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Hexacoordinate, high-spin iron(II) complexes with different isoindoline-derivative ligands have been
prepared and characterized. The Fe3+/Fe2+ redox transition is reversible in each case, but the E1/2 values vary
in a ~400 mV range depending on the ligand. SOD-like activity of the complexes was determined by indirect
methods with cytochrome c, and nitroblue tetrazolium indicator at pH 7.6. The measured activities correlate
with the redox potentials for the Fe3+/Fe2+ couples. The results indicate that the superoxide dismutation
takes place via an inner-sphere mechanism at the iron site.
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Superoxide dismutase (SOD) enzymes [1] act as a primary defense
system against oxidative damage in living species by accelerating the
dismutation of superoxide during the catalytic cycle shown in Eq. (1).

Life forms exhibiting SOD activity contain this structurally versatile
enzyme with various metal cofactors: Fe [2], Cu/Zn [3], Mn [4] and
NiSODs [5] are known. Permanent malfunction of such enzymes may
contribute to chronic diseases such as Alzheimer's, Parkinson's, or
inflammations, due to overexposing the cells to superoxide and to
secondary reactive oxygen species derived from superoxide [6]. It is
widely acknowledged, that the redox potential of the metal cofactor is
an important determinant of the SOD activity. However, only some
studies focus on systematically modified ligand series which are
applied to fine-tune the redox properties of the chelated metal ion
while providing unchanged stability for the complexes [7]. Here we
report the characterization of some iron(II) complexes with a series of
iminoisoindoline-derivative 3N-donor ligands (Scheme 1) and their
SOD-like activity with respect to their redox chemistry. The ligands in
Scheme 1 were chosen because of their strong chelating ability (see
discussion later) and uncomplicated synthesis. To be noted, that these
isoindoline-derivatives show eye-catching similarities with the very
popular porphyrins, too: the 3N-donor set is planar, resembling the 3/
4 part of a full porphyrin ring, they exhibit informative electronic
spectra that are rich in bands, and the extended π-delocalisation
within the molecule makes them relatively resistant to chemical
changes.

The known 1,3-bis(2′-pyridylimino)isoindoline [8] (HL2,
Scheme 1) has been widely used in enzyme models with copper [9],
manganese [10], cobalt [11] and iron [12]. We synthesized derivatives
with various side arms on the imine moiety (HL1, HL3–HL5) [13]. For
HL2, two ways of metal ion chelation have been demonstrated. It may
act as a tridentate ligand in its neutral [14], or in its deprotonated,
anionic form [12,15], due to tautomerism according to Scheme 1. It
may be presumed as a general feature for each derivative presented
here. In the free ligands, however, the tautomeric equilibrium is
shifted toward the isomer, in which the dissociable proton is located
on the isoindoline nitrogen. Indeed, as it is seen on the structure of HL4
(Fig. 1, Table 1) [16], strong interactions between N1, N3, N6 and H1
stabilise the symmetric diimine isomer, thus the molecule adopts
planar geometry in the crystalline form.

The bond distances between the carbon and nitrogen atoms are
typical for a conjugated π-system. The double bonds are found
between the C1–N2 and C8–N5 atom pairs (~1.29 Å) in the diimine-
isoindoline moiety, and between the C9–N3 and C17–N6 atom pairs
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Scheme 1. Tautomerism of the ligands and the possible metal chelating modes.
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(~1.32 Å) in the benzimidazole heterocycles. Due to the extended
conjugation of the π-bonds within the molecule, the UV–vis
absorption spectra of the ligands exhibit high intensity, and relatively
low energy, multiple π–π* bands in the 360–500 nm region (Table 2).

The bis-chelate complexes [FeII(L1)2] (1), [FeII(L3)2] (3), [FeII(L4)2]
(4), [FeII(L5)2] (5) reported here, bearing octahedral geometry were
prepared according to Eq. (2), analogously to a reported procedure for
[FeII(L2)2] (2) [12,18].

The UV–vis absorption maxima of 1–5 (Table 2) that are found
between 350 and 460 nm are attributed to the π–π* transitions of the
Fig. 1. Molecular structure of HL4. Ellipsoids are plotted at the 50% probability. Selected
bond distances (Å) and angles (°): C1–N1 1.3843(18), C8–N1 1.3800(19), C1–N2
1.2906(19), C8–N5 1.2939(19), C9–N2 1.3767(19), C17–N5 1.3799(18), C17–N6 1.3235
(18), C9–N3 1.3264(18), N3–H1 2.106, N6–H1 2.112, N1–C1–N2 173.68(6), C1–N1–C8
85.80(6), N1–C8–N5 90.77(7), C1–N2–C9 169.62(6), C8–N5–C17 98.60(7), N1–H1–N6
122.20, and N1–H1–N3 122.29.
coordinated ligands, whereas lower energy bands between 440 and
500 nm, are tentatively rendered to charge transfer transitions from
the iron(II) ion to the ligand. In the infrared region the free isoindoline
ligands exhibit intense bands in the 1600–1660 cm−1 region that can
be assigned as coupled vC=N vibrations. Complexes containing the
deprotonated ligands on the other hand show weak band(s) above
1600 cm−1 and stronger ones between 1600 and 1500 cm−1.

