SYNTHESIS AND CHARACTERIZATION OF $[Cp_2Ti(CH_3CN)_3]^{2+}[AsF_6^-]_2 - {}^{19}F$ NMR SPECTROSCOPY OF TITANOCENE HEXAFLUOROARSENATES*

TH. KLAPÖTKE

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, D-1000 Berlin 12, F.R.G.

(Received 5 July 1988; accepted 25 July 1988)

Abstract— $Cp_2Ti(AsF_6)_2$ (1) ($Cp = \eta^5 - C_5H_5$) reacts with an excess of CH_3CN yielding quantitatively the new cationic titanocene complex $[Cp_2Ti(CH_3CN)_3]^{2+}[AsF_6]_2$ (2). 2 was characterized by elemental analysis, IR, ¹H NMR and ¹⁹F NMR spectroscopy. Surprisingly, no reaction of 1 with CF₃CN could be observed. The ¹⁹F NMR spectra of 1 at various temperatures are reported and discussed, too. The reaction behaviour of Cp_2TiCl_2 (3) towards ClF was investigated, and $CpTiCl_3$ (4) and traces of $CpTiCl_2F$ (5) were shown to be the products of this reaction. Surprisingly, no evidence for the formation of Cp_2TiClF could be found. These results are discussed and can be understood easily on the basis of simple thermodynamic estimations.

The reaction of 3 with nitriles in the presence of suitable Lewis acids MCl_n , yields ionic complexes with one or two nitrile ligands bonded to the Ti. The complexes $[Cp_2Ti(C_8H_4N_2)_2][SbCl_6]_2$ (C₈H₄N₂ $[Cp_2Ti(Cl)(C_3H_2N_2)]_2[SnCl_3]$ =phthaloniteile); $(C_3H_2N_2 = malonitrile)$, and $[Cp_2Ti(Cl)(CH_3CN)]$ [FeCl₄] have been isolated.¹⁻³ The N coordinated chelate complexes [Cp₂Ti(bipy)][CF₃SO₃]₂ and [Cp₂Ti(phen)][CF₃SO₃]₂ are also known.⁴ Very recently we reported the synthesis of the first stable Lewis base free $Cp_2Ti(MF_6)_2$ (M = pnicogen) complexes where the MF_6 unit is directly cocorbinated to the Lo. 1 iragment. Whereas the mono-cyclopentadienyl species, $CpTi(MF_6)_3$, are unstable and till now were identified only at low temperature in solution, 7 Cp₂Ti(MF₆)₂ (M = As, Sb) are stable in the solid state and the structure of 1 was elucidated by single crystal X-ray diffraction.⁶ The IR spectra and Xray structure clearly show the covalent Cp₂Ti $(\cdots F \cdots AsF_{s})_{2}$ bond interaction in 1 with a bridging fluorine and reduced MF₆ symmetry.

As the 'H WMR spectroscopy was not sufficient to elucidate the Cp₂Ti—MF₆ bond situation in solution, ^{5,6} we investigated this particular problem by temperature-dependent ¹⁹F NMR spectroscopy. In addition to this it assued to be of interest to discover whether stable 1 would react with neutral nitrile ligands, yielding cationic titanocene derivatives according to eq. (1). Ternary adducts of Ni(EF₆)₂ (E = Sb, Bi) like [Ni(CH₃CN)₆][EF₆]₂ have been reported quite recently.⁸

$$1 + nR - CN \longrightarrow [Cp_2Ti(RCN)_n]^{2+}[AsF_{\delta}^-]_2. \quad (1)$$

As 1 can'be prepared either by reaction of 3 with AgAsF₆ or by reaction of Cp_2TiF_2 with AsF₅,⁶ we were interested to achieve a simple synthesis of Cp_2TiF_2 . This is of interest because of the high price for the commercially available AgAsF₆, which usually is prepared by fluorination of a mixture of elemental Ag or AgF and an excess of As₂O₅ with BrF.⁹ One possible way seemed to be the reaction of 3 with CIF according to eg. (2) which was estimated to be thermodynamically favoured (see below),

$$3+2ClF \longrightarrow Cp_2TiF_2+2Cl_2.$$
 (2)

The results of our investigations according to the goals outlined above are described in this paper.

