

Physica B 237-238 (1997) 172-173

Transport properties of $CoS_{2-x}As_x$ ($0 \le x \le 1$)

T. Harada^{a,*}, T. Kanomata^a, T. Kaneko^b

^a Faculty of Engineering, Tohoku Gakuin University, Tagajo 985, Japan ^b Institute for Materials Research, Tohoku University, Sendai 980, Japan

Abstract

Electrical resistivity and Hall coefficient were measured for sintered samples of $CoS_{2-x}As_x$ ($0 \le x \le 1$) at temperatures from 77 to 600 K. The results of measurements show that with increasing x the change from metallic conduction to semiconduction is observed just above x = 0.6. This concentration corresponds to the concentration of disappearing the ferromagnetism.

Keywords: CoS_{2-x}As_x; Electrical resistivity; Hall coefficient

1. Introduction

 CoS_2 with the cubic crystal structure of pyrite type is a typical itinerant ferromagnet with the Curie temperature of 120 K and magnetic moment of $0.89\mu_B$ per Co atom [1]. The magnetic property of CoS_2 is strongly affected by the cation- and anion-substitution. Mikkelsen and Wold reported that in the anion-substituted system $CoS_{2-x}As_x$, the ferromagnetic moment and the Curie temperature decrease with increase in x [2]. We have measured the magnetization at 4.2 K for $CoS_{2-x}As_x$ with $0 \le x \le 1$ and found that the ferromagnetism disappears for the compounds with $x \ge 0.6$ [3]. In this paper, the transport properties of $CoS_{2-x}As_x$ are studied in order to make clear an origin of the disappearance of ferromagnetism.

2. Experimental

Polycrystalline samples of $CoS_{2-x}As_x$ ($0 \le x \le 1$) first were prepared by reacting high purity elements

* Corresponding author.

with desired proportion at 800°C in a vacuum silica tube for a week. Reaction products were then pulverized and heated at 800°C for two weeks. The results of powder X-ray diffraction measurements showed that all the diffraction lines for prepared samples were indexed with the cubic pyrite-type structure. CoAsS exhibits the cobaltite structure which is the pyrite one with ordering of As and S atoms. The superstructure lines due to the ordering of As and S atoms appear for the compounds with $x \ge 0.6$. Lattice parameter of $CoS_{2-x}As_x$ $(0 \le x \le 1)$ increase linearly with x from 5.533 Å for CoS₂ to 5.575 Å for CoAsS. The positional parameter u decreases nonlinearly from 0.390 for CoS_2 to 0.380 for CoAsS. The Co-S(As) distance has the minimum near x = 0.6, because a = 5.5570 Å and u = 0.383 in x = 0.6. The electrical resistivity and Hall coefficient were measured with conventional methods for sintered samples of $CoS_{2-x}As_x$ $(0 \le x \le 1)$ at temperatures from 77 to 600 K.

3. Results and discussion

Figs. 1 and 2 show the temperature dependences of the resistivity ρ . As seen in Fig. 1, for the

^{0921-4526/97/\$17.00 © 1997} Elsevier Science B.V. All rights reserved PII \$0921-4526(97)00087-2

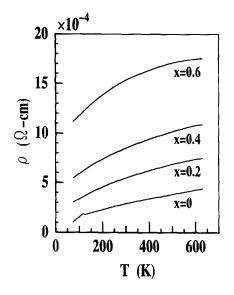


Fig. 1. ρ -T curves for CoS_{2-x}As_x (0 $\leq x \leq 0.6$).

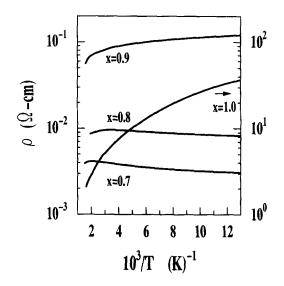


Fig. 2. Log $\rho - 1/T$ curves for $\text{CoS}_{2-x}\text{As}_x$ (0.7 $\leq x \leq 1$).

compound with $x \le 0.6$, ρ shows metallic temperature dependence of $d\rho/dT > 0$. As seen in Fig. 2, $\log\rho - 1/T$ curves for x = 0.7 and x = 0.8 exhibit a degenerated semiconductive behavior at low temperatures and an intrinsic semiconductive one at high temperatures. For the compounds with x = 0.9and x = 1.0, the temperature dependence of ρ is typically semiconductive. The energy gaps determined from the slope of $\log \rho - 1/T$ curves in the high-temperature range are 0.04, 0.02, 0.17 and 0.18 eV for x = 0.7, 0.8, 0.9 and 1.0, respectively. The sign of the Hall coefficients $R_{\rm H}$ for all samples are negative in the whole temperature range investigated. The values of $R_{\rm H}$ around 450 K are almost

constant for x < 0.6 with the value of $\sim 1.5 \times 10^{-4} \text{ cm}^3/\text{C}$ and then increases abruptly from $3.3 \times 10^{-4} \text{ cm}^3/\text{C}$ (x = 0.6) to $50 \times 10^{-4} \text{ cm}^3/\text{C}$ (x = 0.9) with further increase of x.

As mentioned above, E_G increases with x for $x \ge 0.7$. The rapid increase of R_H and ρ with x may be understood on the basis of the increase of E_G with x. This increase of E_G is considered to be due to the increase of Co-S(As) distance and the formation of the ordered arrangement of As and S with increase of x. It is noted that this critical value of x corresponds to the concentration where the ferromagnetism disappears in $CoS_{2-x}As_x$. It is of interest to examine the details of magnetic properties of $CoS_{2-x}As_x$ in the semiconductive state.

References

- K. Adachi and S. Ogawa, in: Landolt-Börnstein, New Ser., III/27a ed. H.P.J. Wijn (Springer, Berlin, 1988) pp. 20-25.
- [2] J.C. Mikkelsen and A. Wold, J. Solid. State. Chem. 3 (1971) 39.
- [3] T. Harada et al., to be published.