Neue Barium-Antimonid-Oxide mit den Zintl-Ionen $[Sb]^{3-}$, $[Sb_2]^{4-}$ und ${}_{\infty}^{1}[Sb_n]^{n-}$

New Barium Antimonide Oxides containing Zintl Ions $[Sb]^{3-}$, $[Sb_2]^{4-}$, and ${}_{\infty}^{1}[Sb_n]^{n-}$

Michael Boss, Denis Petri, Frank Pickhard, Peter Zönnchen und Caroline Röhr*

Freiburg, Institut für Anorganische und Analytische Chemie der Universität

Bei der Redaktion eingegangen am 29. November 2004.

Professor Rüdiger Kniep zum 60. Geburtstag gewidmet

Abstract. A new kind of chiral chains $\frac{1}{\infty}[Sb_n]^{n-}$ and O^{2-} ions tetrahedrally coordinated by Ba are the characteristic anions in Ba₃[Sb₄][O] (monoclinic, space group $P2_1/c$, a = 696.4(2), b = 1280.7(3), c = 1294.1(3) pm, β = 112.39(1)°, Z = 4, R1 = 0.0399). Similarly, in RbBa₄[Sb₂][Sb][O], that crystallizes isotypic with KBa₄[Sb₂][Sb][O] (stuffed Cr₅B₃-Typ, tetragonal, space group I4/mcm, a = 893.7(4), c = 1642.7(9) pm, Z = 4, R1 = 0.0508), the oxide ions occupy tetrahedral voids. The Zintl ions in this case are isolated [Sb]³⁻ anions and dumbbells [Sb₂]⁴⁻ respectively. The new hydrid-oxides Ba₈[M]₄[O][H]₂ (M=Sb/Bi, tetragonal, space group I4/mmm, a = 515.34(12)/519.12(12), c = 3791.7(3)/3837.6(3) pm, C = 4, C = 0.0319/0.0460) and Rb₂Ba₆[Sb₂]₂[Sb][O][H] (tetra-

gonal, space group I4/mcm, a = 879.71(4), c = 2742.4(2) pm, Z = 4, R1 = 0.0592) can be structurally derived from the oxides Ba_4Sb_2O and $RbBa_4[Sb_2][Sb][O]$ by intercalation (chemical twinning) of hydride antimonides. The synthesis of these air sensitive compounds exhibiting dark metallic luster was performed from melts of elemental Rb, Ba and Sb/Bi using Sb_2O_3/Bi_2O_3 , BaH_2 and $Ba(OH)_2$ as sources for oxide/hydride. The detailed comparison of the structures and the results of FP-LAPW band structure calculations show that the title compounds are electron precise Zintl phases with distinct band gaps.

Keywords: Pentelides; Zintl anions; Hydrides; Oxides

Einleitung

Binäre Alkali- und Erdalkalimetall-Metallide (z.B. Tetrelide und Pentelide) zeigen eine große Vielfalt unterschiedlicher homoatomarer Zintl-Anionen $[M_x]^{n-}$. In ternären Phasen mit weiteren Kationen (a) oder einfachen Anionen (b) lassen sich Bindungspartner der Zintl-Anionen gezielt und so weitgehend variieren, daß neben bekannten auch neuartige, bei den binären Phasen unbekannte homoatomare Zintl-Ionen zugänglich sind.

(a) Durch Einsatz zweier verschiedener Kationen, z.B. in ternären Alkali/Erdalkalimetall-Penteliden A_x^IA_y^{II}M_z, lassen sich u.a. die bekannten Zintl-Ionen (auch in neuen Verhältnissen) nebeneinander stabilisieren; dies zeigen bereits lange bekannte Beispiele wie Li₄A₃^{II}Sb₄ (A^{II} = Sr, Ba; [Sb₂]⁴⁻Hanteln neben isolierten Sb³⁻ [1]) oder A₂^IA₃^{II}Sb₄ (A^I = Na, K; A^{II} = Sr; [Sb₂]⁴⁻-Hanteln [2, 3]). Darüberhinaus zeigen die Beispiele ternärer Arsenide, daß durch Variation der Ladung und Größe der Gegenkationen auch bekannte Anionen in neuen Konformationen (wie z.B. kompliziert ge-

faltete As⁻-Ketten in KBa₂As₅ [4]) bzw. bei den binären Arseniden unbekannte Polyanionen (wie z.B. As₅⁵-Kettenstücke in Na₄Ba₃As₆ [5] oder Fünfringe [As₅]⁵⁻ in RbBa₂As₅ [4]) auftreten. Versuche zur Darstellung entsprechender gemischter Antimonide im System Rb-Ba-Sb waren dagegen bislang erfolglos bzw. lieferten erste Hinweise auf die Existenz der im folgenden beschriebenen Rb/Ba-Antimonid-Oxide und -Oxid-Hydride.

(b) Weitere einfache isolierte Anionen X^{z-}, die durch ihre Koordination durch A^{II}-Kationen als große komplexe Kationen [XA_n]^{m+} (n=4-6) unterschiedlicher Dimensionalität fungieren, erlauben vor allem die Darstellung niederdimensionaler Zintl-Anionen. So lassen sich beispielsweise bei Anwesenheit von Halogenid (z.B. in Ba₅Sb₃F [6]), Oxid (z.B. Ba₄Sb₂O [7], Ba₃Sb₂O [8]) oder Hydrid (z.B. Ba₅Sb₃H [6]) Ba-Antimonide mit niederdimensionalen Anionen [Sb]³⁻ und [Sb₂]⁴⁻ erhalten, obwohl die korrespondierenden binären intermetallischen Phasen Ba₃Sb₂ und Ba₂Sb₂ unbekannt sind.

(a)+(b) Schließlich sind auch einige quaternäre Pentelide wie $KBa_{11}M_7O_2$ (M = P, As) [9]) oder KBa_4Sb_3O [2] (jeweils mit Hanteln $[M_2]^{4-}$ und isolierten $[M]^{3-}$) bekannt, die sowohl zwei Kationensorten als auch zusätzliche Anionen enthalten.

Im Folgenden berichten wir über Darstellung, strukturelle Charakterisierung sowie Berechnungen der elektroni-

^{*} Prof. Dr.-Ing. Caroline Röhr Institut für Anorganische und Analytische Chemie Universität Freiburg Albertstr. 21 D-79104 Freiburg caroline@ruby.chemie.uni-freiburg.de

schen Strukturen neuer Ba-Antimonide, die einerseits mit dem Alkalimetall Rb⁺ ein weiteres Kation, andererseits mit O²⁻ und/oder H⁻ ein oder zwei weitere Anionen enthalten und in denen als Zintl-Anionen isolierte [Sb]3-, halogenisostere Hanteln [Sb₂]⁴⁻ bzw. neuartige chalkogen-isostere Ketten [Sb_n]ⁿ⁻ auftreten.

Ergebnisse und Diskussion

Synthesen und Charakterisierung

Die Darstellung der Titelverbindungen erfolgte jeweils aus elementarem Barium, Rubidium und Antimon bzw. Bismut sowie Antimon(III)/Bismut(III)-Oxid unter Argon-Schutzgasatmosphäre in Korundtiegeln bei Maximaltemperaturen von bis zu 900 °C. Bei den Hydrid-haltigen Verbindungen wurde entweder BaH2 oder das Monohydrat von Bariumhydroxid als Wasserstoff-Ouelle eingesetzt. Die Phasen $Ba_8[M]_4[O][H]_2$ (M = Sb, Bi) liessen sich in Form homogener Pulver auch im Lichtbogenofen erhalten. Die Darstellung des Antimonid-Oxids Ba₃Sb₄O gelang bislang nur bei deutlich niedrigeren Temperaturen von 650 °C und mit RbSb als zusätzlichem Edukt, wobei methodisch nur schwer zu klären sein wird, ob die in RbSb vorgebildeten [Sb_n]ⁿ⁻-Ketten bzw. entsprechende Sb-Kettenstücke oder die unterschiedlichen Schmelzpunkte von RbSb gegenüber Rb und Sb für die Bildung von Ba₃Sb₄O entscheidend sind. Alle Verbindungen sind dunkel-metallisch glänzend und sehr luft- und feuchtigkeitsempfindlich. Die Strukturbestimmungen erfolgten jeweils auf der Basis von Einkristalldaten. Details zur Präparation, zu den ¹H-MAS-NMR-Untersuchungen, den Röntgenstrukturanalysen und den

Abb. 1 Kristallstruktur von Ba₃Sb₄O: a) Ortep-Darstellung (90 %-Ellipsoide, [36]) der [Sb_n]ⁿ⁻-Ketten, b) Ortep-Darstellung der [OBa₄]-Koordinationspolyeder um die Oxid-Ionen, c) Packung dieser beiden Bauelemente in der Elementarzelle (schwarze Kugeln: Sb; hellgraue Kugeln: Ba; graue Polyeder: OBa₄-Tetraeder [37]).

