

Available online at www.sciencedirect.com

JOURNAL OF CATALYSIS

Journal of Catalysis 249 (2007) 397-400

www.elsevier.com/locate/jcat

Molybdenum phosphide, a new hydrazine decomposition catalyst: Microcalorimetry and FTIR studies

Research Note

Ruihua Cheng, Yuying Shu, Mingyuan Zheng, Lin Li, Jun Sun, Xiaodong Wang, Tao Zhang*

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

Received 5 January 2007; revised 5 April 2007; accepted 8 April 2007

Available online 11 June 2007

Abstract

Unsupported and Al_2O_3 -supported molybdenum phosphides (MoP) were tested as catalysts for the decomposition of hydrazine (N₂H₄), in comparison with previously studied Mo₂N catalysts. The results showed that the activity increased with MoP loading on the MoP/Al₂O₃ catalysts and that the supported MoP catalysts were more stable during hydrazine decomposition compared with the supported Mo₂N catalysts. FTIR results indicated that N₂H₄ decomposed on the Mo sites on the MoP, similar to the case of Mo₂N. FTIR and microcalorimetric adsorption measurements showed that NH₃ was adsorbed only moderately on the MoP catalyst, giving it better catalytic stability than the Mo₂N, for which strong adsorption of NH₃ blocked the active sites and led to a sharp decrease in activity.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Hydrazine decomposition; Molybdenum phosphide; Molybdenum nitride; Microcalorimetry; FTIR spectroscopy

1. Introduction

The catalytic decomposition of N_2H_4 is an important reaction used in microthrusters for satellite attitude control and maneuvering [1,2]. The conventional catalyst used in this reaction is Ir/Al₂O₃. However, due to its high price and relative scarcity, considerable research has been focused on the development of low-cost and widely available substitutes. It is known that transition metal nitrides and carbides catalyze many reactions that are typically catalyzed by noble metals [3–5]. Our previous work showed that Al₂O₃-supported Mo₂C and Mo₂N, with high mechanical strength, were as active as Ir/Al₂O₃ for N₂H₄ decomposition in a 10 N monopropellant thruster [6–9].

MoP is a metallic conductor with properties similar to intermetallic compounds. Some reports have been published concerning the use of MoP in hydroprocessing reactions [10–15]. Recently, we successfully synthesized a high-surface area MoP by combining citric acid with a temperature-programmed reduction (CA-TPR) method, and found that MoP also was active for N₂H₄ decomposition [16]. In the present work, we studied

E-mail address: taozhang@dicp.ac.cn (T. Zhang).

the catalytic performance and adsorption properties of the MoP in comparison with Mo_2N , with the aim of revealing the effect of metalloids on Mo atoms in N_2H_4 decomposition.

2. Experimental

2.1. Catalyst preparation

Unsupported MoP was prepared according to the procedure of Stinner et al. [11]. Stoichiometric amounts of $(NH_4)_6Mo_7$ - $O_{24}\cdot 4H_2O$ and $(NH_4)_2HPO_4$ were dissolved in deionized water. After water evaporation, the white solid was further dried at 393 K for 12 h and calcined in air at 773 K for 5 h. The sample was then reduced with H₂ at 923 K for 2 h, and finally passivated in a flow of 1% O_2/N_2 for 2 h at room temperature.

MoP/Al₂O₃ catalysts with loadings of 8, 13, and 20 wt% were synthesized by impregnating γ -Al₂O₃ support with an aqueous solution of (NH₄)₆Mo₇O₂₄·4H₂O and (NH₄)₂HPO₄. To obtain 20 wt% MoP loading, double impregnations were used. After drying and calcining, the samples were reduced at 1123 K for 2 h and then passivated in a flow of 1% O₂/N₂ for 2 h at room temperature.

⁶ Corresponding author. Fax: +86 411 84691570.

^{0021-9517/\$ –} see front matter @ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2007.04.007

Unsupported Mo_2N and supported Mo_2N/Al_2O_3 were prepared by the temperature-programmed reaction of MoO_3 and MoO_3/Al_2O_3 (8.7 wt%) with NH₃ [8].

