COMMUNICATION

CATIONIC CARBONYL COMPLEXES OF MANGANESE (I) WITH NITRILES AND DINITRILES

F.J. García Alonso, V. Riera

Department of Inorganic Chemistry, University of Valladolid, Spain

(Received 5 May; accepted 16 June 1983)

 $\underline{ABSTRACT} \text{ The reaction of } Mn\left(CO\right)_5 OClO_3 \text{ with nitriles,L, and dinitriles,L-L, in a wide variety of conditions affords cationic pentacarbonyls, } [Mn(CO)_5(L)] ClO_4 and [Mn(CO)_5(L-L)] ClO_4 and <u>fac</u>-tricarbonyls, [Mn(CO)_3(L)_3] ClO_4 and [(CO)_3 Mn(AL-L)_3 Mn(CO)_3] (ClO_4)_2$

<u>RESULTS AND DISCUSSION</u> The reaction of $Mn(CO)_5OClo_3$ with nitriles, (1/3 molar ratio) in refluxing CHCl₃ gave cationic tricarbonyl derivatives $\underline{fac}-[Mn(CO)_3(L)_3]Clo_4^1$, (L: EtCN, CH₂=CHCH₂CN, PhCN, PhCH₂CN). In CH₂Cl₂ at room temperature the reaction gave a mixture of pentacarbonyls $[Mn(CO)_5(L)]Clo_4$ (which are initially formed) and the tricarbonyls $\underline{fac}-[Mn(CO)_3(L)_3]Clo_4$; from the resulting solutions pure pentacarbonyls were isolated in low yield; by using equimolecular ratio, at -10°C, the formation of \underline{fac} -tricarbonyl was greatly reduced, but the yields were not improved due to the low solubility of the precursor neutral perchlorate. All attempts to promote further substitution have failed; use of EtOH as solvent led to the formation of a \underline{fac} -tricarbonyl derivative, possibly $\underline{fac}-[Mn(CO)_3(EtOH)_3]$ ClO₄, not previously described, which could not be characterized since it was obtained as an oil by solvent evaporation; IR (cm⁻¹) \mathbf{V} CO (CH₂Cl₂) 2040 s, 1935 br,s.

Similar reactions with dinitriles L-L, (L-L: NCCH₂CN, NCCH₂CH₂CN, NCCH₂CH₂CH₂CH₂CN, o-C₆H₄(CN)₂), in CH₂Cl₂ at room temperature in 1/3 ratio led to precipitation of whiteyellow solids, identified by IR spectroscopy as mixtures of the corresponding penta- and tricarbonyl derivatives. Attempts to separate pure pentacarbonyls by succesive recrystallizations were unsuccesful, although analytical data are very close to the expected for $[Mn(CO)_5(L-L)] ClO_4$. The $Mn(CO)_5ClO_3$ reacted with a three fold excess of dinitriles L-L in refluxing CHCl₃ giving, through the intermediate pentacarbonyls, the tricarbonyls <u>fac-</u> $[(CO)_3Mn(M-L-L)_3Mn(CO)_3] (ClO_4)_2$, which must be dimers in accordance with conductivity data at various concentrations, and their structures are probably those in which the dinitriles are bridging two $Mn(CO)_3$ groups.

The pentacarbonyls show four $7 \, CO$ bands in CH_2Cl_2 or in $CHcl_3$. Although uncommon, since IR spectra of pentacarbonyls usually exhibit only three absorptions (2 $A_1 + E$) in the $7 \, CO$ region, this behaviour is not unique and some pentacarbonyls can be found in the literature with four $7 \, CO$ bands². Using the Cotton-Kraihanzel method², the B_1 band which is not IR active for rigorous C_{4v} symmetry, must appear at 2106 cm⁻¹ which supports the view that the band at 2122 cm⁻¹ may be the B_1 mode. The weak $7 \, CN$ absorptions of coordinated nitriles, at higher wavenumbers than that of free ligands, indicate that all the nitriles and dinitriles are bound to the metal through the nitrogen.

* Author for correspondence

Communications

 CH_2Cl_2 , obtained from 0.3 g (1.09 mmol) of $Mn(CO)_5Br$, and L was stirred. The yellow oil which results from the removal of the solvent in vacuo, was washed with Et_2O to extract the unreacted L and the fac- $[Mn(CO)_3(L)_3]ClO_4$. The resulting solid was recrystallized from $CH_2Cl_2/EtOH$. IR (cm⁻¹) ∇ CO (CH_2Cl_2 or $CHCl_3$) 2165 w, 2122 w, 2080 s, 2045 m, for all the pentacarbonyls. The specific conditions for each reaction (neutral perchlorate/ligand mol ratio, solvent, time, temperature and yield), analytical and conductivity data for the cationic pentacarbonyls were as follows:

