$[IrH_2(H_2)_2L_2]^+ \{L = P(C_6H_{11})_3\}: A Non-classical Polyhydride Complex$

Robert H. Crabtree and Maryellen Lavin

Department of Chemistry, Yale University, P.O. Box 6666, New Haven, Connecticut 06511-8118, U.S.A.

 $[IrH_5(PCy_3)_2]$ (Cy = cyclohexyl) is shown by n.m.r. evidence, including T_1 measurements, to undergo protonation to give the title complex, a bis(dihydrogen) dihydride, the first example of a non-classical polyhydride complex.

Recent reports of complexes of molecular hydrogen^{1,2} led us to question³ whether the classical formulation of polyhydride complexes as MH_xL_y, containing terminal M-H bonds only, always applies. We previously showed² that the classical dihydride $IrH_2(bq)(PPh_3)_2$ (1) is protonated with PhCH- $(SO_2CF_3)_2$ to give the dihydrogen hydride cation [IrH(H₂)- $(bq)(PPh_3)_2]^+$ (2). We have now protonated the polyhydride IrH_5L_2 (3) (L = PCy₃) in the same way and report the evidence that leads us to formulate the product as the non-classical polyhydride cation $[IrH_2(H_2)_2L_2]^+$ (4). Like (2), (4) is protonated without loss of H_2 and is stable at -80 °C. Both tend to lose H₂ at room temperature, but can be maintained in a dihydrogen atmosphere. MeCN displaces two molecules of H₂ to give the known $[IrH_2(MeCN)_2L_2]^+$. Deprotonation of (4) with NEt₃ [equation (1)] takes place in the absence of excess of H2 to give back the original complex (3) quantitatively at -80 °C.

> IrH₂(bq)(PPh₃)₂ [IrH(H₂)(bq)(PPh₃)₂]⁺ (1) (2) Hbq = benzo[h]quinoline

The room temperature ¹H n.m.r. spectrum of (4), like that of (2), shows a broad resonance at δ ca. -8.3 due to exchange between the Ir-H and Ir(H₂) units. On cooling, two resonances are seen. One, at δ -5.05 [(2) δ -3.0], of intensity 4 is assigned to the Ir(H₂) groups. It is broad, as was found for (2). A second and narrower resonance at δ -15.2 [(2) δ -15.2] and of intensity 2 is also found and assigned to the two classical Ir-H groups. Complex (4) is somewhat more fluxional than complex (2) and so the ²J(P,H) of the Ir-H group and ¹J(H,D) coupling of the corresponding HD complex could not be observed even at the lowest accessible temperatures in CD₂Cl₂; in no other suitable solvent was (4) both stable and soluble. This prevented us from observing the value of ¹J(H,D) which had previously been shown^{1,2} to be an excellent spectroscopic criterion for the existence of a dihydrogen ligand.

We therefore looked for another spectroscopic criterion, and determined the apparent T_1 values for both (2) and (4) at -80 °C by the inversion-recovery method. While the T_1 value of 350 ms for the terminal Ir-H in (2) is normal,⁴ the value for the co-ordinate dihydrogen molecule (30 ms) is extremely short for a metal hydride, but comparable to the relaxation time for free molecular hydrogen.⁵ Since the dipole-dipole contribution to T_1 depends on r^{-6} , the short H-H distance in $M(H_2)$ and in free H₂ itself is consistent with a short T_1 ; a spin-rotation contribution may also be involved.⁵ On warming, the apparent T_1 values for the two resonances begin to average before the chemical shifts do so, owing to proton exchange between the Ir(H₂) and IrH sites.

In the more fluxional case of (4), the T_1 values for the Ir(H₂) (48 ms) and IrH (73 ms) resonances are both short.[†] This is consistent with the known higher rate of proton exchange between the two sites in (4) compared with (2). The weighted average of the two T_1 values observed for (2) at -80 °C is 43 ms, a value comparable to the observed values for (4). Depending, as it does, on γ^2 , the dipole-dipole contribution to proton relaxation due to a second nearby nucleus is expected⁵ to be much smaller if this nucleus is D rather than H.

$$IrH_{5}L_{2} \xrightarrow{H^{+}}_{NEt_{3}} H \xrightarrow{I}_{L} H \xrightarrow{H^{+}}_{L} H \xrightarrow{MeCN}_{-2H_{2}} IrH_{2}(MeCN)_{2}L_{2}^{+} (1)$$

$$(4)$$

$$L = PCy_{3}; Cy = cyclohexyl$$

[†] For comparison, the apparent T_1 for $IrH_5(PCy_3)_2$ under the same conditions (500 MHz, -80 °C) is 870 ms. The field and temperature dependence of the T_1 values suggests that the slow motion regime applies.

Accordingly, we find that the apparent relaxation times for the co-ordinated dihydrogen molecule show a marked increase when HD is substituted for H₂ [(2): H₂, 30 ms; HD, 200 ms. (4): H₂, 48 ms; HD, 240 ms]. This confirms the formulation shown, and makes (4) a member of the extensive $[IrH_2S_2L_2]^+$ series⁶ of cations (S = H₂O, Me₂CO, RI, olefines, and now H₂; L = PR₃). We suggest the stereochemistry shown for (4) on the basis of this analogy.

 $(IrH_6L_2^+)$ is of particular interest because, if formulated as a classical polyhydride, it would be an unprecedented example of Ir^{VII} . This work has shown that it is better thought of as a nonclassical octahedral Ir^{III} complex of the well known $[IrH_2S_2L_2]^+$ type.

We thank Dr. A. Siedle for a gift of $PhCH(SO_2CF_3)_2$, Mr. P. Demou for experimental assistance, Professors J. W. Faller, J. Prestegard, and K. Zilm for discussions, and the ARO for support.

Received, 2nd August 1985; Com. 1148

References

- G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini, and J. J. Wasserman, J. Am. Chem. Soc., 1984, 106, 451; R. K. Upmakis, G. E. Gadd, M. Poliakoff, M. B. Simpson, J. J. Turner, R. Whyman, and A. F. Simpson, J. Chem. Soc., Chem. Commun., 1985, 27; S. P. Church, F.-W. Grevels, H. Herman, and K. Schaffner, *ibid.*, 1985, 30.
- 2 R. H. Crabtree and M. Lavin, J. Chem. Soc. Chem. Commun., 1985, 794.
- 3 G. G. Hlatky and R. H. Crabtree, Coord. Chem. Rev., 1985, 65, 1.
- 4 R. H. Crabtree, B. E. Segmuller, and R. J. Uriarte, *Inorg. Chem.*, 1985, 24, 1949.
- 5 M. S. Conradi, K. Luszczynski, and R. E. Norberg, *Phys. Rev. B*, 1979, **19**, 20; J. A. Pople, W. G. Schneider, and H. J. Bernstein, 'High Resolution Nuclear Magnetic Resonance,' McGraw-Hill, New York, 1959, pp. 202 and 216.
- 6 J. R. Shapley, R. R. Schrock, and J. A. Osborn, J. Am. Chem. Soc., 1969, 91, 2816; R. H. Crabtree, P. C. Demou, D. Eden, J. M. Mihelcic, C. A. Parnell, J. M. Quirk, and G. E. Morris, J. Am. Chem. Soc., 1982, 104, 6994.