The one-electron oxidized analogue of 1, [FeIII(L1)2](CF3SO3).

CH3CN (1ox·CH3CN) was synthesized under dioxygen atmosphere
[18] in order to compare the SOD-like activity of the iron(II) and iron
(III) forms (vide infra). Besides the spectroscopic characterization, X-
ray structural analysis of the compound was also accomplished. The
structure of 1ox (Fig. 2a) shows an almost distortion-free octahedral
geometry of the six nitrogen donor atoms around the iron(III) center.
The two Nind atoms (N1 and N1A) are situated in the trans position to
each other, closer to the iron center than the thiazolyl nitrogens by
~0.05 Å. The planes of the coordinated ligand moieties are nearly
perpendicular to each other. The Fe–N bond distances in 1ox (~1.95
and 2.00 Å) are shorter than in the analogous iron(II) complexes (2.07
and 2.27 Å in avg. for 2) [12], and (2.05 and 2.15 Å in avg. for 4).

The iron(II) complex, 4 was also structurally characterized
(Fig. 2b). The two Fe–Nind bond distances (Fe1–N1, 2.0568(17) and
Fe1–N1A, 2.0529(17)) are close to the corresponding values for 2
(avg. 2.07 Å). The hexacoordinate iron(II) resides in the center of a
strongly distorted octahedron in contrast with that of 2, or 1ox. In the
structure of 4, a helical twist of the two ligand planes is seen, causing a
significant distortion of the octahedral geometry. This occurs, because
the shorter Fe–Nbim distances compared to the Fe–Npy distances in 2
(the difference is ~0.12 Å) bring the aromatic hydrogens in the 5′-
position of the benzimidazolyl groups very close (~2.5 Å) to the
indoline-plane of the other ligand, and the steric hinderance impedes
the settle of an undistorted geometry.

Electrochemical properties of the complex series were investigat-
ed with cyclic voltammetry in DMF solution. All compounds show one
reversible, one-electron redox wave in the plotted potential range
(Fig. 3). This is attributed to the Fe3+/Fe2+ redox transition, and spans
a 423 mV potential range from 1 to 5 (Table 3). To make a compound
thermodynamically competent in the SOD-like reaction, the redox
potential of the Fe3+/Fe2+ couple should be, as encountered in SODs,
between the potential of the two couples O2/O2

− and O2
−/H2O2 that is,

at pH=7, −0.40 V and +0.65 V vs. SCE, respectively [7c]. All E1/2
values for the iron(II) complexes fall into this range. The process is
reversible with very similar Ea and Ec peak separations for each
complex (~100 mV), similarly to the ferrocene internal standard.
Although a possible explanation for this relatively wide potential
range could be the change of the spin-state of the iron(II) ion
depending on the coordinating ligand, based on the available
Mössbauer data for the two structurally characterized complexes, 2
[12] and 4 (zero field isomer shifts are 1.018 and 1.12 mms−1, and
quadrupole splittings are 1.975 and 1.32 mms−1 at 80 K, respective-
ly), these iron(II) complexes are high-spin. Assuming that one of the
two eg electrons is removed during the oxidation step, the relative
energy of these electrons throughout the series can be the governing
factor for the changes in the E1/2. The relative energy of the eg set
should follow the tendencies in the ligand-field strength, as a result
the observed increase in the E1/2 from 1 to 5 allows us to suppose a
decrease in the ligand-field. In other words, the stronger the ligand-
field effect, the easier it is to oxidize the iron(II) center. The notable
difference between the bond distances measured for 2 and 4 is in
accordance with this explanation.

Reactivity of 1–5 and 1ox with superoxide anion was investigated in
aqueous HEPES buffer following themodifiedMcCord–Fridovich assay [19]
in the presence of catalase enzyme [20]. Complexes 1–5 and 1ox inhibit the
reduction of NBT [21]. Since the IC50 concentrations are proportional to the
concentration and type of indicator, we calculated the apparent kcat rate
constants as kcat=kI[I]/IC50 (where kI is 5.94×104 M−1 s−1, when I=NBT
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Table 1
Crystal structure details for 1ox·CH3CN, 4 and HL4.

