CHEMISTRY LETTERS, pp. 1951-1954, 1987.

Carbon Dioxide Fixation Coupled with Nitrite Reduction, Catalyzed by 4Fe4S Cluster

Koji TANAKA,^{*} Ryuhei WAKITA, and Toshio TANAKA^{*} Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565

The reduction of $(Et_4N)NO_2$ catalyzed by $(Bu_4N)_2$ -[Fe₄S₄(SPh)₄] in the presence of PhCOCH₃ and Molecular Sieves 3A as a proton source and a dehydration agent, respectively, under the controlled potential electrolysis at -1.25 V <u>vs</u>. SCE in CO₂-saturated CH₃CN catalytically produced not only N₂ with a small amount of N₂O as a precursor of N₂ but also PhCOCH₂COO⁻.

The amounts of inorganic nitrogen compounds such as N₂, NH₃, and NO₃⁻ are regulated by the nitrogen cycle. Ammonia is a single inorganic nitrogen compound which can be converted into organic nitrogen compounds directly. Most of green plants and bacteria which are incapable of N₂ fixation reduce nitrate and/or nitrite involved in soil to produce ammonia (assimilation). On the other hand, dissimilatory reductases reduce those substrates to evolve N₂ <u>via</u> N₂O. It has been estimated that photosynthetic bacteria consume electrons for CO₂ fixation and assimilatory NO₃⁻ reduction with the ratio 4:1 in biosyntheses.¹) Ironsulfur proteins participate as electron transfer catalysts in those reactions.²) This letter describes carbon dioxide fixation coupled with NO₂⁻ reduction, catalyzed by (Bu₄N)₂[Fe₄S₄(SPh)₄] ³ (1).

Recently, we have reported that $[Mo_2Fe_6S_8(SPh)_9]^{3-}$ catalyzes assimilatory and dissimilatory reductions of NO_3^- under the controlled potential electrolysis at -1.25 and -1.00 V <u>vs</u>. SCE, respectively, in water (Eqs. 1 and 2).⁴) We have

Chemistry Letters, 1987

)

$$NO_3^- + 9H^+ + 8e^- \longrightarrow NH_3 + 3H_2O$$
 (1
 $2NO_3^- + 12H^+ + 10e^- \longrightarrow N_2 + 6H_2O$ (2

found that the reduction of NO₂⁻ is also catalyzed by 1 under the controlled potential electrolysis at -1.25 V <u>vs</u>. SCE even in dry CH₃CN containing PhCOCH₃ as a proton source in place of water. The cyclic voltammogram (CV) of 1 shows the (2-/3-) redox couple at $E_{1/2} =$ -0.97 V vs. SCE in dry CH₃CN (Fig. 1a). The addition of $(Et_4N)NO_2$ to the solution results in the appearance of a weak redox couple at $E_{1/2} = -1.17 V^{5}$ as a shoulder of the original redox couple of 1 (Fig. 1b), and the pattern of the CV was essentially unchanged upon addition of PhCOCH₃. A strong cathodic current, however, flows at more negative potentials than -1.17 V when the solvent was saturated with CO2 in order to trap the deprotonated species of PhCOCH₃ (Fig. 1c). The threshold potential of the cathodic current agrees with the reduction potential of the $1-NO_2^-$ system, suggesting that CO_2 effectively enhances the reduction of NO_2^- by 1 in the presence of PhCOCH₃ since such a strong cathodic current was not observed in the absence of either NO2, PhCOCH3, or CO2. The controlled potential electrolysis by using a glassy carbon electrode at -1.25 V in a CO₂saturated CH_3CN (17 cm³) containing 1 (11.8 µmol), (Et₄N)NO₂ (0.88 mmol), PhCOCH₃ (34.8 mmol), and Bu₄NBr (1.6 mmol) selectively produced only N2; the reduction of CO2 has

Fig. 1. Cyclic voltammograms of $[Fe_4S_4(SPh)_4]^{2-}$ (1; 1.1 mmol/dm³) in the absence (a) and presence of $(Et_4N)_2NO_2$ (72 mmol/dm³) (b), and 1 in the presence of $(Et_4N)-NO_2$ (72 mmol/dm³), PhCOCH₃ (1.8 mol/dm³), and saturated CO₂ (c) in dry-CH₃CN containing Bu₄NBr (0.1 mol/dm³); dE/dt = 100 mV/s.

