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Abstract: Inspired by the unexpected reactivity of desulfated natu-
rally occurring glucoraphenin, methods to synthesize thioimidate
N-oxides (TIO) have been devised on simple or carbohydrate tem-
plates. Either through halocyclization or under Mitsunobu condi-
tions, the starting thiohydroximates cyclized to generate efficiently
the corresponding TIO.
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Along our journey for studying sulfur-containing second-
ary metabolites, glucosinolates have been a cornerstone in
the disclosure and development of original chemical moi-
eties. Glucosinolates 1 (GL) are remarkable for their ho-
mogeneous structure: a hydrophilic β-D-glucopyrano
framework bearing an O-sulfated anomeric (Z)-thiohy-
droximate moiety connected to a fairly hydrophobic agly-
con side chain (Scheme1).1 Those molecules are heavily
involved in human and animal nutrition, having shown
impact on health status either as chemopreventive agents,
antioxidant activities2a or by inducing antinutritional ef-
fects on livestock.2b This latter aspect has led to establish-
ing standard procedures (EU official method ISO-9167-1)
for determining the amount of GL in Brassicaceae, nota-
bly in rapeseed.3 This method is based on preliminary en-
zymatic desulfation of GL, followed by HPLC analysis of
the resulting more stable desulfo-GL. We have recently
reported the unique behavior of glucoraphenin (4-methyl-
sulfinylbut-3-enyl GL) 2, whose desulfo-counterpart 3 is
readily converted into an unprecedented cyclic thioimi-
date N-oxide 4 (Scheme1).4

This can be explained by intramolecular concerted Micha-
el addition of the thiohydroximate moiety of 3 onto the vi-
nyl sulfoxide acceptor. The originality of this rare
thioimidate N-oxide function prompted us to design pre-
parative synthetic methods, as a prerequisite to evaluate
the chemical potential and reactivity scope of thioimidate
N-oxides.4b The formation of a cyclic thioimidate N-oxide
could be controlled by avoiding direct attack on an elec-
trophilic carbon. We chose to introduce a thiohydroximate
function at one end of the chain and an activable moiety at
the other end. Two possibilities for the latter were first ex-
plored: using either an alkenyl group to perform halocy-

clization or a hydroxyl group prior to nucleophilic
substitution (Scheme2).

Scheme 2 Two routes to prepare a thioimidate N-oxide

At first, we used natural alkenyl glucosinolates
(Scheme1), sinigrin (A = ethenyl), gluconapin (A = prop-
2-enyl), and epiprogoitrin (A = 1-hydroxyprop-2-enyl)
which fulfilled our requirements and gave us rapidly the
opportunity to test the terminal alkene approach. To reach
the desired thiohydroximate templates, standard enzymat-
ic desulfation was performed,3 providing the correspond-
ing desulfoglucosinolates 5a–c in quantitative yield
(Scheme3). Prior to the halocyclization step, the OH
groups of the sugar ring were masked in a two-step se-
quence: standard per-O-acetylation of 5a–c followed by
selective deprotection of the N-hydroxyimino group using
hydrazinium acetate. All reactions proceeded smoothly,

Scheme 1 Structure of glucosinolates and unexpected desulfation
of glucoraphenin 2 resulting in a cyclized TIO
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giving (70–94% yield) thiohydroximates 6a–c, which
were further submitted to the halocyclization conditions
previously established by Grigg5 and Jäger.6 On reaction
with NBS in dichloromethane, protected desulfosinigrin
6a only led to degradation products. In contrast, desulfo-
GL 6b and 6c readily underwent 5-exo-trig bromocycliza-
tion to give glucosyl thioimidate-N-oxides 7b and 7c in
57% and 43% yield, respectively. Those compounds ap-
peared rather unstable and degradation occurred at room
temperature.

Nevertheless, the above results strengthened our resolve
to develop more accessible models based on carbohydrate
frameworks.

With a view to improving the stability of our structures,
we turned to a carbohydrate template (Scheme4). Starting
with D-ribose, the acyclic aldoxime 8 could be obtained in
four steps with a 34% overall yield.6b,7 The thiohydroxi-
mate function was more smoothly introduced, compound
9 being isolated in 71% yield.8 NBS-induced halocycliza-
tion afforded the ethyl thioimidate N-oxide 10 in 77%
yield. After standing for a few days at room temperature,
compound 10 also revealed some instability, whereas no
major degradation was observed when kept at –18 °C:
thus a carbohydrate template approach is favorable in the
synthesis of TIO.

