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Abstract: The paper highlights an efficient methodology based on consecutive radical reaction for the preparation of 

cyclonucleoside derivatives. The reactions were performed in organic and aqueous media, using common and efficient 

free radical hydrogen donors in the range of innovative and conventional initiation conditions to afford good to excellent 

yields of corresponding cyclonucleosides. The mechanistic aspects of the transformations are also addressed. 
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Cyclopurine and cyclopyrimidine lesions are observed 
among the decomposition products of DNA, when exposed 
to ionizing radiation or to some antitumor agents [1]. 
Recently, several examples of independent formation of 
5’,6-cyclo-5,6-dihydrothymidine and 5’,8-cyclo-2’-
deoxyadenosine have been reported [2]. The unique 
structural features of the cyclo-nucleosides incorporate an 
additional base-sugar linkage between the C6 position of 
pyrimidine or C8 position of purine and the C5’ position of 
the 2’-deoxyribose [3]. Conformationally fixed nucleosides 
analogues are a unique class of compounds that can be 
used as a tool for investigating steric interactions between 
nucleosides or nucleotides and the enzymes that utilize 
them [4] (Fig. 1). 

To date, various modified 2-deoxynucleosides 
containing specific DNA lesions and their incorporation 
into a defined sequence of oligonucleotides have been an 
outstanding approach to investigate the biological 
consequences. Synthetic oligonucleotides that contain the 
modified nucleosides [5-7] as well as similar cyclopurine 
[7] and cyclopyrimidine [8] moieties were also prepared. 
Recent studies have shown that the chemical synthesis of  
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these lesions and their incorporation on specific sites of DNA 
are of considerable importance in order to investigate, in 
detail, the biochemical and biophysical features of the double 
helix damage [6, 9, 10]. 

Several key contributions in the area have recently reported 
synthetically usefull cascade methodologies for effective 
generation of the cyclonucleosides in order obtain a general 
procedure for the preparation of some of the diastereoisomers 
of the cyclonucleosides as well as try to overcome the 
limitations of the existing approaches, due to low yield 
multiple-step synthesis, problematic chromatographic and 
separation properties [6-10]. 

Photolysis is one of the most appropriate and widely used 
methods of generating nucleosidyl radicals, with numerous 

reports in the literature reported of sources and set-ups for the 
generation, however most of the methods require specialized 
experimental setups, glassware and rather expensive light 
sources for the desired transformations.  

In order to overcome these problems, we decided to 
investigate the use of a black light, which has a maximum 
peak wavelength at 352nm, and performs effectively in a 
broad range of free radical transformations as reported by Ryu 
et al. [10] and is applicable to generation of C5’ nucleosidyl 
purine and pyrimidyl radicals in organic and aqueous media in 
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Fig. (1). Structure of C-Cyclonucleosides. 
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the presence of derivatives of hypophosphorous acids in 
organic and aqueous media.  

In this paper we report an independent generation of 
C5’ radical precursor of 5’-bromouridine as radical 
precursors for C5’ radical generation under black light 
initiation (Scheme 1). 

RESULTS AND DISCUSSION 

Commercially available nucleosides such as uridine, 
adenosine and quanosine were reacted with freshly 
prepared Appel bromide in CH2Cl2 in order to prepare 
corresponding 5’-Bromonucleosides derivatives. The 
compounds were prepared in moderate to good yields. The 
5’- bromonucleoside derivatives were purified on the C18 
HPLC chromatography column and identified through 
comparison of spectral data reported in the literature. 
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Scheme 2. Preparation of 5’bromonucleosides. 

Following our initial plan, we examined tandem radical 
1,6-HAT-cyclization of 5’-bromouridine in the presence of 
a. TMS3SiH, b. H3PO2/Bu4N

+
Cl

- 
c. Bu3SnH and in benzene 

and water under black light initiation, Et3B/air and 
AIBN/80

o
C conditions and the results are summarized in 

Scheme 3 and Table 1. 

Major reaction products of all the transformations 
summarized in the table are indicative of the intra-
molecular radical 6-exo-trig reaction being predominant, 
suggesting that intermolecular hydrogen transfer reaction is 
a much slower process in comparison to intra-molecular 

radical 6- exo-trig cascade reaction. However in the case of 
Bu3SnH, the yield of product R (minor product) accounts for 
30% in the final product mixture, which is consistent with the 
difference in the hydrogen donor ability of Bu3SnH vs 
TMS3SiH vs H3PO2/Bu4N

+
Cl

-
,
 
highlighting the potential for 

further development of the methodology. This observation is 
consistent with the previous reports by Navacchia, 
Chatgilialoglu and Cadet in there pioneering work on the 
understanding of the mechanistic aspects of C5’ radicals.[11, 
12]  

The proposed mechanism for the transformation in 
question is represented in Scheme 4. Initiator decomposes to 
abstract a hydrogen atom from the radical mediator such as 
((TMS)3SiH, H3PO2 or Bu3SnH), which generates a 
corresponding silyl, phosphorous centered or stannyl radical. 
The latter abstracts the halogen atom to form a C5’ radical. In 
the case of ((TMS)3SiH, H3PO2 or Bu3SnH) as hydrogen 
donors, C5’radical undergoes a 6-exo-trig cyclization adding 
to the double bond of the base. The resulting C5-radical 
abstracts hydrogen from the hydrogen donor, yielding a cyclo-
compound, while completing the radical chain. The minor 
product, which is the product of the direct reduction is also 
formed due to much less but still competitive H-abstraction 
reaction and is observed in all transformations in different 
amounts as pointed out in Table 1. 

CONCLUSION 

We have disclosed a short and efficient synthetic sequence, 
based on consecutive radical reactions in aqueous media, for 
the preparation of cyclonucleosides. The C5’ radicals, 
generated by tandem homolytic bond cleavage followed by 
carbon-carbon bond formation are the key intermediates in 
these transformations. The chemical biology approach used for 
studying purine 5’,8- cyclonucleoside lesions has brought 
significant achievements so far [13]. The site-specific 
generation of sugar radicals has been the key approach for a 
better understanding of chemical molecular mechanisms 
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Scheme 1. General synthetic approaches and methodology. 
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Scheme 3. Radical cyclization reaction of C5’-BromoUridine in benzene and water under various initiation conditions and in the presence of 

free radical hydrogen donors. 
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occurring at the biological level. The chemistry of the C5’ 
radicals in the purine nucleosides is fairly well understood 
and it is now clear that the fate of the C5’ radicals is 
partitioned between uni-molecular processes (cyclizations) 
and bimolecular processes (reactions with oxygen, thiols, 
or oxidants) [13]. Therefore, the local concentration of 
these components and pH are extremely important in 
selecting the preferred pathway. Work is currently on the 
way to gain further insight into these important 
transformations at a molecular level under aerobic and 
anaerobic conditions. 
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Entry H-Donor Initiation Solvent % yield C:R 
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2 

3 

4 

5 
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Benzene 
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H2O 
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