1952

hardly occurred. On the other hand, the same electrolysis conducted in the presence of Molecular Sieves 3A as a dehydration agent produces not only N₂ (current efficiency 70%) with a small amount of N₂O as a precursor of N₂ but also PhCOCH₂COO⁻,⁶) whose amount was about 7 times larger than that of N₂ (Fig. 2). The stoichiometry of the present CO₂ fixation coupled with NO₂⁻ reduction may, therefore, be expressed by Eq. 3.

 $8PhCOCH_3 + 2NO_2^- + 8CO_2 + 6e^- \longrightarrow$ $8PhCOCH_2COO^- + N_2 + 4H_2O$ (3)

Electrochemical NO_n^- (n = 2, 3)^{4,7}) and CO_2^{8} reductions catalyzed by transition metal complexes including Fe_4S_4 clusters⁹) have been studied, independently so far. The products in most of the latter reaction have, however, been limited to CO and/or HCOO⁻. The direct conversion of CO_2 to organic compounds other than HCOO⁻ is highly desired in the view point of the utilization of CO_2 .¹⁰) Thus, the present reaction is the first example which has succeeded in CO_2 fixation coupled with NO_2^- reduction affording keto acid.

Fig. 2. The amounts of N_2 , N_2O , and PhCOCH₂COO⁻ formed in the CO₂ fixation coupled with (Et₄N)NO₂ (0.88 mmol) reduction, catalyzed by 1 (11.8 µmol) under the controlled potential electrolysis at -1.25 V <u>vs</u>. SCE in CO₂-saturated CH₃CN (17 cm³) containing PhCOCH₃ (34.8 mmol) and Bu₄NBr (1.55 mmol).

The authors are grateful to the Ministry of Education for support of this work through Grant-in-Aid for Scientific Research (Grant No. 61125003).

References

- L. Losda, M. G. Guerreero, and J. M. Vega, "Biology of Inorganic and Sulfur," ed by H. Bothe and A. Trbst, Springer-Verlag, Berlin (1981), pp. 30-63.
- 2) M. W. W. Adams and L. E. Mortenson, "Molybdenum Enzymes," ed by T. G. Spiro, John Wieley & Sons, New York (1985), pp. 519-593; M. C. W. Evans, "Iron-Sulfur Proteins," ed by T. G. Spiro, John Wieley & Sons, New York (1982), pp. 249-284.
- 3) L. Que, Jr., M. A. Bobrik, J. A. Ibers, and R. H. Holm, J. Am. Chem. Soc., <u>96</u>, 4168 (1974).
- S. Kuwabata, S. Uezumi, K. Tanaka, and T. Tanaka, J. Chem. Soc., Chem. Commun., <u>1986</u>, 135; S. Kuwabata, S. Uezummi, K. Tanaka, and T. Tanaka, Inorg. Chem., <u>25</u>, 3018 (1986).
- 5) NO_2^{-} undergoes no redox reaction in the present potential region.
- 6) N_2 and N_2O were determined by GC with a column packed with Molecular Sieves 13X, and PhCOCH₂COO⁻ by HPLC with columns packed with ODS and a Shodex Ionpak KC-811 as well as by a isotachophoretic analyzer.^{8b})
- M. H. Barley, K. Takeuchi, W. R. Murphy, Jr., and T. J. Meyer, J. Chem. Soc., Chem. Commun., <u>1985</u>, 507; W. R. Murphy, Jr., K. Takeuchi, M. H. Barley, and T. J. Meyer, Inorg. Chem., <u>25</u>, 1041 (1986).
- 8) a) D. L. DuBois and A. Miedaner, J. Am. Chem. Soc., <u>109</u>, 113 (1987); b)
 H. Ishida, K. Tanaka, and T. Tanaka, Organometallics, <u>6</u>, 181 (1987) and the refs. cited therein.
- M. Tezuka, Y. Yajima, A. Tsuchiya, Y. Matsumoto, Y. Uchida, and M. Hidai, J. Am. Chem. Soc., <u>104</u>, 6834 (1982); M. Nakazawa, Y. Mizobe, Y. Matsumoto, Y. Uchida, M. Tezuka, and M. Hidai, Bull. Chem. Soc. Jpn., <u>59</u>, 809 (1986).
- 10) H. Ishida, K. Tanaka, and T. Tanaka, Chem. Lett., <u>1987</u>, 597; H. Torii, H. Tanaka, T. Hamatani, K. Morisaki, A. Jutand, F. Peluger, and J. F. Fauvarque, ibid., <u>1986</u>, 169.

(Received July 18, 1987)

1954