Bandstrukturrechnungen sind im Abschnitt Experimenteller Teil zusammengestellt.

Strukturbeschreibungen und -vergleiche

Alle fünf Titelverbindungen sind klassische Zintl-Phasen mit zusätzlichen Anionen: Bei Ba₃Sb₄O handelt es sich um ein elektronenpräzises Antimonid-Oxid, in dem neben kettenförmigen Zintl-Anionen [Sb₄]⁴⁻ isolierte, tetraedrisch koordinierte Oxid-Ionen vorliegen. In den drei tetragonalen Antimoniden sind gemäß RbBa₄[Sb₂][Sb][O], $Ba_8[Sb]_4[O][H]_2$ bzw. $Rb_2Ba_6[Sb_2]_2[Sb][O][H]$ als Zintl-Anionen isolierte, edelgasisostere [Sb]3-- oder hantelförmige, halogen-isostere [Sb₂]⁴⁻-Ionen neben Oxid- (und Hydrid-) Ionen vorhanden. Die verschiedenen Anionen sind ieweils durch Kationen vollständig voneinander separiert, so daß

Abb. 2 Ortep-Darstellungen (90 % Ellipsoide, [36]) der Koordinationspolyeder um die Anionen in RbBa₄Sb₃O: a) [Sb(1)₂]⁴⁻-Hanteln, b) isolierte [Sb(2)]³⁻, c) Oxid-Ionen.

Abb. 3 Ortep-Darstellungen (90 %-Ellipsoide, [36]) der Koordinationspolyeder um die Anionen in Ba₈Sb₄OH₂: a) isolierte [Sb(1)]³⁻, b) isolierte [Sb(2)]³⁻, c) Oxid-Ionen, d) Hydrid-Ionen.

Abb. 4 Ortep-Darstellungen (90 %-Ellipsoide, [36]) der Koordinationspolyeder um die Anionen in Rb2Ba6Sb5OH: a) isolierte [Sb(1)]³⁻, b) Hanteln [Sb(2)2]⁴⁻, c) Oxid-Ionen, d) Hydrid-Ionen.

zunächst ein direkter Vergleich der einzelnen Anionen und ihrer Koordination durch Ba/Rb-Kationen vorgenommen

Isolierte [Sb]³⁻: Die isolierten Zintl-Anionen [Sb]³⁻ sind in allen tetragonalen Verbindungen quadratisch antiprismatisch von Kationen koordiniert. Die Antiprismen sind dabei zusätzlich entweder einseitig (CN = 9, z.B. in $Ba_8Sb_4OH_2$, Abb. 3 a und b, und in Ba_4Sb_2O) oder zweiseitig (CN = 10, z.B. Sb(2) in RbBa₄Sb₃O, Abb. 2 b, und Sb(1) in Rb₂Ba₆Sb₅OH, Abb. 4 b) von weiteren Kationen überkappt. Die Sb-Ba-Abstände liegen mit Werten zwischen 352 und 373 pm für die genannten Verbindungen im erwarteten Bereich. In den gemischten Rb/Ba-Phasen koordinieren

Tabelle 2: Ausgewählte interatomare Abstände/pm in der Kristallstruktur der Verbindung RbBa₄Sb₃O.

Atome	Abstand	Hfk. CN	Atome	Abstand	Hfk. CN
Rb(1) - Sb(1) - Sb(2)	. ,	4x 2x 0+6	- Sb(2)	253.8(2) 353.8(2) 371.5(2) 383.7(3)	2x
-Rb(1)	353.8(2) 359.5(2)		Sb(2) - Ba(1) - Rb(1) $O(1) - Ba(1)$	410.7(2)	2x 10

entsprechend der vergleichsweise hohen Ladung des Anions bevorzugt die zweiwertigen Ba-Kationen dieses Zintl-Ion. Lediglich in RbBa₄Sb₃O sind die beiden überkappenden Positionen des quadratischen Antiprismas um Sb von Rb-Atomen besetzt ($d_{Sb-Rb} = 411 \text{ pm}$).

Sb₂|⁴⁻**-Hanteln:** Die beiden in der Raumgruppe *I*4/*mcm* kristallisierenden Antimonide RbBa₄Sb₃O und Rb₂Ba₆Sb₅OH enthalten hantelförmige [Sb₂]⁴⁻-Ionen, in denen der Sb-Sb-Abstand von 286.6 (in Rb₂Ba₆Sb₅OH, Tab. 4) bzw. 288.7 pm (in RbBa₄Sb₃O, Tab. 2) den Abständen in vielen anderen Zintl-Phasen entspricht (z.B. Ba₃Sb₂O [8]: $d_{Sb-Sb} = 283.7(2)$ bzw. 285.7(2) pm; Ba_5Sb_4 [10]: $d_{Sb-Sb} =$ 288.5 pm; Cs_4Sb_2 [11]: $d_{Sb-Sb} = 292.3$ pm). Diese Sb-Sb-Bindungslängen sowie die Ergebnisse der Bandstrukturrechnungen (s.u.) zeigen, daß es sich hier - im Unterschied zu einer Reihe anderer Pentelide wie z.B. Ba₁₁Sb₁₀ [12] oder K₃Bi₂ [13] – um voneinander vollständig isolierte, elektronenpräzise Zintl-Anionen mit einer σ-p-p-Einfachbindung handelt. Die Umgebung der Hanteln ist charakteristisch für dieses Zintl-Anion: Jedes Sb-Atom der Hantel ist Zentrum

Tabelle 1 Ausgewählte interatomare Abstände/pm in der Kristallstruktur der Verbindungen Ba₃Sb₄O.

Atome	Abstand	CN	Atome	Abstand	CN	Atome	Abstand	CN
Ba(1) - O(1)	250.3(10)		Ba(2) - O(1)	246.2(10)		Ba(3) - O(1)	246.9(11)	
- O(1)	257.0(11)		- Sb(4)	359.2(2)		$-\operatorname{Sb}(1)$	355.3(2)	
$-\operatorname{Sb}(1)$	364.6(1)		-Sb(2)	363.2(1)		$-\operatorname{Sb}(3)$	355.9(2)	
- Sb(1)	364.7(2)		-Sb(3)	366.1(2)		$-\operatorname{Sb}(2)$	363.7(2)	
-Sb(3)	370.4(2)		- Sb(4)	369.1(2)		$-\operatorname{Sb}(1)$	365.7(2)	
- Sb(2)	371.5(2)	2+4	-Sb(3)	369.3(2)		$-\operatorname{Sb}(2)$	367.5(2)	
	. ,		$-\operatorname{Sb}(1)$	369.5(2)		$-\operatorname{Sb}(4)$	373.3(2)	
			$-\operatorname{Sb}(2)$	375.1(2)		$-\operatorname{Sb}(4)$	379.1(2)	
			- Sb(1)	376.2(2)	1 + 8	- Sb(3)	392.6(2)	1+8
Sb(1) - Sb(3)	285.1(2)		Sb(2) - Sb(4)	283.9(2)		Sb(3) - Sb(1)	285.1(2)	
- Sb(4)	294.4(2)		-Sb(3)	286.2(2)		$-\operatorname{Sb}(2)$	286.2(2)	
- Ba(3)	355.3(2)		-Ba(2)	363.2(1)		- Ba(3)	355.9(2)	
- Ba(1)	364.6(1)		- Ba(3)	363.7(2)		- Ba(2)	366.1(2)	
- Ba(1)	364.7(2)		-Ba(3)	367.5(2)		$-\operatorname{Ba}(2)$	369.3(2)	
- Ba(3)	365.7(2)		-Ba(1)	371.5(2)		- Ba(1)	370.4(2)	
- Ba(2)	369.5(2)		- Ba(2)	375.1(2)	2+5	- Ba(3)	392.6(2)	2+5
- Ba(2)	376.3(2)	2+6	· · · · · · · · · · · · · · · · · · ·			. ,		
Sb(4) - Sb(2)	283.9(2)		O(1) - Ba(2)	246.3(10)				
- Sb(1)	294.4(2)		- Ba(3)	246.9(11)				
- Ba(2)	359.2(2)		- Ba(1)	250.3(10)				
$-\operatorname{Ba}(2)$	369.1(2)		$-\operatorname{Ba}(1)$	257.0(11)	4			
-Ba(3)	373.3(2)		H(-)	,				
- Ba(3)	379.1(2)	2+4						

1183

Tabelle 3 Ausgewählte interatomare Abstände/pm in der Kristallstruktur der Verbindungen $Ba_8M_4OH_2$ (M = Sb, Bi).

