J. CHEM. SOC., CHEM. COMMUN., 1988

Published on 01 January 1988. Downloaded by Temple University on 28/10/2014 15:40:26.

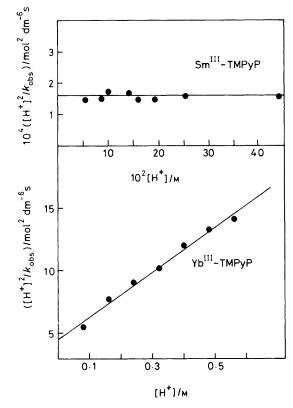
Acid Solvolysis Kinetics of Lanthanide Porphyrins

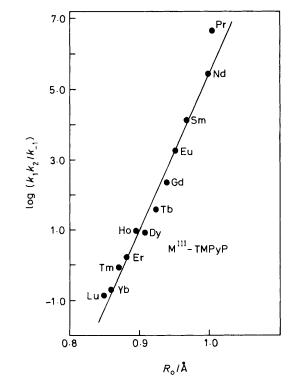
Shirleyanne Haye and Peter Hambright*

Department of Chemistry, Howard University, Washington, D.C., 20059, U.S.A.

The kinetics of the acid solvolysis reactions of twelve water-soluble lanthanide tetrakis(*N*-methyl-4-pyridyl)porphyrins (Ln–P) follow rate = k_1 [Ln–P] [H+]²/{(k_{-1}/k_2) + [H+]} at 25 ° C, I = 0.8 м (LiNO₃/HNO₃) indicating that two protons are required for solvolysis, and since log (k_1k_2/k_{-1}) = 45.0 R_0 – 39.4 $(R_0$ is the ionic radius in Å), a 0.1 Å change in radius has a 32 000 fold rate effect.

The tumour-localizing ability of certain porphyrin molecules complexed with paramagnetic metal ions1 makes watersoluble lanthanide porphyrins attractive candidates as in vivo magnetic resonance imaging agents for malignant tissues.² Since nothing is quantitatively known about the in vitro stability of lanthanide porphyrins in aqueous solution, we report the kinetics of the acid solvolysis reactions of twelve tetrakis-(*N*-methyl-4-pyridyl)porphyrins lanthanide (M-TMPyP). These are the only trivalent metalloporphyrin rections that need not be investigated in concentrated acids,³ and as such allow for a comparison with solvolysis rate laws found for divalent derivatives.


The Ln^{III}-TMPyP compounds were made from the disodium salt of tetra(4-pyridyl)porphyrin and lanthanide acetates in refluxing dimethylformamide (DMF) after the procedure of Adler and co-workers,⁴ followed by N-methylation in chloroform with methyl iodide.5[†] They could also be prepared directly from H₂-TMPyP and the lanthanide acetates in imidazole melts⁶ at 120 °C. The kinetics were followed spectrophotometrically at 25 °C at an ionic strength of 0.8 м (LiNO₃/HNO₃).‡


[†] For HO-Lu^{III}-TMPyPI₄·3H₂O, satisfactory elemental analyses were obtained; at pH 6, λ_{max} /nm (ϵ /dm³ mol⁻¹ cm⁻¹): 426.5 (1.9 × 10⁵), 517.0 (sh, 3.5×10^3), 554.5 (1.7×10^4), and 590.0 (sh, 4.3×10^4) 10^{3})

[‡] The solutions were unbuffered below pH 1, while 10 mм dichloroacetic acid (pK_{a1} 1.5) was used between pH 1 and 2, and 10 mm monochloroacetic acid (p K_{a1} 2.5) was added for pH values between 2 and 3.5. The kinetics studies were carried out on a stopped-flow apparatus.

Table 1. Acid solvolysis rate constants for lanthanide porphyrins.

