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Abstract: We have developed an efficient and extensive deuterium
incorporation method using a heterogeneous Pd/C–D2O–H2 system
into the base moiety of nucleosides. The results presented here pro-
vide a deuterium gas-free, totally catalytic, and post-synthetic deu-
terium labeling method in D2O media. 
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Nucleoside analogs are noteworthy as biologically active
targets for the development of potential antiviral and anti-
tumor agents1 and as synthetic oligonucleotide probes.2

Deuterium-labeled compounds have a number of impor-
tant uses in many different branches of science, including
analysis of drug metabolism, investigation of reaction
mechanisms, kinetics, and so on.3,4 Deuterium-labeled nu-
cleosides have proven valuable in metabolic studies5 and
structural analyses of DNA.6 For the preparation of base-
selectively deuterium-labeled nucleic acids, the previous
methods are chiefly categorized under the following two
types: the multi-step synthetic method starting from orig-
inally deuterium-labeled small synthons,7 and the post-
synthetic H–D exchange displacement of the hydrogen
bound to the carbon of an unlabeled compound by deute-
rium using a catalytic method.8 It is apparent that the latter
process is highly effective and accessible for the prepara-
tion of deuterium-labeled nucleosides. However, such
conventional post-synthetic procedures for the incor-
poration of deuterium into the base-moieties of nucleo-
sides are often limited to activated positions of the
molecules,8a–8c,e,g leading to low levels of deuterium incor-
poration,8e,f and require a vast amount of the catalyst,8d,f,g

addition of acidic or basic additives,8a–8c,e,f and/or expen-
sive deuterium atmosphere.8d,f,g,9 

We have recently reported an efficient and chemoselec-
tive exchange of deuterium derived from D2O with hydro-
gen atoms on a benzylic carbon using Pd/C as a
heterogeneous catalyst in the presence of a catalytic
amount of hydrogen gas at room temperature.10 We also
found that application of heat could promote the catalyst
activity of the Pd/C–D2O–H2 system and lead to a H–D
exchange reaction even on non-activated carbon.11,12

Herein, we describe a distinctly general and selective pro-

cedure for the H–D exchange reaction at the base moiety
of nucleosides applying the Pd/C–D2O–H2 system with
heating conditions. 

To explore the scope of our method for the H–D exchange
of nucleic acids, the reaction of a number of substrates
was investigated (Tables 1– 4). 

Figure 1 Deuterium efficiency of 1 and 2 by the H–D exchange 
reaction at 160 °C for 24 hours.

Typically, the reaction is carried out in 1.0 mL of D2O us-
ing 0.25 mmol of the substrate and 10% Pd/C (10 wt%) at
110–160 °C under a hydrogen atmosphere. The reactions
are usually very clean and no chromatographic separation

Table 1 H–D Exchange Reaction of Adenine Derivatives

Entry R Temp D content (%)a Yield

(°C) 2-D 8-D (%)

1 H 110 96b 96b 99

2 110 95 92 99

3 160 95 96 98

4 160 96 96 81

a Determined by 1H NMR spectroscopy using 3-trimethylsilyl-1-pro-
panesulfonic acid sodium salt (DSS) as an internal standard.
b Indicates the average D content.
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Table 2 H–D Exchange Reaction of Guanosine, Inosine, and Hypoxanthine

Entry Substrate D content (%)a Yield (%)

1 99

2 100

3 92

a Determined by 1H NMR spectroscopy using DSS as an internal standard.

10% Pd/C, H2, D2O
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Table 3 H–D Exchange Reaction of Uracil and Cytosine Derivatives

Entry X R Temp (°C) Time (h) D content (%)a Yield (%)

5-D 6-D

1b O H 140 48 – – –

2 O H 160 24 98 97 100

3b O 140 48 – – –

4 O 160 24 94 35 100

5b NH H 110 24 – – –

6 NH H 160 48 96 96 98

7 NH 140 48 93 35 100

a Determined by 1H NMR spectroscopy using DSS as an internal standard.
b Partial hydrogenation of the 5,6-double bond was observed.
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is required to obtain spectrally pure deuterated products in
excellent yields.13,14 When uracil, uridine, or cytosine was
used as the substrate, partial hydrogenation of the 5,6-
double bond was observed at a relatively lower tempera-
ture (110–140 °C, Table 3, entries 1, 3, and 5). It is note-
worthy that this drawback can be overcome by raising the
temperature to 160 °C (Table 3, entries 2, 4, and 6). The
5-methyl group of thymine was deuterated entirely, to-
gether with the 6-position at 110 °C without partial hydro-
genation (Table 4, entry 1). No competitive deuterium
incorporation into the sugar moieties was observed in all
cases.15 It should be noted that the exchange reaction us-
ing pyrimidine nucleosides, such as uridine and cytidine,
led to lower deuterium incorporation at the 6-position
(Table 3, entries 4 and 7) although the use of uracil and
cytosine, which lack the sugar moiety, gave excellent deu-
terium efficiency (Table 3, entries 2 and 6). For these rea-
sons, it may be concluded that the steric hindrance arising
from the 5¢-hydroxy group lowered deuterium incorpora-
tion; also no deuterium incorporation into the 6-position
of the more hindered 2¢,3¢,5¢-tris-O-TBDMS-uridine (1)
under the reaction conditions confirmed this while the
deuteration of 1-methyluracil (2) possessing a small
methyl substituent at the 1-position gave excellent deuter-
ium efficiencies at both 5- and 6-positions (Figure 1).12a

A limitation of this methodology is that thymidine, a
deoxy-pyrimidine nucleoside, decomposed with complete
hydrolysis at the glycosyl bond (Table 4, entry 2) even
though nearly quantitative deuteration efficiency was
achieved in 2¢-deoxyadenosine without hydrolysis
(Table 1, entry 4).

In summary, the present D2 gas-free and selective H–D
exchange reaction retains sufficient usefulness in nucleic
acid chemistry. It discloses a convenient route to the post-
synthetic introduction of deuterium atoms into the base
moiety of nucleosides with high deuterium efficiency un-
der neutral reaction conditions. Studies to further eluci-
date the scope of this incorporation method are currently
underway.
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