2.2. Catalyst tests

Catalytic tests were performed at atmospheric pressure in a microreactor [8]. A catalyst sample (40 mg for unsupported catalysts and 50 mg for supported catalysts) was diluted with silica and placed in the quartz reactor. Before the reaction, the catalyst was prereduced in H₂ at 923 K (for MoP) or 973 K (for MoP/Al₂O₃) for 0.5 h. Similarly, the unsupported Mo₂N and Mo₂N/Al₂O₃ were renitrided with NH₃ at 973 K for 0.5 h before the activity tests. The feed gas N₂H₄/Ar (3% V/V) was introduced into the reactor at a rate of 85 ml min⁻¹. N₂H₄ conversion and H₂ selectivity were used to evaluate the catalytic performance [17].

2.3. NH₃ microcalorimetry

The microcalorimetry of NH_3 adsorption was performed at 423 K using a Calvet-type microcalorimeter (Setaram BT 2.15) [18]. Before measurements, the samples were pretreated following the same procedures used for reaction tests. The samples were outgassed at the final temperature for 0.5 h, and then cooled to room temperature to allow sample transference. The microcalorimetric data were collected by successively introducing doses of NH_3 to the sample. The dead volume of the volumetric apparatus was carefully calibrated by He expansion.

2.4. FTIR studies

FTIR spectra were collected at room temperature with a Bruker Equinox 55 spectrometer at a resolution of 4 cm⁻¹ using 64 scans. Before adsorption, the samples were pretreated following the same procedures used for the reaction tests, then cooled to room temperature and evacuated to about 10^{-3} Pa. The probing gases, including N₂H₄, CO, and NH₃, were purified with liquid nitrogen. N₂H₄ was dosed from a variable leak valve.

3. Results and discussion

3.1. Reactivity studies

Fig. 1 shows the N₂H₄ conversions at 303 K with time on stream over the various MoP and Mo₂N catalysts. The conversion of N₂H₄ over the unsupported MoP was >90% initially and gradually decreased with time on stream, to 85% after a 170-min run. It was 100% on the unsupported Mo₂N in the initial 20 min, but rapidly decreased to <80% after 170 min on stream. For the supported MoP catalysts, N₂H₄ conversion was enhanced with increased MoP loading and remained stable during the reaction period. For the Al₂O₃-supported Mo₂N catalyst, rapid deactivation behavior was observed during an 80-min run, indicating the supported MoP catalysts have better stability than the supported Mo₂N in N₂H₄ decomposition reaction.

Fig. 1. N_2H_4 conversions at 303 K with the time on stream over supported and unsupported MoP and Mo₂N catalysts.

Fig. 2. Variation in H_2 selectivities with the reaction temperature over MoP, Mo_2N , and MoP/Al_2O_3 catalysts.

Fig. 2 presents the H_2 selectivities with the reaction temperature over the different catalysts. The selectivities on all catalysts were low below 673 K. With increasing the reaction temperature, the generated NH₃ could be further dissociated, leading to the production of H_2 [8,9,17]. The unsupported Mo₂N exhibited the highest H_2 selectivities among all the investigated samples, suggesting that Mo₂N is a good catalyst for NH₃ decomposition [3]. In contrast to Mo₂N, the unsupported MoP shows the lowest H_2 selectivity, indicating that it is a poor catalyst for NH₃ decomposition. H_2 selectivity was improved when supporting MoP onto Al₂O₃, and also increased with increasing MoP loading.

Fig. 3. Differential heats of $\rm NH_3$ adsorption versus uptake on MoP and $\rm Mo_2N$ at 423 K.

3.2. NH₃ adsorption microcalorimetry

Because NH₃ is both a product and intermediate in hydrazine decomposition [2], it can be used as a probe to study the active sites of MoP or Mo₂N catalysts. Fig. 3 shows the differential heats versus the NH₃ adsorption uptake for MoP and Mo₂N at 423 K. For MoP, the heat of NH₃ adsorption was 130 kJ mol⁻¹ initially and dropped dramatically to the range of physical adsorption (<40 kJ mol⁻¹). The trend of continuously decreasing differential heat indicates a highly heterogeneous surface of the MoP. The initial adsorption heat of NH₃ on Mo₂N was as high as 148 kJ mol⁻¹, and the differential heat curve showed a plateau above 130 kJ mol⁻¹. These findings indicate that the NH₃ adsorption is much stronger on Mo₂N than on MoP.