Atome Abstände		tände	Hfk.	CN	Atome	Abst	ände	Hfk.	CN
M = Sb	M = Bi				M = Sb	M = Bi			
Ba(1) - O(1)	257.7(1)	259.6(1)	2x		Ba(3) - H(1)	272(3)	273.3(1)	4x	
-M(1)	360.5(1)	365.4(3)	4x	2+4	- M(2)	369.0(1)	372.6(5)	4x	4 + 4
Ba(2) - O(1)	328.4(2)	329(1)			Ba(4) - H(1)	257(10)	261.0(9)		
- M(2)	355.4(2)	363(2)			- M(1)	352.1(2)	354.2(9)		
-M(1)	372.3(1)	374.1(2)	4x	1+5	- M(2)	373.0(1)	375.8(2)	4x	1+5
M(1) - Ba(4)	352.1(2)	354.2(9)			M(2) - Ba(2)	355.4(2)	361(2)		
- Ba(1)	360.5(1)	365.4(3)	4x		- Ba(3)	368.97(11)	372.6(5)	4x	
- Ba(2)	372.3(1)	374.1(2)	4x	9	- Ba(4)	373.00(9)	375.8(2)	4x	9
O(1) - Ba(1)	257.7(1)	259.6(1)	4x		H(1) - Ba(4)	257(10)	261.0(9)	1x	
- Ba(2)	328.4(2)	329(1)	2x	6	- Ba(3)	272(3)	273(6)	4x	5

Tabelle 4 Ausgewählte interatomare Abstände/pm in der Kristallstruktur der Verbindungen Rb₂Ba₆Sb₅OH.

Atome	Abstand	Hfk.	CN	Atome	Abstand	Hfk.	CN	Atome	Abstand	Hfk.	CN
Rb(1) - H(1)	325	2x		Ba(1) - O(1)	253.3(1)			Ba(2) - H(1)	236		
- Sb(2)	375.6(1)	2x		-Sb(2)	354.1(1)	2x		-Sb(2)	355.1(1)	4x	1+4
- Sb(2)	376.1(1)	4x	2+6	-Sb(1)	367.0(1)	2x		` '			
				- Sb(2)	380.6(1)		1+5				
Sb(1) - Ba(1)	367.0(1)	8x	8	Sb(2) - Sb(2)	286.6(1)			O(1) - Ba(1)	253.3(1)	4x	4
() ()				- Ba(1)	354.1(1)	2x		() ()	. ,		
				- Ba(2)	355.1(1)	2x		H(1) - Ba(2)	236	2x	
				-Rb(1)	375.6(1)			- Rb(1)	325	4x	6
				-Rb(1)	376.1(1)	2x		` ′			
				- Ba(1)	380.6(1)		1 + 8				

eines dreifach überkappten trigonalen Prismas, das aus sechs Rb/Ba-Atomen (trigonales Prisma) und zwei weiteren Kationen bzw. dem Sb-Partner (Überkappungen) besteht (s. die Ortep-Darstellungen der Anionen in den Abbildungen 2 und 4 a). Die Sb-Ba- bzw. Sb-Rb-Abstände liegen zwischen 353 und 384 pm (Tab. 2 und 4) und sind damit wiederum gut vergleichbar mit den Abständen in einfachen binären Zintl-Phasen (z.B. $d_{Sb-Ba} = 360.8-384.0 \text{ pm}$ in Ba₅Sb₄ [10]).

[Sb_n]ⁿ⁻-Ketten: Ba₃Sb₄O enthält ungewöhnlich kompliziert aufgebaute Ketten aus vier kristallographisch unterschiedlichen, einfach negativ geladenen Sb-Atomen (Abb. 1 a). Die Sb-Sb-Abstände innerhalb der Ketten liegen zwischen 283.9 und 294.4 pm, die Bindungswinkel am Sb bilden deutlich zwei Gruppen: Der Sb-Sb-Valenzwinkel an Sb(1) und Sb(4) ist mit 117.3 bzw. 115.0° signifikant größer als an den beiden anderen Sb-Atomen der Kette $(\angle_{Sb-Sb-Sb} = 97.8^{\circ} (Sb(2)) \text{ bzw. } 98.5^{\circ} (Sb(3)). \text{ Wie am Bei-}$ spiel der Arsenide mit As-Baugruppen ausführlich beschrieben [4], können auch hier die Änderungen in den Bindungslängen und -winkeln mit der Konformation der Kette erklärt werden: Zunächst liegt im Unterschied zu den stärker gefalteten As -- Anionen eine chirale Kette vor, d.h. der Verknüpfungstyp ist rein transoid und die Torsionswinkel Θ haben (bis auf eine Ausnahme mit Θ nahe 0°) gleiche Vorzeichen. Allerdings variieren die Werte für die Torsionswinkel $\Theta_{Sb-Sb-Sb-Sb}$ zwischen der synperiplanaren trans-Anordnung $(\Theta_{Sb(3)-Sb(1)-Sb(4)-Sb(2)} = -2.0^{\circ})$ und der syn- (gauche, G: $\Theta_{Sb(4)-Sb(2)-Sb(3)-Sb(1)}=49.8^{\circ}$) bzw. anticlinalen (A: $\Theta_{Sb(2)-Sb(3)-Sb(1)-Sb(4)} = 109.1^{\circ}$ und $\Theta_{\mathrm{Sb}(1)-\mathrm{Sb}(4)-\mathrm{Sb}(2)-\mathrm{Sb}(3)} = 109.4^{\circ}$) Konformation. Bedingt durch die Tatsache, daß die syn- und die anticlinale Anordnung innerhalb einer Kette identisches Vorzeichen haben, entstehen insgesamt Schraubenketten, die zwischen Sb(1) und Sb(4) eingeebnet sind. Aus dieser Beschreibung der Konformation:

$$\big|: t_{Sb(3)} - A^+ - t_{Sb(1)} - C - t_{Sb(4)} - A^+ - t_{Sb(2)} - G^+ - : \big|$$

wird deutlich, daß die Sb-Ketten in Ba₃Sb₄O einerseits Ähnlichkeiten mit den Ketten in den Alkalimetall-Monoantimoniden wie z.B. KSb [14] zeigen, die die für Schrauben charakteristische transoide synclinale Verknüpfung mit gleichem Vorzeichen ($|: t_{Sb} - G^+ - :|)$ aufweisen. Andererseits zeigt sich im Bereich der Sb(1)-Sb(4)-Bindung mit der periplanaren Konformation (hier C = cis = synperiplanar) die Analogie zu den ebenen Ketten der binären Randverbindung BaSb₂ (hier T = trans = antiperiplanar: $|: t_{Sb} - T - :|[12]$). An den Atomen Sb(1) und Sb(4), die der ebenen synperiplanaren Verknüpfung benachbart sind, liegen mit 117.3 bzw. 115.0° die größten Valenzwinkel vor, der Abstand zwischen diesen beiden Atomen ist mit 294.4 pm deutlich größer als in den geschraubten Bereichen der Kette. Diese Details in den Bindungsverhältnissen im Zintl-Anion [Sb_n]ⁿ⁻ in Ba₃Sb₄O lassen sich damit in gleicher Weise wie für die Arsenide [As_n]ⁿ⁻ und zahlreiche Chalkogen-Modifikationen auf die Überlappung der p-Zustände (idealer Torsionswinkel: 90°) zurückführen.

