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This letter describes the use of rapid thermal annealing~RTA! to form a barrier layer applicable to
the gate electrode in dynamic random access memory devices with a stacked structure@tungsten
nitride (WNx)/polycrystalline Si~poly-Si!#. After RTA, the reactively sputtered amorphous WNx

film on the poly-Si was transformed to a low-resistivea-phase W and nitrogen-segregated layer.
Most of the nitrogen in the WNx film was dissipated and a relatively small amount of the nitrogen
was segregated at the interface of thea-phase W and poly-Si. The segregated layer was estimated
to be 2 nm thick and revealed a silicon nitride~Si–N! bonding status. More importantly, we found
that this thin segregated layer successfully protected the formation of tungsten silicide, even after
RTA at 1000 °C for 2 min in a hydrogen environment. ©2000 American Institute of Physics.
@S0003-6951~00!03418-5#

As ultra-large-scale integrated circuit devices are scaled
down to a deep submicron regime, the gate resistance/
capacitance time delay limits the speed of metal–oxide–
semiconductor devices. To reduce this delay, a gate structure
with a low-resistive material has been widely investigated.1–3

A stacked gate structure, tungsten~W!/barrier/polycrystalline
Si ~poly-Si!, is considered to be a promising candidate to
replace the tungsten silicide (WSix) or a self-aligned silicide
~salicide! gate, due to its low electrical resistance and high
resistance against agglomeration during annealing.4,5 For ex-
ample, the sheet resistance of the gate structure of
W~100 nm!/WNx(5 nm)/poly-Si~100 nm! was estimated to
be 1.5V/sq, which is lower by one order of magnitude com-
pared with that of the conventional gate structure of
WSix(100 nm)/poly-Si~100 nm!. Moreover, this low sheet
resistance was able to reserve even at a narrow gate line-
width of 0.12mm.6

Because direct contact of W to poly-Si results in the
formation of WSix during annealing at temperatures above
600 °C, a barrier layer such as titanium nitride~TiN! and
tungsten nitride (WNx) jams in between them.7–9 The W
film in the W/WNx /poly-Si structure revealed a lower sheet
resistivity than that in the W/TiN/poly-Si structure.6 In addi-
tion, better oxide integrity at the edge of the W/WNx /poly-Si
gate was shown compared with the W/TiN/poly-Si structure
after selective Si oxidation that was conducted for etch dam-
age recovery.10 However, WNx is known to be unstable and
easily transform to W and nitrogen at temperatures above
800 °C, resulting in the formation of WSix at the interface of
W/WNx and poly-Si during the next high-temperature pro-
cess, such as selective Si oxidation and dopant activation.11

Therefore, a highly reliable diffusion barrier layer is essential
between W and poly-Si.

In this study, we propose a method of forming a barrier
layer for the W/poly-Si gate structure with a WNx film on
poly-Si by rapid thermal annealing~RTA!. To make the
sample structure, the WNx film ~100 nm! was reactively
sputtered on a doped poly-Si film that had been cleaned by
HF. Then, RTA was performed at temperatures ranging from
600 to 1000 °C under nitrogen atmosphere for 1 min. Ruth-
erford backscattering spectroscopy was employed to quantify
the composition of the WNx film, and secondary ion mass
spectroscopy~SIMS! was used for compositional analysis.
Electrical resistivity was evaluated using a four-point-probe
method was phase identification was carried out usingQ–2Q
x-ray diffraction with a scan rate of 0.2°/min. Also, the mi-
crostructure and chemical status at the interface of W and
poly-Si were analyzed by transmission electron microscopy
~TEM! and x-ray photoelectron spectroscopy~XPS!.

Figure 1 shows the variation of the resistivity and the
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FIG. 1. Resistivity and x-ray diffraction spectra of WNx as a function of
nitrogen content in as-deposited film.
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phase of the WNx film as a function of the nitrogen content
in the as-deposited films. The resistivity of the WNx films
increased gradually with increasing nitrogen content up to
about 10%, and then leveled off with further increments of
nitrogen content by 45%. With further increments of nitro-
gen content, above 45%, the resistivity of the WNx films was
drastically increased. In the case of 10%–45% of nitrogen
content, the as-deposited WNx was an amorphous structure,
as shown in the inset of Fig. 1. To the contrary, the WNx

films containing 50% of nitrogen were polycrystalline. Af-
folter reported that the amorphous WNx film containing 33%
of nitrogen was easily crystallized into W2N during vacuum
annealing at 600 °C for 30 min.11 Also, this WNx film depos-
ited on SiO2 was transformed to a low-resistivea-phase W
by annealing at 800 °C for 30 min, while the polycrystalline
WNx film containing 50% of nitrogen was not completely
transformed to thea-phase W, even after annealing at
800 °C. Therefore, WNx films composed of W67N33 were
used in this work.