1ox·CH3CN 4 HL4

Chemical formula C13H19F3FeN11O3S5 C48H35F3FeN14 C24H19N3

Formula weight 866.77 863.75 405.46
Space group Manoclinic, P 21/c Triclinic, P-1 Monoclinic, P 21/n
a, Å 14.0476(14) 13.0522(19) 8.4949(2)
b, Å 20.5817(17) 14.261(3) 16.9348(3)
c, Å 12.2870(10) 14.691(2) 13.946(3)
α, deg 90 63.983(6) 90
β, deg 103.000(2) 74.430(6) 95.758(1)
γ, deg 90 70.724(6) 90
V, Å3 3461.4(5) 2294.9(7) 1996.24(7)
Z 4 2 4
Dcalc, mg m−3 1.663 1.250 1.349
Temperature, K 296(2) 293(2) 203(2)
Unique reflections 7926 10,065 5085
dataN 2σ parameters/
restraints

4999/507/0 7964/572/0 3818/282/0

R1
a [F2N2σ (F2)],
wR2

b (F2)
0.0478, 0. 1060 0.0495, 0.1377 0.0496, 0.1125

Goodness of fit 1.030 1.043 1.083

a R1 = ð∑ Foj j � Fcj j Þ= ð∑���
���Fo

���
���Þ.

b wR2 = ∑w Fo2 � Fc2
� �2∑w Fo2

� �2h i1=2
,w=1/σ2(Fo2)+(AP)2+BP, where P[Fo2+2

(Fo2+2(Fc2)]/3,A=0.0562, 0.0978and0.0532,B=0, 0and0.7956 for1ox.CH3CN,4andHL4,

respectively.
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[22] and 2.0×105 M−1 s−1 when I=cytochrome c [23]) for comparisons
with the literature data (Table 3). The [FeII(Ln)2] complexes show activities
comparable to those of iron(II) species containing TPEN-derivatives [7a].
Although positive indirect tests applied here do not provide conclusive
evidence on the real catalytic activity of putative SODmimics, testing both
the oxidized and reduced forms is a good indication that the complexes can
indeed act as catalysts in the dismutation of superoxide anion. With 1ox,
which is the iron(III) analogue of 1 similar activity wasmeasuredwith that
of 1 (Table 3). Therefore we propose, that these complexes may be
considered as catalysts of superoxide anion dismutation.

The determined kcat (also the IC50 values) for 1–5 correlate with the
observed EFe

3+
/Fe

2+ potentials [24] (Fig. 4). Similar correlations with a
positive slope have been described previously for manganese(III)- and
iron(III)-porphyrins [7]. Increase in the SOD-like activitywith the redox
potential becomes explainable if one assumes that the reduction of the
Table 2
UV-vis absorption data of the free ligands and the complexes 1–5 in DMF.

Ligand π–π* CT bands of the free
ligands λmax/nm (log ε)

[Fe(L)2] λmax/nm (log ε) Ref.

HL1 485 (3.18) 788 (4.01)
448 (3.86) 463 (4.43)
420 (4.05) 435 (4.50) This work
396 (4.01) 404 (4.53)
374 (3.94) 346 (4.30)

HL2 410 (3.99) 440 (4.58)
386 (4.23) 410 (4.81) 14a

366 (4.19) 390 (4.75) 12b

HL3 408 (4.11) 439 (4.50)
385 (4.29) 411 (4.65) 8a

366 (4.24) 392 (4.57) This workb

HL4 478 (4.11) 487 (4.45)
447 (4.35) 454 (4.62)
420 (4.33) 433 (4.60) This work
393 (4.38) 349 (4.55)
373 (4.39)

HL5 470 (4.06) 493 (4.28)
440 (4.30) 453 (4.49) 10a

413 (4.31) 389 (4.40) This workb

388 (4.35) 367 (4.45)
369 (4.37)

a Ligand.
b Complex.

Fig. 2. Molecular structures of a) 1ox·CH3CN and b) 4. Selected bond distances (Å) and
angles (°) for 1ox·CH3CN: Fe1–N1 1.946(2), Fe1–N1A 1.952(2), Fe1–N2 2.003(2), Fe1–N2A
2.005(2), Fe1–N3 2.003(2), Fe1–N3A 1.997(2), N1–Fe1–N1A 178.70(10), N2–Fe1–N3
175.99(10), N3A–Fe1–N2A 177.98(10), N1–Fe1–N2 89.23(9), N2–Fe1–N2A 92.06(9), N1–
Fe1–N2A 89.62(9); and for 4: Fe1–N1 2.0568(17), Fe1–N1A 2.0529(17), Fe1–N4 2.1356
(17), Fe1–N4A 2.1471(17), Fe1–N6 2.1296(17), Fe1–N6A 2.1318(17), N1–Fe1–N1A 173.68
(6), N1–Fe1–N4 85.80(6), N1–Fe1–N6 90.77(7), N6–Fe1–N6A 169.62(6), N1A–Fe1–N4
98.60(7), N4–Fe1–N4A 168.40(7). Solvent molecules and hydrogen atoms are removed for
clarity. The CF3SO3