O²⁻: Alle im Rahmen dieser Arbeit beschriebenen Pentelide enthalten außer den Zintl-Anionen Oxid-Ionen, die sich entweder in oktaedrischer oder in tetraedrischer Koordination durch Ba befinden. Auch in den gemischten Rb/Ba-Verbindungen nehmen in Übereinstimmung mit den Pauling-Regeln die einwertigen Alkalimetall-Kationen nicht an der Koordination der zweiwertigen Oxid-Ionen teil. Erwartungsgemäß variieren die O-Ba-Abstände mit der Koordinationszahl deutlich: In Ba₈M₄OH₂ (M = Sb, Bi, Abb. 3 c) liegen elongierte Oktaeder mit O-Ba-Abständen zwischen 257.7 und 330.7 pm vor, die denen in Ba₄Sb₂O $(d_{O-Ba} = 255.7 \text{ pm bzw. } 309.6 \text{ pm } [7])$ entsprechen. Die Fehlordnung der Oxid-Ionen in der z-Richtung (s. Experimenteller Teil), die auf eine quadratisch-prismatische Koordination von O2- durch Ba2+ führt, ist vergleichbar für zahlreiche Verbindungen des anti-K2NiF4-Typs beschrieben [15]. Bei tetraedrischer Koordination, z.B. in Ba₃Sb₄O (Abb. 1 b), RbBa₄Sb₃O (Abb. 2 c) und Rb₂Ba₆Sb₅OH (Abb. 4 c) sind die O-Ba-Abstände erwartungsgemäß deutlich kürzer, jedoch mit Werten von 246.3 bis 257.0 pm (in Ba₃Sb₄O), 253.3 pm (in Rb₂Ba₆Sb₅OH) und 254.4 pm (in KBa₄Sb₃O) sowohl miteinander, als auch mit den Werten in anderen Oxiden mit isolierten OBa₄-Tetraedern wie z.B. Ba_3Sb_2O ($d_{O-Ba} = 252.8-263.0 \text{ pm}$ [8]) oder KBa_4Sb_3O $(d_{O-Ba} = 254.4 \text{ pm } [2])$ gut vergleichbar.

H-: Die Koordination von Hydrid-Ionen durch Ba in den verschiedenen Ba-reichen Verbindungen variiert zwischen oktaedrischer (z.B. in Ba₅Sb₃H [6]), quadratischpyramidaler (z.B. in BaH₂ [16, 17]) und tetraedrischer Umgebung (z.B. ebenfalls in BaH₂), wobei die H-Ba-Abstände erwartungsgemäß wieder mit der Koordinationszahl von 257 bis 270 (CN = 4) auf 280 bis 298 pm (CN = 5 und 6) zunehmen. In den Oxid-Hydriden Ba₈M₄OH₂ sind die Hydrid-Ionen quadratisch-pyramidal von Ba-Kationen umgeben, der H-Ba-Abstand beträgt bei Fixierung der Lageparameter im Zentrum des Polyeders 261 (1x) und 273 (4x) pm. In Rb₂Ba₆Sb₅OH sind die Hydrid-Ionen in gestauchten Oktaedern (Abb. 4 d) positioniert. Die H-Rb/Ba-Abstände innerhalb des Oktaeders sind mit 236 (2x) und 325 pm (4x) sehr unterschiedlich und wie für O^{2-} in Rb₂Ba₆Sb₅OH und Ba₄Sb₂O befindet sich die genaue Position des Maximums der Elektronendichtekarten nicht exakt bei 0,0,0, sondern bei ca. 0.1,0,0. Unter der Annahme einer entsprechenden vierfachen Fehlordnung von H- ergeben sich verzerrte Tetraeder (251 (3x) und 293 (1x) pm) als Koordinationspolveder für H⁻. Der Vergleich der chemischen Verschiebungen der ¹H-Signale in den Festkörperkernresonanz-Spektren der phasenrein zugänglichen Verbindung Ba₈Sb₄OH₂ mit den Verschiebungen in Ba₅Sb₃H, BaH₂ (s. Experimenteller Teil) bzw. BaD₂ und Ba₃AlO₄D [18] belegt zusätzlich die Existenz hydridischen Wasserstoffes in diesen Verbindungen.

Diskussion und Vergleich der Gesamtstrukturen

In Ba₃Sb₄O verlaufen die oben beschriebenen schraubenförmigen chiralen Antimonid-Ketten [Sb₄]⁴⁻ ohne Eigensymmetrie entlang der kurzen kristallographischen a-Achse. In der monoklinen Elementarzelle befinden sich dabei insgesamt vier Ketten (Z = 4) mit aufgrund der Symmetrie der Raumgruppe wechselnder Chiralität (s. Abb. 1 c). Die Ladung der Ketten wird durch Ba²⁺- und O²⁻-Ionen ausgeglichen, die inversionssymmetrische komplexe Kationen [O₂Ba₆]⁸⁺ bilden, die aus zwei über eine gemeinsame Kante

Abb. 5 Elementarzellen von und Strukturzusammenhänge zwischen Ba₄Sb₂O und Ba₈Sb₄OH₂ (links, Raumgruppe *I*4/mmm, Verb. ohne Sb₂-Hanteln) bzw. RbBa₄Sb₃O und Rb₂Ba₆Sb₅OH (rechts, Raumgruppe I4/mcm, Verb. mit Sb₂-Hanteln) (schwarze Kugeln: Sb; hellgraue kleine Kugeln: Ba; mittelgraue mittelgrosse Kugeln: Rb; hellgraue Polyeder: Koordinationspolyeder um Oxid, dunkelgraue Polyeder: Koordinationspolyeder um Hydrid, [37]).

verknüpften OBa₄-Tetraedern bestehen. Die Ba(1)-Kationen, die die Tetraeder-Kanten bilden, sind neben den beiden O²⁻ noch von vier Sb⁻ koordiniert (CN=2+4), während Ba(2) und Ba(3) von einem O²⁻ und acht Sb⁻ (CN= 1+8) umgeben sind (s. Tab. 1).

Die Abbildung 5 zeigt, daß die Strukturen des tetragonalen Ba-Antimonids Ba₄Sb₂O und des Hydrids Ba₈Sb₄OH₂ (beide Raumgruppe I4/mmm; $a \approx 520 \text{ pm}$; ausschließlich [Sb]³⁻) sowie des Rb/Ba-Antimonids RbBa₄Sb₃O und des Hydrids Rb₂Ba₆Sb₅OH (beide Raumgruppe I4/mcm: $a \approx$ 890 pm; [Sb]³⁻ neben [Sb₂]³⁻) eng miteinander verwandt sind. Bei den in Abbildung 5 hell dargestellten Koordinationspolyedern handelt es sich um O2--zentrierte, bei den dunkel dargestellten um H⁻-zentrierte Kationen-Polyeder. Die Oxid-Ionen sind – wie oben beschrieben – ausschließlich von Ba koordiniert; als komplexe Kationen der Summenformel [OBa₄]⁶⁺ betrachtet bilden sie entweder isolierte Tetraeder [OBa₄] (in den Ba-Phasen) oder Schichten eckverknüpfter Oktaeder [OBa₂Ba_{4/2}] (in den Rb/Ba-Phasen). Die Hydrid-haltigen komplexen Kationen-Schichten bestehen entweder gemäß [HBa2]3+ aus kantenverknüpften quadratischen Pyramiden [HBaBa_{4/4}] oder gemäß [HRbBa₂]⁴⁺ aus eckverknüpften Oktaedern [ORb_{4/4}Ba²].

Die neuen Phasen Ba₈M₄OH₂ können als chemische 1:2-Zwillinge des bekannten Antimonid-Oxids Ba₄Sb₂O (Schichten [OBa₄]⁶⁺ + 2 [Sb]³⁻, [7]) mit dem hypothetischen Antimonid-Hydrid Ba₂SbH (bzw. [HBa₂]³⁺ (Pyramidenschichten) und [Sb]³⁻) beschrieben werden (Abb. 5 links). Für M=Bi ist mit Ba₆Bi₃OH auch der entsprechende 1:1-Zwilling (Raumgruppe P4/nmm, a = 520.7(1), c =2854.7(2) pm, R1 = 0.0460 [19]) bekannt.

RbBa₄Sb₃O kristallisiert wie die isotype K-Verbindung [2] im gestopften Cr₅B₃-Typ. Dieser, sowie der Bezug zur binären Phase Ba₅Sb₄ und zu K₂Ba₃Sb₄, in denen ebenfalls die beiden Antimonid-Anionen [Sb]3- und [Sb2]4- nebeneinander auftreten, sind in [2] ausführlich beschrieben. Aus RbBa₄Sb₃O läßt sich wiederum formal durch Einbau weiterer Hydrid/Antimonid-haltiger Schichten RbBa₂Sb₂H (bzw.

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim

[HRbBa₂]⁴⁺ (Oktaederschichten) und [Sb₂]⁴⁻) die Struktur von Rb₂Ba₆Sb₅OH ableiten (Abb. 5 rechts).

