Fall eine befriedigende Übereinstimmung mit den Meßwerten. So war die Summe der berechneten $^{16}O/^{18}O$ -Verschiebungen $(\Delta v_1 + \Delta v_2)$ in jedem Fall deutlich größer (2 cm⁻¹) als die gemessenen Werte. Diese Diskrepanz ist hauptsächlich auf eine Fermiresonanz von v_1 mit der Kombinationsschwingung $v_4 + v_5$ zurückzuführen, wodurch Δv_1 zu klein beobachtet wird.

Die Kombinationsschwingung $\nu_4 + \nu_5$ wird bei 1332,2 cm⁻¹ (Abb. 2) beobachtet. Da die Summe der Grundschwingungen 1328,6 cm⁻¹ beträgt, ergibt sich eine Fermiresonanzverschiebung von 3,6 cm⁻¹, die noch um ca. 0,5 cm⁻¹ auf Grund der Anharmonizität vergrößert werden muß. Um den gleichen Betrag (~4 cm⁻¹) ist auch die Grundschwingung ν_1 (¹⁶O²⁸SiF₂) verfälscht. Leider ist eine Abschätzung der Fermiwechselwirkung für Spezies mit ¹⁸O-Atomen nicht möglich, da die zu erwartende Kombinationsschwingung ($\nu_4 + \nu_5$) ich diesem Fall von ν_1 der Moleküle mit ¹⁶O-Atomen überlagert wird. Einc genaue Angabe über die Verfälschung der Isotopenverschiebung $\Delta \nu_1$ ¹⁶O/¹⁸O durch Fermiresonanz is also nicht möglich. Sie sollte jedoch kleiner als 4 cm⁻¹ sein, da ν_1 der Isotopenmoleküle ¹⁸O²⁸SiF₂ trotz des größeren Abstandes zwischen Grund-und Kombinations-schwingung [$\nu_1 - (\nu_4 + \nu_5)$] durch Fermiresonanz leicht verfälscht wird.

Eine analoge Argumentation führt zu dem Schluß, daß die ²⁸Si/²⁹Si-Verschiebung von ν_1 wesentlich weniger durch Fermiresonanz verkleinert wird, als die ¹⁶O/¹⁸O-Verschiebung dieser Schwingung.

Eine schwache Fermiresonanz wird auch zwischen ν_2 und der Oberschwingung $2\nu_3$ (847,0 ± 0,5; ¹⁶O²⁸SiF₂) beobachtet. Da auf Grund der geringen Intensität von ν_3 deren Absolutlage nur ungenau (± 1 cm⁻¹) und die nach Überschlagsrechnungen zu erwartenden kleinen Isotopenverschiebungen (¹⁶O/¹⁸O: 2,2 cm⁻¹; ²⁸Si/²⁹Si: 0,9 cm⁻¹) überhaupt nicht gemessen werden konnten, ist die Fermiresonanzverfälschung der Isotopenverschiebung von $2\nu_3$ und folglich auch von ν_2 nicht genau zu bestimmen. Sie sollte nach einer Abschätzung die ¹⁶O/¹⁸O-Verschiebung von ν_2 um nicht mehr als 1,5–2 cm⁻¹ vergrößern und bei der ²⁸Si/²⁹Si-Aufspaltung ($\Delta \nu_2$) zu vernachlässigen sein. Wegen der geschilderten Fermiresonanzeinflüsse haben wir die Kraftkonstanten in A_1 nur angenähert bestimmen können. Werden die Wechselwirkungskraftkonstanten nach einer vergleichenden Betrachtung der Potentialfunktion von OSiCl₂ [1b], OCCl₂ [8] und OCF₂ [9] abgeschätzt, und gelten daneben als Randbedingungen die oben diskutierten Verfälschungen durch Fermiresonanz, so berechnen wir in der Rasse A_1 folgendes Kraftfeld (alle Kraftkonstanten in 10^2 N m⁻¹):

0,10 - 0,00
$F[\nu(SiO)/\delta(SiCl_2)]$
$0,1 \pm 0,1$
$F[\nu(SiCl_2)/\delta(SiCl_2)]$
0,48 ± 0.01
$F[\delta(SiCl_2)]$

Mit Hilfe dieses Kraftkonstantensatzes werden folgende Isotopenverschiebungen berechnet, deren Fehlerbreite eine Folge der Ungenauigkeit in der Angabe der Potentialfunktion ist:

$$\Delta \nu_1$$
 (¹⁶O/¹⁸O): 33,7 ± 2,5 cm⁻¹ (gemessen: 31,75 cm⁻¹)
 $\Delta \nu_1$ (²⁸Si/²⁹Si): 12,9 ± 0,5 cm⁻¹ (gemessen: 10,5 cm⁻¹)
 $\Delta \nu_2$ (¹⁶O/¹⁸O): 12,9 ± 1,7 cm⁻¹ (gemessen: 12,2 cm⁻¹)

Ein Vergleich zwischen den berechneten und beobachteten Isotopenaufspaltungen zeigt, daß in anbetracht der Störungen durch Fermiresonanz eine befriedigende Übereinstimmung zwischen den Verschiebungen besteht.