− counterion and some ligands are plotted as spheres for viewing
purposes. Ellipsoids are plotted at the 50% probability.
iron(III) form is the rate-limiting step. On the basis of our results,
discerning between an inner-sphere, or an outer-sphere redox
mechanism is uncertain. However, in the case of the latter, in which
superoxide anion does not coordinate to the metal center, one would
expect that those complexes will show higher activity, which have
redox potentials close to the midway value between the two potential
values for the superoxide anion as a result of an equal thermodynamic
driving force for both the reduction and the oxidation steps [7f]. In
addition, it was shown for monohydroxoiron(III) and aquomanganese
(III) porphyrins that in case of an outer-sphere mechanism, a 120 mV
increase in E1/2 imparts a roughly 10-fold increase in kcat, in accordance
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Fig. 3. CVs of compounds 1–5 (0.5–1.0 mM) taken at a scan rate of 100 mVs−1 using a
GCE working electrode, Pt-wire auxiliary electrode, and a Ag/AgCl reference electrode
in DMF. Potentials are referenced to the ferrocene/ferrocenium couple.

Fig. 4. Dependence of the measured SOD-like activity of 1–5 on the E°′
Fe3+=Fe2+ values.

(Potentials are plotted vs. SCE. EFc+/Fc vs. SCEwas determined experimentally to be+500±
10mV in our system andwas added to the experimentally determined E°′

Fe3+=Fe2+ values to
gain the above plot.)
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with the Marcus equation for outer-sphere electron-transfer reactions
[7b]. With our complexes the observed change in kcat is only 30% per
~120 mV. Based on these considerations, we think the inner-sphere
mechanism ismore plausible for the redox steps according to Eq. (1) for
1–5. To further elucidate this question, thiocyanate was added to a
solution of compound 2 in 5:1 ratio, because this small ligand was
investigated in heptacoordinate iron(II) complexes earlier [25]. In the
UV–vis absorption spectrum of the mixture a new band occurs at
460 nm [26] besides the unchanged bands of 2 indicating the presence
of a heptacoordinate species. This emphasizes that an additional small,
anionic ligand like SCN− may add to the iron(II) center.

Cross-reactions (that could modify the observed IC50 values)
between the redox indicator NBT and the tested high-spin iron
complexes could be excluded based on our experiments. Therefore
the observed linear correlation between the redox potential of the
complexes and their SOD-like activity indicates that the rate
determining step in the superoxide dismutation is the reduction of
the metal center. Formation of a heptacoordinate transition state by
the addition of superoxide to the octahedral complexes is a plausible
mechanism based on our tests with SCN−.
Table 3
Apparent rate constants and redox potentials of iron complexes exhibiting SOD-like
activity.

Comp1exa kcat (106M−1s−1)b E°′ox/redc (V) Ref.

1 5.00±0.35 (4.62±0.32) 0.555 This work
1ox 5.28±0.30
2 3.83±0.20 0.319 This work
3 3.62±0.20 0.265 This work
4 3.06±0.15 (3.28±0.15) 0.205 This work
5 2.50±0.22 (2.26±0.24) 0.123 This work
FeCl2 0.21±0.05 This work
[FeIIIBIG)Cl2] 0.041 [7c]
[FeII(TPAA] 2.15 [24]
[FeII(6MeTPEN)]2+ 3.5 0.640 [7a]
[FeII(TPEN]2+ 14.0 0.590 [7a]
[FeII((4Me)4TPEN)]2+ 35.0 0.510 [7a]
[FeII((4MeO)4TPEN]2+ 70.0 0.425 [7a]
Fe-SOD ~220d 0.020 [27]
Cu,Zn-SOD ~2000d 0.160 [6]
cob(II)alamin 700 [28]

aLigand abbreviations: BIG, N,N-bis[1-methyl-2-imidazolyl)methyl] glycinate TPAA. tris{2-
[N-(2-pyridylmethyl)amino]ethyl}amine; 6MeTPEN,N-(6-methyl-2-pyridy1emrthyl)-N,N′,
N′-(2-pyridylmethyl)ethylenediamine, TPEN, N ,N,N′ ,N′-(2-pyridylmethyl)
ethylenediamine; (4Me)4TPEN, N,N,N′,N′-(4-methoxy-2-pyridylmethyl)ethylenediamine;
(4MeO)4TPEN, N,N,N′,N′-(4-methoxy-2-pyridylmethyl)ethylene-diamine. bValues in
parenthesis are from the cytochrome assays.cvs. SCE. dkcat/Km values.
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