Die Koordinationen der Rb/Ba-Kationen und die Kationen-Anion-Abstände in den tetragonalen Verbindungen sind in den Tabellen 2, 3 und 4 zusammengestellt. Die Rb-Kationen sind stets von sechs, alle Ba-Kationen lediglich von vier bzw. fünf Sb-Atomen koordiniert. In der Koordinationssphäre von Rb⁺ findet sich in keinem Fall O²⁻.

Bindungsverhältnisse und elektronische Strukturen

Für das Antimonid-Oxid RbBa₄Sb₃O, das zwei verschiedene Zintl-Ionen enthält, und die Hydrid-haltige Phase Ba₈Sb₄OH₂ wurden exemplarisch für die Verbindungsklassen DFT-Bandstruktur-Berechnungen nach der FP-LAPW-Methode durchgeführt. Zum Vergleich wurden auch die elektronischen Strukturen des Barium-Antimonid-Oxids Ba₄Sb₂O [7] und des -Hydrids Ba₅Sb₃H [6, 20] berechnet. Details zu den Rechnungen sind im Experimentellen Teil und in Tabelle 5 zusammengefaßt. Die berechneten totalen (oben) und partiellen (unten) Zustandsdichten sind in Abbildung 6 dargestellt.

Die Bandstrukturen und die totalen Zustandsdichten der beiden Titelverbindungen RbBa₄Sb₃O und Ba₈Sb₄OH₂ zeigen, daß die Oxid/Hydrid-Antimonide – in Übereinstimmung mit der Interpretation als klassische Zintl-Phasen -Halbleiter mit Bandlücken von 1.0 eV (RbBa₄Sb₃O) bzw. 1.2 eV (Ba₈Sb₄OH₂) sind. Auch die Werte für die beiden Vergleichsverbindungen liegen in diesem Bereich.

Die Antimon-s- bzw. -p-artigen Zustände der isolierten [Sb]³-Anionen (Sb(1) und Sb(2) in Ba₈Sb₄OH₂, Sb(2) in RbBa₄Sb₃O sowie aller Sb-Atome in den beiden Vergleichsverbindungen Ba₄Sb₂O und Ba₅Sb₃H) liegen einheitlich zwischen -7 und -8 eV bzw. zwischen -2.5 eV und der Fermikante E_F. Die s- und die p_z-Zustände der Sb(1)-Atome in RbBa₄Sb₃O, die die Hantel [Sb₂]⁴⁻ ausbilden, spalten jeweils in bindende und antibindende Bereiche auf, wobei die bindenden p_z^b -Bänder bei ca. -2 eV liegen und

Tabelle 5 Angaben zu den Berechnungen der elektronischen Strukturen von Ba₄Sb₂O, Ba₅Sb₃H, RbBa₄Sb₃O und Ba₈Sb₄OH₂ (n: nichtbindend, b: bindend, ab: antibindend).

			Ba_4Sb_2O	Ba_5Sb_3H	$RbBa_4Sb_3O$	$Ba_8Sb_4OH_2$
Strukturtyp			anti-K ₂ NiF ₄	gestopfter Mn ₅ Si ₃	gestopfer Cr ₅ B ₃ [2]	Ba ₈ Sb ₄ OH ₂
krist. Daten			[7]	[20]	Tab. 6, 8	Tab. 6, 9
R _{mt} (alle Ato	me)/pm			121.7	,	,
R _{mt} ·K _{max}	· /· k			8.0		
k-Punkte/IB2	7.		99	72	99	
k-Punkte/BZ			1000	810	1000	
Monkhorst-F			10x10x10	9x9x10	10x10x1	0
Bandlücke/eV	I		1.1	0.9	1.2	1.0
Band-	O(1)	p^n	$-3.4 \cdot \cdot \cdot -1.5$	_	$-3.5 \cdots -2.6$	-3.2 - 1.2
bereiche	H(1)	s ⁿ	_	-3.3 - 2.8	_	$-4.2 \cdot \cdot \cdot -3.2$
/eV	Sb(1)	s ^b (Hantel)	_	_	-9 - 8.8	_
		s ⁿ (isoliert)	-8.0 - 7.4	-8.2 - 7.5	_	-7.9 - 7.4
		sab (Hantel)	_	_	$-7.3 \cdots -7.0$	_
		p _z (Hantel)	_	_	-2.2 - 2.0	_
		p ^{nb} (isoliert)	$-2.0 \cdots 0$	$-2.2 \cdots 0$	_	$-2.0 \cdots 0$
		p _{v,v} (Hantel)	_	_	$-1.3 \cdots 0$	_
	Sb(2)	$p_{x,y}^{b,ab}$ (Hantel)	_	_	$-7.6 \cdots -7.1$	$-7.9 \cdots 7.4$
		p^{nb}	_	_	-1.3 ··· 0	$-1.7 \cdots 0$

Abb. 6 Totale (oben) und partielle (unten) Zustandsdichten von Ba₄Sb₂O (a), Ba₅Sb₅H (b), RbBa₄Sb₅O (c) und Ba₈Sb₄OH₂ (d) im Bereich zwischen -8 und +3 eV relativ zu E_F (gestrichelte Linie). (partielle Zustandsdichten: O-p: schraffiert; H-s: dunkelgrau unterlegt; Sb-s,p: hellgrau unterlegt bzw. einfache Linie)

die antibindenden pzab-Zustände das Leitungsband bilden. Die vollständig besetzten p_{x,v}-Zustände von Sb(1) tragen zum Valenzbandbereich bei (-1.3 eV bis 0 eV). In Übereinstimmung mit den beobachteten Sb-Sb-Bindungslängen ist die Bindung innerhalb der Hantel somit als σ-p-p-Einfachbindung zu beschreiben.

Die Sauerstoff-p-Zustände liegen, entsprechend der Formulierung als reine O^{2-} -Ionen, zwischen -1.5 und -3.5 eV. Die Dispersion dieser Bänder ändert sich dabei deutlich mit der Koordination der Oxid-Ionen: Bei tetraedrischer Umgebung (in RbBa₄Sb₃O) treten sehr scharfe p-DOS-Peaks auf (-2.5 bis -3.0 eV), während die p-Bänder von oktaedrisch koordiniertem Sauerstoff deutlich größere Bandbreiten von ca. 2 eV zeigen. Als Ursache für diese relativ großen Dispersionen kommt auch die beschriebene geringe kristallographische Fehlordnung der Oxid-Ionen auf den Oktaederplätzen in Frage.

Wasserstoff ist in Ba₈Sb₄OH₂ und Ba₅Sb₃H als echtes Hydrid-Ion eingebaut. Dies zeigt - neben den für hydridischen Wasserstoff charakteristischen NMR-Spektren - die Lage der Wasserstoff-1s-Zustände, die in beiden Verbindungen einheitlich zwischen -3 und -4 eV zu liegen kommen.

Im Unterschied zu einer Reihe binärer Erdalkalimetall-Antimonide (wie z.B. CaSb₂ oder BaSb₂ [4]) und -Tetrelide (wie z.B. Sr₅Sn₃ [21] oder Ca₅Ge₃ [22]) tragen Erdalkalimetall-Zustände in den hier beschriebenen Antimonid-Oxiden/Hydriden nicht zur Zustandsdichte unterhalb von E_E bei. Die Bandlücken dieser Pentelide mit zusätzlichen einfachen Anionen sind daher deutlicher ausgeprägt als in den binären Zintl-Phasen. Der Einfluss zusätzlicher Anionen in polaren intermetallischen Phasen beschränkt sich damit nicht auf rein geometrische Aspekte ([XA_n]^{m+} als voluminöse Gegenionen) sondern ist durch die Verstärkung des ionischen Charakters der Gesamtverbindungen auch elektronischer Natur.

Experimenteller Teil

Synthesen

Die Darstellung der Barium-Antimonid-Oxide erfolgte in Korundfingertiegeln, die in Stahlautoklaven eingeschlossen waren, unter Argonatmosphäre (99.998 %) in Rohröfen. Die Gesamteinwaagen betrugen zwischen 1 und 3 g. Pulverförmige Proben (z.B. für die MAS-NMR-Ubersuchungen) wurden durch Lichtbogenschmelzen dargestellt. Als Edukte wurden neben den metallischen Elementen Ba (Alkali-Metallhandel GmbH, Bonn 99 %), Rb (Alkali-Metallhandel GmbH, Bonn 99.9 %) und Sb-Pulver (99 %, ABCR, Karlsruhe) als O-Quelle Sb₂O₃ (99.999 %, ABCR, Karlsruhe) und als H-Quellen BaH₂ (aus den Elementen bei 800 °C dargestellt) bzw. Ba(OH)₂·H₂O (durch Zersetzung des Oktahydrates bei 280 °C für 1 h erhalten) eingesetzt.