Folgende Valenzkraftkonstanten erhält man nach einer Auflösung der Symmetriekraftkonstante:

 $f_{\rm SiO} = 9.4 \pm 0.3 \ (10^2 \ {\rm N \ m^{-1}})$ $f_{\rm SiF} = 6.25 \pm 0.3 \ (10^2 \ {\rm N \ m^{-1}})$

Nach einer Analogiebetrachtung für die entsprechenden Kohlenstoffverbindungen (OCF₂ [9], OCCl₂ [8]) und OSiCl₂ [1b] sollte f(SiO) in OSiF₂ bei etwa 9,1 ± 0,1 liegen. Der berechnete Wert von 9,4 ± 0,3 (10² N m⁻¹) schließt den Erwartungswert mit ein. Die Kraftkonstante für die SiF-Bindung läßt sich nur mit einer Unsicherheit von 5% bestimmen. Innerhalb der Fehlergrenzen stimmt sie mit dem sehr genau bekannten Wert für f_{SiF} in SiF₄ von 6,57 [10] überein.

Neben den in dieser Arbeit ermittelten Strukturdaten wären vor allem gut fundierte ab initio Rechnungen für das Verständnis der elektronischen Struktur dieser neuartigen Verbindungen mit SiO-Doppelbindungen wünschenswert. Derartige Berechnungen sollten auf Grund der relativ niedrigen Elektronenzahl und der Symmetrie im $OSiF_2$ mit vertretbarem Aufwand möglich sein.

EXPERIMENTELLES

SiO entsteht beim Überleiten eines O_2/Ar -Gemisches über Silicium in einem Korundofen bei etwa 1500 K. Bei dieser neuartigen Darstellungsmethode konnten wir die Ergebnisse früherer Autoren bestätigen [4]. Versuche mit angereichertem ²⁹SiO wurden in folgender Weise ausgeführt: ²⁹SiO₂ (Oak Ridge Laboratory) wurde in der Knudsenzelle mit Be reduziert. Anschließend wurde durch Überleiten eines O₂/Ar-Stromes wie oben beschreiben SiO erzeugt. Das verwendete Fluor wurde nach einem speziellen Verfahren gereinigt [11]. Aufdampfbedingungen, Kryostat und photochemische Anregung haben wir bereits früher beschrieben [1b]. Die Spektren wurden mit einem Perkin-Elmer Infrarot Spektrographen 225 registriert.

ANERKENNUNGEN

Herrn Prof. Dr. H. J. Becher danke ich für seine kritischen Anregungen, Herrn H. J. Göcke für die Mithilfe bei der Vorbereitung der Messungen. Herrn Dr. H. Willner (Bochum) danke ich für die Bereitstellung von hochgereinigtem Fluor. Die Arbeit wurde durch eine Sachbeihilfe der Deutschen Forschungsgemeinschaft unterstützt.

LITERATUR

- 1 H. Schnockel, (a) Angew. Chem., 90 (1978) 638; (b) Z. Anorg. Allg. Chem., im Druck.
- 2 z. B., M. Ishikawa, T. Fuchikami, M. Kumada, T. Higuchi und S. Miyamoto, J. Am. Chem. Soc., 101 (1979) 1348; M. Elsheikh, N. R. Pearson und L. H. Sommer, J. Am. Chem. Soc., 101 (1979) 2491; H. Sakurai, Y. Nakadaira und T. Kobayashi, J. Am. Chem. Soc., 101 (1979) 487.
- 3 J. Pacansky und H. Hermann, J. Chem. Phys., 69 (1978) 963.
- 4 J. S. Anderson und Y. S. Ogden, J. Chem. Phys., 51 (1969) 4189; J. W. Hastie, R. H. Hauge und J. L. Margrave, Inorg. Chim. Acta, 3 (1969) 601.
- 5 Eine erhebliche Verstärkung und Verbreiterung dieser Bande nach der Photolyse ist unter Umständen auf die Absorption eines Moleküls F_3Si —OF zuruckzuführen, das bei einer Reaktion von SiO + 2 F_2 entstanden sein könnte. (CO reagiert mit Überschuß F_2 zu F_3COF : K. B. Kellog und G. H. Cady, J. Am. Chem. Soc., 70 (1948) 3986; P. M. Wilt und E. A. Jones, J. Inorg. Nucl. Chem., 30 (1968) 2933).
- 6 G. W. Robinson, J. Chem. Phys., 21 (1953) 1741.
- 7 V. W. Laurie, D. T. Pence und R. H. Jackson, J. Chem. Phys., 37 (1962) 2995.
- 8 H. Schnöckel, J. Mol. Struct., 29 (1975) 123.
- 9 P. D. Mallinson, D. C. McKean, J. H. Holloway und I. A. Oxton, Spectrochim. Acta, Part A, 31 (1975) 143.
- 10 F. Königer, A. Müller und W. J. Orville-Thomas, J. Mol. Struct., 37 (1977) 199.
- 11 L. B. Asprey, J. Fluorine Chem., 7 (1976) 359.
- 12 H. J. Becher, Fortschritte der chemischen Forschung, Bd. 10, Heft 1, Springer, Berlin, 1968.