^{*} Organotransition metal chemistry of highly fluorinated ligand systems (Organo-Übergangsmetall-Chemie hochfluorierter Ligand-Systeme): 4th communication (for 3rd communication see ref. 7).

EXPERIMENTAL

All techniques have been described in ref. 6. Cp_2TiCl_2 (3)¹⁰ and $Cp_2Ti(AsF_6)_2$ (1)⁶ were prepared as described in the works cited. Sulphur dioxide, ClF, AsF₅, CH₃CN and CF₃CN were purified by distillation. SO₂ and CH₃CN were dried over CaH₂. Silver fluoride (Alfa, 10125) was used without further purification. All reactions took place in an atmosphere due to the vapour pressure of SO₂, CH₃CN or CF₃CN, respectively.

Preparation of silver hexaftuoroarsenate(V) [AgAsF₆]

In a 50 cm³ thick-walled glass reaction vessel incorporating a "Young" valve (POR-10), 8 g of AsF (63.06 mmol) were suspended in 20 cm³ of CO₂ (1). After cooling this mixture to -196° C, 13 g of AsF₅ (76.51 mmol) were condensed onto the frozen SO₂. The reaction mixture was allowed to warm to room temperature and was stirred at RT in the dark for 12 h. After the solvent had been evaporated, the remaining white residue was dried *in vacuo* at RT for 4 h. Yield: 18.69 g (99.87%). IR: v (cm⁻¹) (Nujol mull) 700 vs (v_3), 385 s (v_4); (cf. ref. 11).

Preparation of $bis(\eta^5$ -cyclopentadienyl)tris(acetonitrile)bis(hexafluoroarsenato)titanium(IV) [Cp₂Ti (CH₃CN)₃][AsF₆]₂ (complex 2)

0.0691 g (0.1243 mmol) of 1 were dissolved in 5 cm³ of CH₃CN and stirred at RT for 1 h. The solvent was condensed into a second vessel $(\Delta T \approx 10^{\circ}$ C, 5–10 h) and the remaining microcrystalline deep red residue was dried in vacuo at RT for 24 h. Yield: 0.0841 g, 0.1238 mmol (99.60%). Found : C, 27.9; H, 2.7; N, 6.1. Calc. for C₁₆H₁₉As₂F₁₂N₃Ti (679.05) C, 28.3; H, 2.8; N, 6.2%. ¹H NMR (SO₂) δ (ppm) (int.) 7.28 (10.00) s, 2.69 (8.85) s, relative to TMS. ¹⁹F NMR (CD₃CN) δ (ppm) (int.) -49.7 (1), -59.6 (1), -69.8 (1), -79.4 (1), relative to CFCl₃. $\Delta v = 929 \pm 25$ Hz. IR: v (cm⁻¹) (Nujol mull) 3128 m (v-CH, Cp), 2320 m $(v_3 + v_4, CH_3CN)$, 2293 s (v-CN, v_2 -CH₃CN), 1128 w, 1028 sh and 1018 m (δ-CH, Cp), 957 w, 858 s (γ-CH, Cp), 698 vs (v-AsF, v_3 -AsF₆), 398 s (δ -AsF, v_4 - AsF_6).

Attempted synthesis of $[Cp_2Ti(CF_3CN)_n]^{2+}[AsF_6^-]_2$ (n = 2, 3)

 $1.00 \text{ g} (10.52 \text{ mmol}) \text{ of } \text{CF}_3\text{CN} (\text{g}) \text{ was condensed}$ at -196°C onto 0.2561 g (0.4607 mmol) of 1 and this was allowed to warm up to room temperature. As 1 is insoluble in CF₃CN (under high pressure) a suspension was formed. After 2 h at RT the reaction mixture was recooled to -78° C and the volatiles were pumped off at this temperature *in vacuo*. The remaining solid (0.2558 g) was identical with 1 (¹H NMR and IR data).