Die beiden isotypen Phasen Ba₈Sb₄OH₂ und Ba₈Bi₄OH₂ lassen sich aus stöchiometrischen Mengen von Barium, Bariumhydrid, M und M₂O₃ (M=Sb, Bi) in Ofenproben einkristallin und in Lichtbogen-Proben in Form homogener, sehr luftempfindlicher Pulver darstellen. Für die Lichtbogen-Proben wurden z.B. 120.1 mg (0.875 mmol) Ba, 17.1 mg (0.123 mmol) BaH₂, 50.1 mg (0.411 mmol) Sb und 12.0 mg (0.041 mmol) Sb₂O₃ unter Argon zu einer Tablette verpresst und unter He im Lichtbogen für ca. 20 bis 30 s aufgeschmolzen. Die Röntgenpulverdiffraktogramme (Transmissions-Pulverdiffraktometersystem STADI P mit linearem PSD, Fa. Stoe & Cie. Darmstadt, Mo Kα-Strahlung, Graphit-Monochromator) der homogenen, dunkelmetallisch glänzenden Schmelzreguli liessen sich mit dem berechneten Diagramm von Ba₈Sb₄OH₂ vollständig erklären. Für die Ofenproben wurden vergleichbare stöchiometrische Mischungen unter Argon mit 200 °C/h auf 900 °C aufgeheizt. 2 h getempert und anschließend mit 20 °C/h wieder auf RT abgekühlt. Gut ausgebildete dunkelmetallisch glänzende spröde Kristalle von Ba₈M₄OH₂ (M=Sb, Bi) entstehen – bedingt durch den Wasserstoff-Gehalt elementaren Bariums [23, 24] - neben elementarem Barium auch aus Proben der Einwaagestöchiometrie Ba₇MO (M=Sb, Bi).

Das Hydrid-Oxid **Rb₂Ba₆Sb₅OH**, das zuerst in Form weniger dunkelmetallisch glänzender Kristalle bei Versuchen zur Darstellung gemischter Rb/Ba-Antimonide erhalten wurde, läßt sich aus annähernd stöchiometrischen Schmelzen (Einwaagestöchiometrie Rb₂Ba₆Sb₅OH_{1.3}) bei Einsatz von Rb, Ba, Sb und Ba(OH)₂·H₂O quantitativ herstellen: Hierzu wurden 322.7 mg (3.775 mmol) Rb, 1468.5 mg (10.693 mmol) Ba und 1149.1 mg, (9.438 mmol) Sb mit

118.0 mg (0.623 mmol) Ba(OH)₂·H₂O mit 200 °C/h auf 800 °C erhitzt, 12 h bei dieser Temperatur homogenisiert und anschließend mit 100 °C/h auf RT abgekühlt. Die Röntgenpulverdiffraktogramme dieser sowie vergleichbarer Proben ließen sich mit den für Rb₂Ba₆Sb₅OH ermittelten kristallographischen Daten (s. Tab. 6 und 10) indizieren. Schwache Fremdreflexe stammen von den sehr gut streuenden Verbindungen BaO und Ba₄Sb₂O [7].

Ba₃Sb₄O konnte als silberhell glänzende xenomorphe Kristalle bei 650 °C nur dann erhalten werden, wenn RbSb, das aus den Elementen im stöchiometrischen Verhältnis bei 570 °C dargestellt wurde, eingesetzt wurde. Als Beiprodukte zeigen entsprechende Proben (z.B. RbSb:Ba:Sb wie 1:1:2) daher stets die faserförmigen Kristalle von RbSb₂ [25] und von nicht umgesetztem RbSb. Bei Versuchen zur Herstellung von Ba₃Sb₄O aus stöchiometrischen Proben (z.B. aus Ba, Sb und Sb₂O₃) wird trotz verschiedener Variationen des Temperaturprogrammes stets die Bildung der Randphasen von Ba₃Sb₄O, BaSb₂ und BaO, beobachtet.

Im Unterschied zur K-Verbindungen [2] konnte $RbBa_4Sb_3O$ bislang nicht phasenrein erhalten werden. Bei Proben mit stöchiometrischer Einwaage ($T_{max} = 750\,^{\circ}C$) entsteht neben der Zielverbindung stets $BaSb_2$ [12] und O wird durch die Bildung von BaO und Sb_2O_3 der weiteren Reaktion entzogen. Die besten Ausbeuten an $RbBa_4Sb_3O$ konnten bei Einsatz eines Überschusses an Rb (Rb:Ba wie 1:3 statt 1:4) und mit $Ba(OH)_2 \cdot H_2O$ als Sauerstoffquelle erhalten werden. Bei entsprechenden Proben (z.B. 327.5 mg (3.832 mmol) Rb, 1421.5 mg (10.351 mmol) Ba, 1113.1 mg (9.143 mmol) Sb und 114.7 mg (0.605 mmol) $Ba(OH)_2 \cdot H_2O$,

Tabelle 6 Kristallographische Daten und Angaben zur Datensammlung und Strukturbestimmung von Ba_3Sb_4O , $RbBa_4Sb_3O$, $Ba_8M_4OH_2$ (M = Sb, Bi) und $Rb_2Ba_6Sb_5OH$.

		Ba ₃ Sb ₄ O	RbBa ₄ Sb ₃ O	Ba	$_8$ M $_4$ OH $_2$	Rb₂Ba ₆ Sb₅OH
		1.1.		M=Sb	M=Bi	
Kristallsystem Raumgruppe		monoklin P2 ₁ /c	I4/mcm		tragonal 4/ <i>mmm</i>	I4/mcm
Raumgruppe	Nr.	14	14/mcm 140	I I	4/ <i>mmm</i> 139	140
- 47	111.		1 - 1 - 1		1	
Temperatur/K		205(5)	295(5)	295(5)	295(5)	295(5)
Gitterkonstanten/pm,°	a h	696.4(2)	893.7(4)	515.34(12)	519.12(12)	879.71(4)
	C	1280.7(3) 1294.1(3)	1642.7(9)	3791.7(3)	3837.6(3)	2742.4(2)
	β	112.385(10)	1042.7())	3771.7(3)	3037.0(3)	2/42.4(2)
Volumen der EZ/10 ⁶ pm ³	P	1067.2(4)	1312.0(11)	1007.0(3)	1034.2(3)	2122.3(2)
Z		4			(-)	(-)
ρ (röntgenogr.)/g/cm ³		5.70	5.14	5.31	6.27	5.07
Diffraktometer		Bruker	Stoe	Enr	af-Nonius	Stoe
		CCD	IPDS-2		CAD 4	IPDS-2
			M	oK_{α} , Graphitmonoch	romator	
AbsKoeff. $\mu_{\text{Mok}\alpha}$ /mm ⁻¹		20.787	21.52	20.60	48.82	21.72
θ-Bereich/°		2.3-29.0	2.5-27.5	3.2-32.5	4.0-27.5	3.0-29.5
Zahl gemessener Refl.		7162	5121	2013	1348	19573
Zahl unabhängiger Refl.		2546	432	620	424	820
R _{int}		0.0526	0.2104	0.0902	0.1184	0.074
Korrekturen			Loi	entz, Polarisation, Ab	sorption	
		SADABS	X-shape	A	ABSPSI	X-shape
		[33]	[34]		[35]	[34]
Strukturlösung					LXS-97 [26]	
Verfeinerung				SHEI	LXL-97 [27]	
Zahl freier Parameter		69	17	22	20	24
Goodness-of-fit on F ²		1.137	0.849	1.192	1.083	1.102
R-Werte (Refl. mit $I \ge 2\sigma(I)$)	R1	0.0399	0.0508	0.0319	0.0460	0.0592
	wR2	0.1207	0.0968	0.0803	0.0901	0.1749
R-Werte (alle Daten)	R1	0.0566	0.1066	0.0664	0.1064	0.0656
Restelektr./e ⁻ ·10 ⁶ pm ⁻³	wR2	0.1964 4.1/-4.0	0.1108 1.7/-1.6	0.0923 2.6/-5.3	0.2124 6.5/-7.3	0.1799 6.6/-3.2
Restelektr./e ·10°pm		4.1/-4.0	1.//-1.6	2.0/-3.3	0.3/ - /.3	0.0/-3.2

Tabelle 7 Atomkoordinaten und äguivalente isotrope (Ba, Sb) bzw. isotrope (O) Verschiebungsparameter/pm² in der Kristallstruktur von Ba₃Sb₄O (alle Atome auf der Wyckoff-Position 4e).