Our second path to generate TIO involved nucleophilic
substitution of an activated terminal alcohol. Mono-O-
silylation of butane-1,4-diol (11) followed by Swern oxi-
dation then aldoxime formation afforded in 42% yield
precursor 12,9 which could be converted into the ethyl

thiohydroximate 13a albeit in relatively poor yield
(Scheme5).10

We thus moved to a new sequence in order to shorten the
process. A range of four lactones, γ-butyrolactone (14a),
γ-valerolactone (14b), δ-valerolactone (14c), and e-capro-
lactone (14d), was selected for conversion into hydroxam-
ic acids, which were readily protected in the form of bis-
O-silylated derivatives 15 (Scheme6). The overall yields
(44–57%, Table1) are in a reasonable range, taking into

Scheme 3 TIO derived from desulfoglucosinolates through halocyclization
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account the sensitivity of O-TBDMS-protected hydrox-
amic acids to silica gel chromatography. The following
critical synthetic step to deliver ethyl thiohydroximates 13
was performed using a protocol developed by Carreira et
al.11 to generate nitrile oxides. Condensation was effected
in a two-step sequence: formation of the triflated hydrox-
imates, then condensation with ethanethiol under basic
conditions. Obtained in ca. 80% yield, the intermediate O-
silylated thiohydroximates were then deprotected using
standard TBAF conditions, and the thiohydroximate pre-
cursors 13 were obtained in 65–75% yields. It can be not-
ed from example 13a how much shorter and more
efficient this last sequence is.

Scheme 6 The nucleophilic displacement approach (pathway 2)

Our major concern being to prevent hydrolysis of the cy-
clic TIO into an N-hydroxylactam, we postulated that a
mild neutral reaction protocol might be appropriate. Mit-
sunobu conditions were thus applied to thiohydroximates
13 and the internal nucleophilic displacement produced
interesting results. While six- or seven-membered rings
did not form (neither 16c nor 16d were detected in the re-
action medium), the five-membered ring TIO 16a and 16b
were obtained in 35% and 79% yield, respectively. This
dramatic improvement in reactivity might be attributed to
a stabilization effect related to the ring size; in addition,
the considerable yield increase observed from 16a to 16b
is likely to derive from some transition-state stabilization
effect in the methyl-branched precursor 13b.12

The above synthetic approach to TIO was further extend-
ed to carbohydrate-type templates, to increase the ring-

closure yield and stability of the TIO. We have explored
in parallel both synthetic sequences previously examined
to access a suitable template, carrying a thiohydroximate
at one end and a free alcohol at the other end. The lactone
approach starting with 2,3-O-isopropylidene-D-erythro-
nolactone proved unsuccessful, as we were unable to iso-
late the hydroxamic acid whatever the conditions used.
On the contrary, easy one-pot conversion of 2,3-O-isopro-
pylidene-L-erythrose (17)13 into the aldoxime 186b,14 al-
lowed a four-step, efficient access (67% overall yield) to
the thiohydroximate 19 (Scheme7).15 Final de-O-silyla-
tion proved more efficient using tetrabutylammonium tet-
rafluoroborate (TBAT) instead of standard TBAF. Two
different ring-closing procedures were then applied.
Method A involved mesyl activation of the primary alco-
hol prior to application of basic conditions to induce in-
tramolecular cyclization. Sodium hydrogencarbonate
proved inefficient, leading to rapid hydrolysis to afford
the hydroxylactam 20 in 70% yield. Sodium hydroxide al-
lowed formation of TIO 21 as the minor product (20%
yield) together with 20 (50% yield). Method B used the
Mitsunobu procedure: under those conditions, the expect-
ed TIO 21 was obtained in nearly quantitative yield.16

Scheme 7 The nucleophilic displacement approach (pathway 3)

In conclusion, initially inspired by a standard analytical
protocol used for determining the glucosinolate content in
plants, we have explored two approaches for the synthesis
of thioimidate N-oxides. The halocyclization studied re-
vealed some stability problems, when using complex (glu-
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The intramolecular nucleophilic substitution approach
also proved inadequate when applied to simple frame-
works, whereas the use of a carbohydrate scaffold com-
bined with an application of the Mitsunobu methodology
proved most efficient in yielding TIO 21. We have thus
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disclosed two original approaches to introduce the rare
thioimidate N-oxide function, which is under current
study in our laboratory.17
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