Reaction of 3 with CIF

Onto a frozen solution of 0.270 g (1.08 mmol) of 3 in 5 cm³ of SO₂, 0.118 g (2.17 mmol) of ClF were condensed at -196° C. After warming up and stirring for 12 h at RT, the solvent and the volatiles were pumped off *in vacuo* also at RT. Yield: 0.220 g (93%, calc. for CpTiCl₃). ¹H NMR (CDCl₃) δ (ppm) 7.07 s, relative to TMS. MS (50°C, 70 eV): *m/z* (int.), 218 (100) CpTiCl₃⁺, 202 (11) CpTiCl₂F⁺, 183 (76) CpTiCl₂⁺, 148 (34) CpTiCl⁺, 118 (36) TiCl₂⁺, 109 (19) CpTiCl₃²⁺, 83 (53) TiCl⁺.

¹⁹F NMR of 1

¹⁹F NMR (SO₂) δ (ppm) $T = 20^{\circ}$ C: -57.02 s, $b_{1/2} = 200$ Hz, $T = -70^{\circ}$ C: -61.53 s, $b_{1/2} = 350$ Hz; relative to CFCl₃.

RESULTS AND DISCUSSION

Preparative aspects

The reaction of 1 with an excess of CH_3CN (solvent) led in 100% yield to the preparations of 2 according to eq. (3).

$$1 + 3CH_{3}CN \xrightarrow{CH_{3}CN} 2.$$
 (3)

The identity of **2** was proved by elemental analysis, IR, ¹H and ¹⁹F NMR spectroscopy (see Experimental and below).

Whereas some related cationic titanocene derivatives with one and two via N coordinated neutral ligands are known (see above and refs 1–4), **2** contains three CH₃CN molecules, thus realizing the coordination number five. The 12-electron fragment Cp₂Ti²⁺ obtains the noble gas configuration by coordinating three two-electron donor ligands. In the MO scheme of Cp₂Ti²⁺ two of the three unoccupied orbitals lowest in energy are bonding (2a₁ and b₂), while one is non-bonding (1a₁).¹² This is in agreement with the experimental result that one of the three CH₃CN ligands can be removed by pumping off **2** at a higher temperature for several days according to eq. (4).

$$2\frac{dyn. vac.}{40-50^{\circ}C} [Cp_2Ti(CH_3CN)_2]^{2+} [AsF_6^-]_2.$$
(4)

The loss of one equivalent of CH₃CN was proved by weight change.

Surprisingly, 1 does not react with an excess of CF_3CN , yielding a cationic complex by analogy to the observed reaction with CH_3CN . 1 also crystallizes from SO_2 (1) as the covalent species and does not contain coordinated SO_2 . Assuming that the crystal lattice energies of 2 and the CF_3CN analogue are more or less identical, the gaining of energy due to coordination of CF_3CN to Cp_2Ti^{2+} is less than the sum of the energy terms due to entropy and $Ti \cdots AsF_6$ -bond interaction, which are working against the salt formation.

The preparation of Cp_2TiF_2 from 3 and ClF according to eq. (2) was not successful, surprisingly $CpTiCl_3$ was the reaction product [eq. (5)] and was identifed by ¹H NMR and mass spectroscopy.

$$3 + ClF \xrightarrow{SO_2} CpTiCl_3 + "CpF".$$
 (5)

According to eq. (6) the preparation of $AgAsF_6$ in 100% yield was shown to be very convenient. In this reaction all of the expensive AsF_5 is converted into $AgAsF_6$. Silver fluoride can be prepared from Ag_2O by using HF.¹³ Equation (7) also describes a common method to prepare $AgAsF_6$.

$$AgF + AsF_5 \xrightarrow{SO_2} AgAsF_6$$
 (6)

$$2Ag + 3AsF_5 \longrightarrow 2AgAsF_6 + AsF_3.$$
(7)

Vibrational spectroscopy

In the IR spectrum (see Fig. 1) of 1 the strong, broad absorption at 530 cm⁻¹ was assigned to the Ti—F symmetric and asymmetric stretching mode.^{5,6} The disappearance of this band indicates that also in the solid state there is no direct bonding interaction between the $[Cp_2Ti(CH_3CN)_3]^{2+}$ cation and the $[AsF_6^-]$ anions.

Free acetonitrile (liquid) shows the C—N stretching mode (v_2) at 2254 cm⁻¹.¹⁴ In **2** this band is shifted to 2293 cm⁻¹. This result may indicate that **2** has strong σ -donor (CH₃CN \rightarrow Ti) but weak π -acceptor (back) bonding (cf. CN⁻: 5σ , weakly antibonding; $2p\pi^*$ antibonding¹⁵).