Atom	X	у	Z	$U_{\ddot{a}quiv.}$
Ba(1)	0.20444(14)	0.55898(7)	0.45278(8)	133(3)
Ba(2)	0.38930(14)	0.05324(7)	0.27836(7)	124(3)
Ba(3)	0.18887(14)	0.26784(7)	0.01943(7)	129(3)
Sb(1)	0.34747(16)	0.34301(8)	0.31291(8)	131(3)
Sb(2)	0.72196(15)	0.34505(8)	0.06213(8)	133(3)
Sb(3)	0.06725(15)	0.48365(8)	0.15686(9)	148(3)
Sb(4)	0.70626(16)	0.27014(8)	0.26524(9)	148(3)
O(1)	0.1705(16)	0.0870(8)	0.0811(8)	111(19)

Tabelle 8 Atomkoordinaten und äguivalente isotrope (Rb, Ba, Sb) bzw. isotrope (O) Verschiebungsparameter/pm² in der Kristallstruktur von RbBa₄Sb₃O.

Atom	Wyckoff- Lage	X	у	Z	$U_{\ddot{a}quiv.}$
Rb(1)	4 c	0	0	0	375(13)
Ba(1)	16 <i>l</i>	0.15792(12)	x + 1/2	0.15459(14)	266(5)
Sb(1)	8 h	0.6144(2)	x + 1/2	0	260(7)
Sb(2)	4 a	0	0	1/4	282(8)
O(1)	4 b	0	1/2	1/4	212(70)

Tabelle 9 Atomkoordinaten und äquivalente isotrope (Ba, Sb, Bi) bzw. isotrope (O, H) Auslenkungsparameter/pm² in den Kristallstrukturen der Verbindungen Ba₈M₄OH₂ (M = Sb/Bi, *: Parameter nicht in die Verfeinerung einbezogen, **: s. Text).

Atom	Wyckoff- Position	х	у	Z	U _{äqui./iso.}
Ba(1)	4 c	0	1/2	0	152(3)/121(35)
Ba(2)	4 e	0	0	0.08662(4)/0.0862(3)	213(3)/175(17)
Ba(3)	4 d	0	1/2	1/4	129(3)/108(34)
Ba(4)	4 e	0	0	0.34065(3)/0.3403(2)	164(3)/120(11)
M(1)	4 e	0	0	0.43350(3)/0.43315(15)	131(3)/105(8)
M(2)	4 e	0	0	0.18035(4)/0.18014(17)	136(3)/142(10)
O(1)	2 a	0	0	0	793(150)/177(200)**
H(1)	4 e	0	0	0.273(3)/0.2723*	500/500*

Tabelle 10 Atomkoordinaten und äquivalente isotrope (Ba, Sb) bzw. isotrope (O, H) Verschiebungsparameter/pm² in der Kristallstruktur von Rb₂Ba₆Sb₅OH (*: Parameter nicht in die Verfeinerung einbezogen).

Atom	Wyckoff- Lage	X	у	z	U _{äquiv.}
Rb(1)	8 h	0.17550(6)	x + 1/2	0	214(2)
Ba(1)	16 <i>l</i>	0.15884(2)	x + 1/2	0.192240(12)	216(1)
Ba(2)	8 <i>f</i>	0	0	0.085879(18)	256(1)
Sb(1)	4 a	0	0	1/4	241(2)
Sb(2)	16 <i>l</i>	0.61520(3)	x + 1/2	0.098685(14)	242(1)
O(1)	4 <i>b</i>	0	1/2	1/4	217(16)
H(1)	4 a	0	0	0	500*

 $T_{max} = 800 \,^{\circ}\text{C}$ für 12 h) wird H in Form des röntgenographisch neben der Zielverbindung RbBa₄Sb₃O – nachweisbaren Hydrids Ba₅Sb₃H ausgeschieden.

Kristallstrukturbestimmungen

Die schwarzmetallisch glänzenden Einkristalle der Titelverbindungen wurden unter getrocknetem Paraffinöl in Kapillaren (Durchmesser ≤ 0.1 mm) eingeschlossen. Die Datensammlung erfolgte auf Diffraktometern mit Flächendetektoren bzw. auf einem konventionellen Vierkreisdiffraktometer.

Ba₃Sb₄O: Die Beugungsmuster von Ba₃Sb₄O zeigten ein primitives monoklines Gitter mit der zonalen Auslöschungsbedingung Reflexe h0l nur vorhanden für l = 2n und der seriellen Auslöschungsbedingung Reflexe 0k0 nur vorhanden für k = 2n. Hieraus folgt die Raumgruppe P2₁/c eindeutig. Die Lösung der Struktur, die alle Baund Sb-Positionen lieferte, gelang in dieser Raumgruppe über direkte Vorzeichenbestimmungsmethoden (Programm SHELXS-97 [26]). Nach anschließenden Least-Squares-Verfeinerungen (R1 = 0.0549, Programm SHELXL-97 [27]) zeigte die Differenzfouriersynthese ein weiteres Maximum, das dem Oxid-Ion zugeordnet werden konnte, welches in den abschließenden Strukturverfeinerungen isotrop behandelt wurde. Die ermittelten Atomparameter sind zusammen mit den äquivalenten (Ba, Sb) bzw. isotropen (O) Auslenkungsparametern in Tabelle 7 zusammengestellt (s.a. [28]).

RbBa₄Sb₃O: Die xenomorphen Einkristalle von RbBa₄Sb₃O weisen ein tetragonal innenzentriertes Gitter hoher Laueklasse mit der zusätzlichen Auslöschungsbedingung Reflexe 0kl nur vorhanden für k,l=2n auf. Die daraus folgenden möglichen Raumgruppen und die Abmessungen der Gitterkonstanten ließen auf Isotypie zu KBa₄Sb₃O [2] schliessen. Mit den Parametern dieser Verbindung als Startwerten ließ sich die Struktur in wenigen Zyklen auf einen R1-Wert von 0.0508 verfeinern, wobei wiederum die Sauerstofflage isotrop, die Schweratompositionen anisotrop behandelt wurden (s. Tab. 6 und 8 sowie [28])

Ba₈M₄OH₂: Kristalle der isotypen Phasen Ba₈Sb₄OH₂ und Ba₈Bi₄OH₂ zeigten ebenfalls tetragonal-innenzentrierte Gitter hoher Laueklasse. Im Unterschied zu RbBa₄Sb₃O lagen jedoch keine zusätzlichen Auslöschungsbedingungen vor, so daß als Raumgruppen I4/mmm, I42m, I4m2, I4mm und I422 in Frage kamen. Die Lösung der Struktur gelang in der Raumgruppe I4/mmm wie für Ba₃Sb₄O beschrieben und lieferte alle Ba- und Sb- bzw. Bi-Positionen. Nach deren anisotroper Verfeinerung verblieben zwei weitere Maxima in den Differenzelektronendichten: Das größere nahe 0,0,0 wurde Oxid, das kleinere Maximum bei 0,0,0.273 Hydrid zugeordnet. Bei anisotroper Behandlung der O-Atomposition zeigten sich deutliche Differenzen in der Länge der Hauptachsen der Ellipsoide (z.B. $U_{11}=470 \text{ pm}^2 \text{ gegenüber } U_{33}=1442 \text{ pm}^2 \text{ für M}=\text{Sb}$). Eine genaue Analyse der Differenzelektronendichtekarten (Programm JANA2000 [29]) läßt je ein Maximum ca. 40 pm ober- und unterhalb von z=0 erkennen, so daß hier offensichtlich die gleiche Fehlordnung der O-Atome vorliegt, die für die strukturell verwandten Phasen mit anti-K₂NiF₄-Struktur beschrieben ist [15]. Der z-Parameter und der Temperaturfaktor des Hydridions konnten nicht zuverlässig verfeinert werden und wurden daher in beiden Fällen von der Least-Squares-Verfeinerung ausgeschlossen.