M in M ¹¹¹ –TMPyPa	$k_1/dm^3 mol^{-1} s^{-1}$	$(k_{-1}/k_2)/moldm^{-3}$	(k_1k_2/k_{-1}) /dm ⁶ mol ⁻² s ⁻¹
Lutetium	$(1.3 \pm 0.1) \times 10^{-2}$	$(9.5 \pm 1.3) \times 10^{-2}$	$(1.4 \pm 0.2) \times 10^{-1}$
Ytterbium	$(5.6 \pm 0.3) \times 10^{-2}$	$(2.5 \pm 0.2) \times 10^{-1}$	$(2.2 \pm 0.2) \times 10^{-1}$
Thulium	$(1.1 \pm 0.1) \times 10^{-1}$	$(1.2 \pm 0.1) \times 10^{-1}$	$(9.6 \pm 0.6) \times 10^{-1}$
Erbium	$(3.1 \pm 0.2) \times 10^{-1}$	$(1.9 \pm 0.1) \times 10^{-1}$	1.6 ± 0.1
Holium	$(2.5 \pm 0.2) \times 10^{-1}$	$(2.6 \pm 0.4) \times 10^{-2}$	9.5 ± 1.4
Dysprosium	$(2.2 \pm 0.7) \times 10^{-1}$	2.8 ± 0.2	7.7 ± 0.4
Terbium	$(9.0 \pm 0.2) \times 10^{1}$	2.1 ± 0.1	$(4.2 \pm 0.2) \times 10^{1}$
Gadolinium			$(2.5 \pm 0.2) \times 10^{2}$
Europium	_	_	$(2.0 \pm 0.2) \times 10^{3}$
Samarium			$(1.1 \pm 0.2) \times 10^4$
Neodymium	$(2.7 \pm 0.1) \times 10^3$	$(8.4 \pm 0.1) \times 10^{-3}$	$(3.2 \pm 0.4) \times 10^{5}$
Praseodymium	$(2.3 \pm 0.1) \times 10^{4}$	$(3.9 \pm 0.1) \times 10^{-3}$	$(6.0 \pm 0.1) \times 10^{6}$
а $T = 25$ °C, $I = 0.8$ м (LiNO ₃ /HNO ₃).			

Figure 1. Plots of $[H^+]^{2/k}_{obs}$, vs. $[H^+]$ for the acid solvolysis reactions of Sm^{III}-TMPyP and Yb^{III}-TMPyP indicating the two types of rate behaviour found.

The lanthanides are postulated to be eight-co-ordinated in porphyrin complexes,⁷ with four bonds to the porphyrin and four to other ligands. The large lanthanide ions sit well out of the mean porphyrin plane. Crystal structure results⁷ with octaethylporphyrin (OEP) complexes show that the M–N₄ distances are *ca*. 1.4 Å for Eu(OEP)₂, 1.37 Å for Ce(OEP)₂, and 1.3 Å for Ce₂(OEP)₃. ¹H N.m.r. work on metalloporphyrins⁶ indicates the following distances of the metal ion to the porphyrin plane: 1.6 Å for Tm^{III}, 1.8 Å for Eu^{III}, and 1.6 Å for Yb^{III}. We find no evidence of an equilibrium between free lanthanide ions and H₂–TMPyP, as has been noted previously^{8–10} for Pb^{II}, Cd^{II}, and Zn^{II} porphyrins. Preliminary results indicate that the acid hydrolysis pK_a values of the

Figure 2. Plot of log (k_1k_2/k_{-1}) vs. the ionic radii of the lanthanide ions, R_0 .

Ln–TMPyP derivatives are above pH 5, and since our kinetic work is below pH 4, the presumed tetra-aquo $(H_2O)_4$ –Ln^{III}–P is the reactant.