NMR spectroscopy

The integration of the proton NMR spectrum of 2 in SO₂ solution clearly shows the composition of the complex as $[Cp_2Ti(CH_3CN)_3]^{2+}$ (see Fig. 2). The chemical shift in the ¹H NMR spectrum of 2 in SO₂ is similar to that observed for 1 in SO₂ solution.⁶ However, CH₃CN in solution is also still coordinated as the only methyl singlet appears at 2.67 ppm, whereas free acetonitrile in SO₂ has a chemical shift of 2.05 ppm (own results).

The ¹⁹F NMR spectra of 1 in SO₂ and 2 in SO₂ and CD₃CN show this effect, also. For instance, the

Fig. 1. IR spectrum of 2 in the regions $200-1000 \text{ cm}^{-1}$ and $2000-3300 \text{ cm}^{-1}$.

Fig. 2. ¹H NMR spectrum of 2 in SO₂, 20°C.

¹⁹F NMR spectrum of 2 in CD₃CN, even at low temperatures (-40°C), consists of a nicely dissolved four-line pattern due to the As—F couplings $(I, \frac{75}{33}As = 3/2)$ in the octahedral AsF⁻₆ anion (see Fig. 3).

On the other hand, 1 dissolved in SO₂ shows at RT in the ¹⁹F NMR spectrum only one peak which does not split into the expected pattern even at low temperatures $(-70^{\circ}C)$. This indicates free highly symmetric AsF₆⁻ ions in the first case (2), whereas this group is coordinated to the Ti centre in the second case (1), showing rapid exchange (pseudorotation) even at low temperatures (otherwise no singlet in the proton NMR spectrum could be expected).

Thermodynamic aspects

By the reaction of 3 with CIF neither Cp₂TiClF nor Cp₂TiF₂, but only CpTiCl₃ (with traces of CpTiCl₂F) was identified as the product. Nevertheless the reaction according to eq. (8) should be exothermic, $\Delta H_8 = -144$ kJ mol⁻¹, as was estimated in Scheme 1.

Fig. 3. ¹⁹F NMR spectrum of 2 in CD₃CN, -40° C.

$$\mathbf{3} + \mathrm{ClF} \longrightarrow \mathrm{Cp}_{2}\mathrm{Ti}\mathrm{ClF} + \mathrm{Cl}_{2}.$$
 (8)

However, a reaction according to eq. (9) was estimated to be even more thermodynamically favourable (see Scheme 2), $\Delta H_9 = -358 \text{ kJ mol}^{-1}$.

$$\mathbf{3} + \mathrm{ClF} \longrightarrow \mathrm{CpTiCl}_3 + \mathrm{``CpF''}. \tag{9}$$

Therefore one can easily understand why a process, shown by eq. (9) and not as indicated by eq. (8), occurs. Moreover, the sums of the bond energies of Ti—Cl (429 kJ mol⁻¹)^{16,17} and C—F (485 kJ mol⁻¹)¹⁹ on one side and Ti—F (585 kJ mol⁻¹)¹⁹ and C—Cl (327 kJ mol⁻¹)¹⁹ on the other side, explain that CpTiCl₃ is formed as the main product and only a small amount of CpTiCl₂F was found.

It seems likely that some of the bond strength estimation data may either bear some experimental error or may be slightly inaccurate, as only ΔH but no ΔS values were estimated. However, this simple

Scheme 1. Thermodynamic cycle to estimate the heat of reaction 8. (a) Ti—Cl bond energy in 3: 429 kJ mol⁻¹;¹⁷ (b) Cl—F bond energy in ClF: 255 kJ mol⁻¹;¹⁸ (c) Ti—F bond energy in TiF₄: 585 kJ mol⁻¹;¹⁹ (d) Cl—Cl bond energy in Cl₂: 243 kJ mol⁻¹.¹⁸

Scheme 2. Thermodynamic cycle to estimate the heat of reaction 9. (a) Ti—Cp bond energy in 3: 301 kJ mol⁻¹;¹⁷ (b) Cl—F bond energy in ClF: 255 kJ mol⁻¹;¹⁸ (c) Ti—Cl bond energy in 3: 429 kJ mol⁻¹;¹⁷ (d) C—F bond energy: 485 kJ mol⁻¹.¹⁹

thermodynamic analysis clearly shows that a synthesis of Cp_2TiF_2 from 3 and ClF according to eq. (2) seems to be very unlikely or even impossible.