Rb₂Ba₆Sb₅OH: Die Beugungsbilder von Rb₂Ba₆Sb₅OH zeigten ebenfalls tetragonale Symmetrie hoher Laueklasse. Mit den beobachteten zusätzlichen Auslöschungsbedingung Reflexe 0kl nur vorhanden für k, l = 2n sind damit die Raumgruppen I4/mcm und I4cmvereinbar. Die Lösung der Struktur gelang in der zentrosymmetrischen Raumgruppe wiederum über direkte Vorzeichenbestimmungsmethoden. Nach anisotroper Verfeinerung der Rb-, Ba-, Sbund der aus Differenzelektronendichten ermittelten O-Atompositionen verblieb ein weiteres Maximum von ca. 3 e⁻/10⁻⁶pm⁻³ in der Nähe des Ursprungs, das wiederum Hydrid zugeordnet werden konnte. Die Details der Elektronendichtekarten sowie kristallchemische Gründe (s.o.) lassen auch hier auf eine Fehlordnung von H⁻ auf der gestauchten Oktaederposition schliessen.

¹H-MAS-NMR-Untersuchungen

Zum qualitativen Nachweis der Hydrid-Ionen wurden ¹H-MAS-NMR-spektroskopische Untersuchungen der phasenrein erhältlichen Verbindung Ba₈Sb₄OH₂ und der Hydride BaH₂ und Ba₅Sb₃H mit einem Spektrometer Bruker MLS200 bei einer Frequenz von 213.33 MHz durchgeführt. Hierzu wurden die gepulverten Proben in der Handschuhbox in KelF-Inlays gefüllt und in 4 mm ZrO₂-Rotoren (Fa. Bruker) eingebracht. Bei einer Rotationsfrequenz von 5 kHz wurden Einpuls-Spektren (90°-Pulse) ohne Entkopplung aufgenommen. Die Spektren von Ba₈Sb₄OH₂, Ba₅Sb₃H und BaH₂ zeigten einheitlich ein Signal bei einer chemischen Verschiebung von 8.5 bis 9 ppm gegen TMS.

Bandstrukturrechnungen

Die Berechnungen der elektronischen Bandstrukturen und der Zustandsdichten (DOS) wurden für Ba_4Sb_2O [7], Ba_5Sb_3H [6], $RbBa_4Sb_3O$ und $Ba_8Sb_4OH_2$ nach der FP-LAPW-Methode (Full Potential Linearized Augmented Plane Wave) mit der GGA-Näherung (Generalized Gradient Approximation) in der Version nach Engel und Vosko [30] mit dem Programm WIEN2k [31] durchgeführt. Als Konvergenzkriterium für die Selbstkonsistenz wurde ein 'Charge Distance' von 0.00001 verwendet, die 'Cut-off'-Energie lag einheitlich bei $R_{mt}K_{max}=8$. Die Integration über die Brillouin-Zone zur Bestimmung der totalen und partiellen Zustandsdichten erfolgte mit der Tetraedermethode. Als Muffin-Tin-Radius R_{mt} wurde für alle Atome 2.3 au (121.7 pm) gewählt. Elektronendichten wurden mit dem Programm XCrySDen [32] analysiert. Weitere Details der Rechnungen sind in Tabelle 5 zusammengestellt.

Wir danken der 'Adolf-Messer-Stifung' sowie der 'Deutschen Forschungsgemeinschaft' für die finanzielle Unterstützung. Frau *Tina Trautnitz*, Herrn *Andreas Ehler* und Herrn *Ralf Sorgenfrei* sowie Herrn *Marco Wendorff* und Herrn *Mamdouh Idilbi* danken wir für die Mitwirkung bei den präparativen Arbeiten. Herrn *Dr. Gerd Balzer* (Universität Hannover) danken wir für die Aufnahme der MAS-NMR-Spektren.

Literatur

- O. Liebrich, H. Schäfer, A. Weiss. Z. Naturforsch. 1970, 25b, 650.
- [2] B. Eisenmann, C. Gieck, U. Rössler. Z. Anorg. Allg. Chem. 1999, 625, 1331.
- [3] L. Chi, J. D. Corbett. J. Solid State Chem. 2001, 162, 327.
- [4] F. Emmerling, D. Petri, C. Röhr. Z. Anorg. Allg. Chem. 2004, 630, 2490.
- [5] F. Gascoin, S. C. Sevov. J. Solid State Chem. 2003, 175, 306.
- [6] J. D. Corbett, E. Garcia, A. M. Guloy, W.-M. Hurng, Y.-U. Kwon, E. A. Leon-Escamilla. *Chem. Mater.* 1998, 10, 2824.
- [7] R. George, C. Röhr. Z. Kristallogr. 1996, 221, 478.
- [8] M. Boss, F. Pickhard, C. Röhr. Acta Crystallogr. 2001, C 57, 503
- [9] M. Lulei, Z. Anorg. Allg. Chem. 1997, 623, 1796.

- [10] E. Brechtel, G. Cordier, H. Schäfer. Z. Naturforsch. 1981, 36b, 1340.
- [11] C. Hirschle, C. Röhr. Z. Anorg. Allg. Chem. 2000, 626, 1992.
- [12] F. Emmerling, N. Längin, F. Pickhard, M. Wendorff, C. Röhr. Z. Naturforsch. 2004, 59b, 7.
- [13] F. Gascoin, S. C. Sevov. J. Am. Chem. Soc. 2000, 122, 10251.
- [14] W. Hönle, H. G. von Schnering. Z. Kristallogr. 1981, 155, 307.
- [15] W. Hönle, J. Nuss, U. Burkhardt, S. Göbel, R. C. Gil, Y. Grin, H. G. von Schnering. In VIth European Conference on Solid State Chemistry, (Zürich). 1997 PA 107, PA 107.
- [16] W. Bronger, S. Chie-Chien, P. Müller. Z. Anorg. Allg. Chem. 1987, 545, 69.
- [17] G. J. Synder, H. Borrmann, A. Simon. Z. Kristallogr. 1994, 209, 458.
- [18] M. Zumdick, G. Althoff, C. Röhr. Acta Crystallogr. 2001, C57, 339.
- [19] M. Boss, F. Pickhard, C. Röhr (in Vorbereitung).
- [20] E. A. Leon-Escamilla, J. D. Corbett. J. Alloys Comp. 1994, 206, L15.
- [21] M. Wendorff, C. Röhr. Z. Naturforsch. 2004, 59b, 619.
- [22] A.-V. Mudring, J. D. Corbett. J. Am. Chem. Soc. 2004, 126, 5277.
- [23] D. T. Peterson. J. Met. 1987, 39, 20.
- [24] E. A. Leon-Escamilla, J. D. Corbett. J. Solid State Chem. 2001, 159, 149.
- [25] D. Petri, C. Röhr (in Vorbereitung).
- [26] G. M. Sheldrick. Programm SHELXS-97. Universität Göttingen, 1997.
- [27] G. M. Sheldrick. Programm SHELXL-97. Universität Göttingen, 1997.
- [28] Weitere Einzelheiten zu den Kristallstrukturbestimmungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummern CSD-415032 (Ba₃Sb₄O), -415033 (Ba₈Bi₄OH₂), -415034 (Ba₈Sb₄OH₂), -415035 (Rb₂Ba₆Sb₃OH), -415036 (RbBa₄Sb₃O) angefordert werden (E-mail: crysdata-@fiz-karlsruhe.de).
- [29] V. Petricek, M. Dusek. Program JANA 2000. Institute of Physics, Academy of Science of the Czech Republic, Prague, 2000.
- [30] E. Engel, S. H. Vosko. Phys. Rev. B 1993, 47, 13164.
- [31] P. Blaha, K. Schwarz, G. K. H. Badsen, D. Krasnicka, J. Luitz. WIEN2K – An Augmented Plane Wave and Local Orbital Program for Calculating Crystal Properties. TU Wien, ISBN3-9501031-1-2, 2001.
- [32] A. Kokalj. J. Mol. Graphics Modelling 1999, 17, 176.
- [33] Siemens Industrial Automation Inc. Madison WI. SADABS: Area-Detector Absorption Correction, 1996.
- [34] Fa. STOE Darmstadt. Program X-SHAPE: Crystal Optimisation for Numerical Absorption Correction 1.01, 1996.
- [35] A. C. T. North, D. C. Phillips, F. S. Mathews. *Acta Crystallogr.* 1968, A24, 351.
- [36] M. N. Burnett, C. K. Johnson. Program ORTEP-III. ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, Tennessee USA, 1996.
- [37] M. Kroeker, L. W. Finger. Program DRAWxtl, http://www.lwfinger.net/drawxtl.