In all cases, the reactions were first order in porphyrin concentration over three half-lives, with a pseudo-first-order rate constant, $k_{obs.}$. The simplest mechanism consistent with the data is that in equations (1) and (2). With $[Ln^{III}-P-H^+]$ as a steady-state intermediate, the expected rate law is of the form in equation (3). Thus plots of $[H^+]^{2/k}_{obs.}$ vs. $[H^+]$ should be linear, and Figure 1 shows that this is the behaviour found. For Gd, Eu, and Sm, only (k_1k_2/k_{-1}) could be obtained, while for the other complexes, both k_1 and (k_{-1}/k_2) were accessible. The results are in Table 1. To compare all the lanthanides, Figure 2 shows a linear plot of log (k_1k_2/k_{-1}) vs. the ionic radii R_0 of the metal ions (in Å), in accord with the equation

Published on 01 January 1988. Downloaded by Temple University on 28/10/2014 15:40:26.

log $(k_1k_2/k_{-1}) = 45.0R_0 - 39.4$. A similar linear relationship holds between log k_1 and R_0 , where log $k_1 = 36.9R_0 - 32.9$.

$$Ln^{III} P + H^{+} \underset{k_{-1}}{\overset{k_{1}}{\longleftrightarrow}} [Ln^{III} P - H^{+}]$$
(1)

$$[Ln^{III}-P-H^+] + H^+ \xrightarrow{k_2} Ln^{III} + H_2 - P \qquad (2)$$

$$k_{\rm obs.} = k_1 \, [{\rm H}^+]^2 / \{ (k_{-1}/k_2) + [{\rm H}^+] \}$$
 (3)

The same two-proton rate law that we find for the trivalent lanthanides has been demonstrated before for acid solvolysis reactions of water soluble Zn^{II},^{8,11} Cd^{II},⁹ Pb^{II},¹⁰ Fe^{II},¹² MnII,13 and MgII (ref. 12) porphyrins. The divalent derivatives also give a log k vs. R_0 correlation,¹² and the porphyrin nucleus deformations postulated for metal ion removal have been discussed.¹⁴ At high [H⁺] {where $k_{obs.} \propto [H^+]$ }, PrIIL-TMPyP reacts about 107 times faster than does the LuIII complex, and a 0.1 Å increase in the ionic radius of the co-ordinated metal ion leads to a remarkable 32000 fold increase in the rate parameters. At low [H⁺] {where $k_{obs} \propto$ $[H^+]^2$, a 0.1 Å increase leads to a rate constant enhancement of 4900. This is consistent with previous qualitative observations indicating that (a), the heavier lanthanide porphyrins are more stable to solvolysis,^{6,15} and (b), a larger divalent ion in a metalloporphyrin is solvolysed much more rapidly than the same ion in its smaller trivalent state.13 Under similar conditions,¹² for example, Mg^{II}–P [$R_0 = 0.72$ Å (six-co-ordinate), $k_d = 1.9 \times 10^6$ dm⁶ mol⁻² s⁻¹] and Fe^{II}–P [$R_0 =$ 0.61 Å (low spin, six-co-ordinate), $k_d = 55 \text{ dm}^6 \text{ mol}^{-2} \text{ s}^{-1}$] both show rate = $k_d[M-P][H^+]^2$. The observed ratio of (k_{Mg}/k_{Fe}) is 3.5 × 10⁴, and that calculated is 1.1 × 10⁴.

In conclusion, the paramagnetic lanthanide derivatives of the tetrapositively charged TMPyP from Eu^{III} onwards are of sufficient stability to protons at pH 7.4 that they could be useful magnetic resonance imaging contrast agents. As expected for H+/positive porphyrin interactions, the solvolysis rate constants decrease with a decrease in ionic strength.§ In preliminary work, we note that ethylenediaminetetra-acetate (edta) is able to remove the lanthanide ions from their porphyrin complexes, a reaction not shown by most other

§ For Sm^{III} –TMPyP, log $(k_1k_2/k_{-1}) = 2.1 + 4.4 [I^{1/2}/(1 + I^{1/2})]$, where I/M is the ionic strength.

metalloporphyrins.¶ The rates of such trans-metallations parallel the lanthanide stability sequence found here for the acid solvolysis processes.