CONCLUSIONS

Quite recently we described the first synthesis and characterization of stable titanocene derivatives containing MF_6^- groups (M = pnicogen) directly coordinated to the Cp₂Ti centre.^{5,6} In the present work the preparation of the ionic $[Cp_2Ti(CH_3CN)_3]^{2+}[AsF_6]_2$ (2) is reported, in which three nitrile ligands are bonded to the Cp₂Ti²⁺ fragment. This also clearly shows the importance of the "covalent" hexafluoroarsenates mentioned above as useful reagents in the synthesis of cationic metallocene complexes. These compounds (neutral and cationic) are of interest not only on account of their structure in solution and in crystals, but also in respect of their transition metal fluorine bond situation and the rapid exchange processes of the coordinated hexafluoropnictogenate ligands. In addition, the highly hydrophilic (and water soluble) cationic species may well open up a new form of chemotherapeutics, as compounds containing the Cp_2Ti group often show antiproliferative activity, but their application is limited by their low solubility in polar solvents.²⁰

Acknowledgements—Our thanks are due to M. Schriver for NMR spectra, A. Stöckel for mass spectra and to Prof. Jack Passmore for many helpful discussions.

REFERENCES

- 1. K. Berhalter and U. Thewalt, J. Organomet. Chem. 1987, 332, 123.
- 2. M. G. Meirim and E. W. Neuse, *Transition Met. Chem.* 1984, 9, 337.

- 3. U. Thewalt, K. Berhalter and E. W. Neuse, *Transition Met. Chem.* 1985, 10, 393.
- 4. U. Thewalt and K. Berhalter, J. Organomet. Chem. 1986, 302, 193.
- 5. Th. Klapötke, Polyhedron 1988, 7, 1221.
- 6. Th. Klapötke and U. Thewalt, J. Organomet. Chem., in press.
- 7. Th. Klapötke, Inorg. Chim. Acta 1988, 150, 165.
- R. Bougon, P. Charpin, K. O. Christe, J. Isabey, M. Lance, M. Nierlich, J. Vigner and W. W. Wilson, *Inorg. Chem.* 1988, 27, 1389.
- 9. J. C. Bailar, H. J. Emeléus, R. Nyholm and A. F. Trotman-Dickenson, In *Comprehensive Inorganic Chemistry*, Vol. 2, p. 672. Pergamon Press, Oxford (1973).
- G. Wilkinson and J. M. Birmingham, J. Am. Chem. Soc. 1954, 76, 4281.
- 11. K. Nakamoto, In *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, 4th edn, p. 150. Wiley-Interscience, New York (1986).
- 12. J. W. Lauher and R. Hoffmann, J. Am. Chem. Soc. 1976, 98, 1729.
- N. N. Greenwood and A. Earnshaw, In *Chemistry* of the Elements, p. 1374. Pergamon Press, Oxford (1984).
- 14. P. Venkateswarlu, J. Chem. Phys. 1951, 19, 293.
- K. Nakamoto, In Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn, p. 272. Wiley-Interscience, New York (1986).
- F. A. Cotton and G. Wilkinson, In Anorganische Chemie, 4th edn, p. 96. Verlag Chemie, Weinheim (1982).
- V. I. Tel'noi, I. B. Rabinovich, V. D. Tikhonov, V. N. Latyaeva, L. I. Vyshinskaya and G. A. Razuvaev, Dokl. Phys. Chem. Proc. Acad. Sci. USSR 1967, 172/177, 467.
- D. A. Johnson, In Some Thermodynamic Aspects of Inorganic Chemistry, 2nd edn, p. 201. Cambridge University Press, Cambridge (1982).
- 19. J. E. Huheey, In Inorganic Chemistry, 3rd edn, appendix. Harper International, Cambridge (1983).
- 20. P. Köpf-Maier, Naturwiss. 1987, 74, 374, and refs therein.