Figure 2 shows the resistivity of the W67N33 film on
poly-Si as a function of RTA temperatures. The resistivity of

the as-deposited film was 175mV cm and decreased with
higher RTA temperatures. After RTA at 1000 °C for 1 min,
the resistivity was lowered to 15mV cm, which is compa-
rable to the value of the sputtered W, 13mV cm. As can be
seen in the inset of Fig. 2, the amorphous structure of the
as-deposited W67N33 films transformed to W2N anda-phase
W after RTA at 600 °C. As the RTA temperature was in-
creased to 900 and 1000 °C, W2N peaks disappeared and a
new peak ofa-phase W appeared. Also, higher RTA tem-
peratures yielded a higher peak intensity ofa-phase W.
Therefore, we may insist that a lower resistance of W67N33

on poly-Si by RTA is mainly caused by the transformation of
amorphous WNx films to a-phase W.

It is well known that W reacts easily with Si at tempera-
tures above 600 °C, resulting in the formation of WSix .7,8

However, it is interesting to note that we were not able to

FIG. 3. SIMS depth profiles of W67N33 on a poly-Si substrate:~a! as-
deposited and~b! after RTA at 1000 °C. The intensities of nitrogen were
normalized by an intensity of~a! tungsten and~b! silicon indicated on the
right-hand axis.

FIG. 4. TEM micrograph of W67N33 on poly-Si after RTA at 1000 °C for 1
min: ~a! uniform interface of a W/poly-Si structure and~b! amorphous layer
between W and poly-Si.

FIG. 5. XPS spectra of W67N33 on poly-Si after annealing at 1000 °C:~a!
as-received,~b! after sputtering for 5 s, and~c! after sputtering for 10 s.

FIG. 2. X-ray diffraction spectra of W67N33 /poly-Si ~inset! and resistivity as
a function of RTA temperature in nitrogen for 1 min.
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observe any peaks on WSix with the samples tested, even
after high-temperature annealing at 1000 °C~Fig. 2!. To in-
vestigate the causes of the lack of formation of WSix , the
behavior of nitrogen was investigated using SIMS analysis.
Equilibrium solubility of nitrogen in W is about 1023 at. %
at 1000 °C. This indicates that excessive nitrogen in the
W67N33 films may be diffused out and also redistributed after
RTA at 1000 °C.

Figure 3 shows the SIMS depth profiles of tungsten,
oxygen, silicon, and nitrogen before and after RTA at
1000 °C for 1 min. The intensities of nitrogen were normal-
ized by the intensity of tungsten and silicon on the right axis.
In the case of the as-deposited film, the concentration of
nitrogen was uniformly distributed in depth, but after RTA at
1000 °C, most of the nitrogen atoms were dissipated and par-
tially segregated at the W/poly-Si interface, as in Fig. 3~b!.
To evaluate the characteristics at the interface of the WNx

and poly-Si, TEM analysis was conducted with the sample
annealed at 1000 °C. As shown in Fig. 4~a!, the interface of
W and poly-Si was extremely uniform and there was no
layer of WSix . The nitrogen-segregated layer is clearly seen
in the high-resolution TEM photograph in Fig. 4~b!. The
thickness of the segregated layer was about 2 nm and the
structure was amorphous. From the analysis results of SIMS
and TEM, it may be concluded that the segregated layer acts
as a barrier protecting any interaction between W and poly-
Si, even at such a high RTA temperature of 1000 °C.

In order to identify the chemical bonding status of the
segregated layer, XPS analysis was performed~Fig. 5!. To
avoid the ‘‘interface effect’’ at the interface of W and poly-

Si, the W layer was removed using a boiling H2O2 solution,
before XPS analysis. Before sputtering the surface of the
sample, a strong peak of Si in the SiO2 peak was detected,
probably due to the oxide formed during the H2O2 treatment.
However, a peak indicating the silicon nitride~Si–N! bond-
ing status was clearly seen after sputtering the sample for 5 s,
and a peak of pure silicon appeared with further sputtering.
This result implies that the segregated nitrogen has a Si–N
bonding status.

The thermal stability of the W67N33/poly-Si structure
treated by RTA at 1000 °C under nitrogen atmosphere was
evaluated at the annealing temperatures of 850, 1000, and
1050 °C in a hydrogen environment for 2 min. It was found
that the RTA-treated W67N33/poly-Si structure was stable up
to 1000 °C for 2 min annealing, as shown in Fig. 6, due to
the nitrogen-segregated layer acting as a barrier between W
and poly-Si.

In summary, the structure of W67N33/poly-Si converted
into a-phase W/nitrogen-segregated layer/poly-Si layers by
RTA at 1000 °C for 1 min. Thea-phase W layer was used as
a low-resistive electrode, and the nitrogen-segregated layer at
the interface of W/poly-Si acted as anin situ formed diffu-
sion barrier, which successfully suppressed the silicidation
between W and poly-Si. The nitrogen-segregated layer was
an amorphous structure and revealed a Si–N bonding status.
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