Received, 26th October 1987; Com. 1557

References

- J. Winkelman, *Cancer Res.*, 1962, **22**, 589; P. Hambright, R. Fawwaz, P. Valk, J. McRae, and A. J. Bearden, *Bioinorg. Chem.*, 1975, **5**, 87.
- R. Lyon, P. Faustino, J. Cohen, A. Katz, F. Mornex, D. Colcher, S. Koenig, and P. Hambright, *Magn. Reson. Med.*, 1987, 4, 24; N. Patronas, J. Cohen, R. Knop, A. Dwyer, D. Colcher, J. Lundy, F. Mornex, P. Hambright, M. Sohn, and C. Myers, *Cancer Treat. Rep.*, 1986, 70, 395.
- 3 For Fe^{III}, see A. Reynolds, K. Kooda, B. Fluorine, N. Johnson, and T. Thielman, *Int. J. Chem. Kinet.*, 1980, **12**, 97. For In^{III}, see P. Hambright, J. Coord. Chem., 1983, **12**, 297; W. Reynolds, P. Gall, and P. Arndt, *Int. J. Chem. Kinet.*, 1982, **14**, 849.
- 4 A. Adler, W. Newman, M. Mulvaney, and J. Paine, in 'Porphyrin Chemistry Advances,' ed. F. R. Longo, Ann Arbor Science, 1979, ch. 20.
- 5 P. Hambright and E. B. Fleischer, Inorg. Chem., 1970, 9, 1757.
- W. DeW. Horrocks and E. Hove, J. Am. Chem. Soc., 1978, 100, 4338; W. DeW. Horrocks and C-P. Wong, *ibid.*, 1976, 98, 7157.
- 7 J. Buchler, A. de Cian, J. Fischer, M. Kihn-Botulinski, and R. Weiss, *Inorg. Chem.*, 1988, **27**, 339, and references therein.
- 8 P. Hambright, Inorg. Chem., 1977, 16, 2987; J. Nwaeme and P. Hambright, *ibid.*, 1984, 23, 1990; M. Tabata and M. Tanaka, J. Chem. Soc., Chem. Commun., 1985, 43.
- 9 A. Shamim and P. Hambright, Inorg. Chem., 1984, 23, 564.
- 10 S. Haye and P. Hambright, Inorg. Chem., 1984, 23, 4777.
- 11 S. Cheung, F. Dixon, E. Fleischer, D. Jeter, and M. Krishnamurthy, *Bioinorg. Chem.*, 1973, 2, 281.
- 12 A. Valiotti, A. Adeyemo, and P. Hambright, *Inorg. Nucl. Chem. Lett.*, 1981, **17**, 213.
- R. Langley and P. Hambright, *Inorg. Chem.*, 1985, 24, 1367;
 K. Morehouse and P. Neta, *J. Phys. Chem.*, 1984, 88, 3118;
 P. Hambright, *Inorg. Nucl. Chem. Lett.*, 1977, 13, 403.
- 14 D. K. Lavallee, Coord. Chem. Rev., 1985, 61, 55; P. Hambright, in 'Porphyrins and Metalloporphyrins,' ed. K. M. Smith, Elsevier, Amsterdam, 1975, ch. 6.
- 15 T. Srivastava, *Bioinorg. Chem.*, 1978, **8**, 61; C.-P. Wong and G. Bisset, *Inorg. Synth.*, 1984, **22**, 156.

 \P At pH 8, with 10 μm M–P and 25 mm edta, the Ni¹¹, Mn^{II1}, Cu¹¹, Rh¹¹¹, In^{II1}, Zn^{I1}, VO^{IV}, Fe^{II1}, Al^{II1}, Cr^{II1}, Pd^{I1}, and Sn^{IV} porphyrins were unchanged after 25 h in the dark.