The differences in NH₃ adsorption on MoP and Mo₂N shown in the microcalorimetric experiments could be due to the difference in surface sites. A 3p-group element should not be as strong as a 2p-group element as an electron acceptor. A theoretical study based on density functional theory (DFT) has shown that the Mo–P bond in MoP is less ionic than the Mo–N bond in Mo₂N [14]. Thus, the Mo in Mo₂N should have stronger Lewis acidity than the Mo in MoP, resulting in stronger adsorption of NH₃ on Mo₂N. For the decomposition of N₂H₄, such strongly bound NH₃ and/or nitrogen fragments left on the catalyst surface may poison the catalyst, possibly accounting for the declining activity of Mo₂N. The relatively weak NH₃ adsorption on MoP might be the reason for its low H₂ selectivity in the decomposition of N₂H₄.

3.3. FTIR

To gain insight into the nature of the N_2H_4 decomposition on the MoP catalysts and shed light on the difference between MoP and Mo₂N catalysts, FTIR studies were carried out with CO as a probe molecule and N_2H_4 as a reactant molecule.

Fig. 4. IR spectra of (a) NH₃ adsorption on MoP/Al₂O₃; N₂H₄ adsorption on (b) MoP/Al₂O₃ and (c) Mo₂N/Al₂O₃ at room temperature.

3.3.1. NH_3 and N_2H_4 adsorption

Fig. 4 shows the IR spectra of adsorbed NH₃ on MoP/Al₂O₃ and adsorbed N₂H₄ on MoP/Al₂O₃ and Mo₂N/Al₂O₃ catalysts at room temperature. Adsorbed NH₃ on MoP/Al₂O₃ yielded IR bands at 1615, 1460, and 1260 cm⁻¹, corresponding to the characteristic frequencies of NH, NH₄⁺, and molecularly adsorbed NH₃ [19]. Similar results were obtained when N₂H₄ was adsorbed on MoP/Al₂O₃ and Mo₂N/Al₂O₃, suggesting that the decomposition of N₂H₄ occurred at room temperature and produced NH₃.

3.3.2. CO and N_2H_4 coadsorption

Fig. 5 shows the IR results for the co-adsorption of N₂H₄ and CO on MoP/Al₂O₃ and Mo₂N/Al₂O₃. CO adsorption alone on MoP/Al₂O₃ gave an IR band at 2048 cm⁻¹ (Fig. 5a); this can be attributed to linearly adsorbed CO on the Mo atoms [20,21]. Adsorption of N₂H₄ onto CO-preadsorbed MoP/Al₂O₃ produced three bands at 1615, 1460, and 1260 cm^{-1} due to adsorbed NH₃, accompanied by a red shift of ν_{CO} from 2048 to 1960 cm⁻¹. This suggests that the decomposition of N_2H_4 occurred on the Mo sites of the MoP. On the other hand, CO adsorption alone on Mo₂N/Al₂O₃ yielded an IR band at around 2200 cm^{-1} in addition to the band at 2048 cm⁻¹. The band at 2200 cm^{-1} can be assigned to the CO adsorbed on the surface N sites of Mo₂N/Al₂O₃ [20]. When N₂H₄ was adsorbed on the CO-preadsorbed Mo₂N/Al₂O₃, the aforementioned three bands due to NH₃ adsorption were present, the band at 2048 cm^{-1} disappeared, and the band at 2200 cm^{-1} shifted slightly to 2185 cm^{-1} . This finding again indicates that N₂H₄ decomposed on the Mo sites of the Mo₂N, and the NH₃ adsorption on the Mo sites of the Mo₂N was so strong so as to push away the preadsorbed CO on those sites.

Fig. 5B shows the IR results for adsorbed CO on N_2H_4 preadsorbed MoP/Al₂O₃ and Mo₂N/Al₂O₃. The band at 1970 cm⁻¹ assigned to adsorbed CO was evident on the MoP/

Fig. 5. (A) IR spectra of (a, b) CO adsorption on MoP/Al₂O₃ and Mo₂N/Al₂O₃; (c, d) N₂H₄ adsorption on CO-preadsorbed MoP/Al₂O₃ and Mo₂N/Al₂O₃; (B) IR spectra of CO adsorption on N₂H₄-preadsorbed MoP/Al₂O₃ (a) and Mo₂N/Al₂O₃ (b).

 Al_2O_3 , whereas it was no longer observed on the Mo_2N/Al_2O_3 . This finding again confirms that hydrazine decomposition occurred on the Mo sites and that CO and N_2H_4 were competing for the same Mo sites on the catalysts. Due to the stronger adsorption of NH_3 on the Mo sites of the Mo_2N compared with those of the MoP, CO could not be adsorbed on those N_2H_4 preadsorbed sites of the Mo_2N catalyst.