L: EtCN, 1/2.5, CHCl₃, 8 h, room temperature, 39%. M.P. 87° C. Λ_{m} 92 S cm² mol⁻¹. (The solvent used for all conductivity measurements was MeNO₂). \overrightarrow{V} CN (nujol) 2315 cm⁻¹. Found C 27.49, H 1.59, N 3.97. Calc. C 27.49, H 1.44, N 4.00 %. L: CH₂=CHCH₂CN, 1/2.2, CHCl₃, 9 h, room temperature, 21%. M.P. 96°C. Λ_{m} 93 S cm² mol⁻¹. \overrightarrow{V} CN (nujol) 2310 cm⁻¹. Found C 29.20, H 1.41 N 3.31. Calc. C 29.30, H 1.39, N 3.87%. L: PhCH₂CN, 1/1, CH₂Cl₂, 33 h, -10°C, 25%. M.P.92°C. Slope 143⁴. \overrightarrow{V} CN (nujol) 2317 cm⁻¹. Found C 38.55, H 1.82, N 3.78. Calc. C 37.94, H 1.71, N 3.40%.

<u>Preparation of $[Mn(CO)_3(L)_3]Clo_4$ </u> L: EtCN. To a solution of $Mn(CO)_5OClo_3$ (prepared from 0.3 g, 1.09 mmol, of $Mn(CO)_5Br$) in 40 cm³ of CHCl₃, 0.2 cm³ (2.49 mmol) of EtCN was added. After refluxing 2 h, the solvent was removed under reduced pressure. The residue was washed with hexane to extract unreacted L. Yield 65%. M.P. 98°C. Slope 200⁴. IR (cm⁻¹) ∇ CO (CH₂Cl₂) 2070 s, 1977 br,s; ∇ CN (nujol) 2300. Found C 35.06, H 3.63, N 10.17. Calc. C 35.71, H 3.74, N 10.40%. L: PhCN. It was obtained by the procedure above described. Yield 65%. M.P. 97°C. Λ_{M} 93 S cm² mol⁻¹. IR (cm⁻¹) ∇ CO (CHCl₃) 2070 s, 1983 br,s; ∇ CN (nujol) 2270. Found C 53.12, H 2.79, N 7.67. Calc. C 52.62, H 2.76. N 7.50%. L: CH₂=CHCH₂CN and PhCH₂CN. They were not characterized because of the formation of uncrystallizable oils. Their IR spectra (CH₂Cl₂) in the ∇ CO region are the same (cm⁻¹) 2070 s, 1985 br,s.

Preparation of fac-[(CO)₃Mn(/ L-L)₃Mn(CO)₃](ClO₄)₂ L-L: NCCH₂CH₂CN. A mixture of Mn(CO)₅OClO₃ (from 0.25 g (0.91 mmol) of Mn(CO)₅Br) in 50 cm³ of CHCl₃ and 0.218 g (2.73 mmol) of NCCH₂CH₂CN was refluxed for 18 h. The resulting oil was washed with CH₂Cl₂ and Et₂O. Yield 50%. Recrystallized from Me₂CO/Et₂O. It blackens at 188°C without melting. Slope 316⁴. IR (cm⁻¹) \overrightarrow{V} CO (Me₂CO) 2065 s, 1983 br,s; \overrightarrow{V} CN (nujol) 2310. Found C 30.09, H 1.70, N 11.70. Calc. C 30.15, H 1.69, N 11.72%. L-L: o-C₆H₄(CN)₂. It was prepared using a similar procedure. Yield 38%. It blackens at 193°C. Slope 367⁴. IR (cm⁻¹) \overrightarrow{V} CO (Me₂CO) 2075 s, 1955 br,s; \overrightarrow{V} CN (nujol) 2275. Found C 42.09, H 1.17, N 9.53. Calc. 41.82, H 1.40, N 9.75%. For L-L: NCCH₂CN and NCCH₂CH₂CN the complexes could not be purified.

NOTES AND REFERENCES

For a review of the field, see Comprehensive Organometallic Chemistry. G. Wilkinson,
F.G.A. Stone, E. Abel. Vol. 4, pp 31-32. Pergamon Press. Oxford. U.K. 1982
F.A. Cotton and C.S. Kraihanzel, <u>J. Am. Chem. Soc</u>., 1962, 84, 4432
R. Usón, V. Riera, J. Gimeno, M. Laguna and M.P. Gamasa, <u>J. Chem. Soc.</u>, (Dalton).,
1979,996

4.- Slope of the straight line which results from plotting $\Lambda_{\bullet} - \Lambda_{e}$ versus \sqrt{Ce} , where Λ_{e} is the equivalent conductivity, Λ_{\bullet} is Λ_{e} at infinite dilution, and Ce is the equivalent concentration. The value 143 and 200 are in the expected range for 1:1 electrolytes and the values 316 and 367 are in the expected range for 1:2 electrolytes when MeNO₂ is used as solvent.-R.D. Feltham and R.G. Hayter, J. Chem. Soc. 1964, 4587