Consistent with the results of microcalorimetric NH₃ adsorption, FTIR offered more evidence showing that NH₃ was more readily adsorbed on Mo₂N/Al₂O₃ than on MoP/Al₂O₃. Thus, the NH₃ and/or the nitrogen fragments were not easily desorbed from the Mo₂N/Al₂O₃ surface and may have blocked the active sites, leading to decreased activity during N_2H_4 decomposition.

4. Conclusion

This study found that both supported and unsupported MoP were active and stable for the decomposition of N_2H_4 at room temperature, but less active for the decomposition of NH_3 . N_2H_4 adsorbed and decomposed on the Mo sites for both MoP and Mo₂N, but the metalloid elements in MoP and Mo₂N had a significant effect on the N_2H_4 -derived NH₃ adsorption. MoP/Al₂O₃ exhibited relatively weaker adsorption for NH₃ than Mo₂N/Al₂O₃. As a result, in the decomposition of N_2H_4 , the strongly bound nitrogen adspecies on Mo₂N accumulated, and the intermediates on MoP were readily desorbed from the active sites, leading to a relatively better stability of MoP. The moderate adsorption of NH₃ might also be the reason for the poor H₂ selectivity for the N₂H₄ decomposition over the MoP at high temperatures.

Acknowledgments

This research was supported by grants (20325620, 20303017 and 20573108) from the National Natural Science Foundation of China (NSFC).

References

- E.W. Schmidt, Hydrazine and Its Derivatives, second ed., Wiley, New York, 2001, p. 1267.
- [2] S. Mary, C. Kappenstein, S. Balcon, S. Rossignol, E. Gengembre, Appl. Catal. A 182 (1999) 317.
- [3] S.T. Oyama, Catal. Today 15 (1992) 179.
- [4] J.G. Chen, Chem. Rev. 96 (1996) 1477.
- [5] J.A.J. Rodrigues, G.M. Cruz, G. Bugli, M. Boudart, G. Djéga-Mariadassou, Catal. Lett. 45 (1997) 1.
- [6] X. Chen, T. Zhang, P. Ying, M. Zheng, W. Wu, L. Xia, T. Li, X. Wang, C. Li, Chem. Commun. (2002) 288.
- [7] X. Chen, T. Zhang, L. Xia, M. Zheng, Z. Wu, X. Wang, Z. Wei, Q. Xin, C. Li, Catal. Lett. 79 (2002) 21.
- [8] X. Chen, T. Zhang, M. Zheng, Z. Wu, W. Wu, C. Li, J. Catal. 224 (2004) 473.
- [9] X. Chen, T. Zhang, M. Zheng, L. Xia, T. Li, W. Wu, X. Wang, C. Li, Ind. Eng. Chem. Res. 43 (2004) 6040.
- [10] S.T. Oyama, J. Catal. 216 (2003) 343.
- [11] C. Stinner, R. Prins, Th. Weber, J. Catal. 202 (2001) 187.
- [12] P.A. Clark, S.T. Oyama, J. Catal. 218 (2003) 78.
- [13] D.C. Phillips, S.J. Sawhill, R. Self, M.E. Bussell, J. Catal. 207 (2002) 266.
- [14] P. Liu, J.A. Rodriguez, Catal. Lett. 91 (2003) 247.
- [15] Y. Shu, S.T. Oyama, Carbon 43 (2005) 1517.
- [16] R. Cheng, Y. Shu, L. Li, M. Zheng, X. Wang, A. Wang, T. Zhang, Appl. Catal. A 316 (2007) 160.
- [17] M. Zheng, R. Cheng, X. Chen, N. Li, L. Li, X. Wang, T. Zhang, Int. J. Hydrogen Energy 30 (2005) 1081.
- [18] L. Li, X. Wang, X. Zhao, M. Zheng, R. Cheng, L. Zhou, T. Zhang, Thermochim. Acta 434 (2005) 119.
- [19] J.P. Contour, G. Pannetier, J. Catal. 24 (1972) 434.
- [20] Z. Feng, C. Liang, W. Wu, Z. Wu, R.A. van Santen, C. Li, J. Phys. Chem. B 107 (2003) 13698.
- [21] S. Yang, C. Li, X. Jiang, Q. Xin, Chem. Commun. (1997) 1247.