



# Nitridophosphates

# CdP<sub>2</sub>N<sub>4</sub> and MnP<sub>2</sub>N<sub>4</sub> – Ternary Transition-Metal Nitridophosphates

Florian J. Pucher,<sup>[a]</sup> Friedrich W. Karau,<sup>[a]</sup> Jörn Schmedt auf der Günne,<sup>[b]</sup> and Wolfgang Schnick<sup>\*[a]</sup>

**Abstract:** The ternary transition-metal nitridophosphates  $CdP_2N_4$  and  $MnP_2N_4$  have been synthesized under high-pressure high-temperature conditions (5–8 GPa, 1000–1300 °C) by using the multianvil technique. Cd and Mn azides can be used as the starting materials, however, with respect to safety considerations, it is much more advantageous to start from metal powders and phosphorus nitride imide,  $HPN_2$ . Both nitridophosphates crystallize in a structure closely related to the mega calsilite structure type. As a result of the known issues concerning superstructures with this type of structure, TEM investigations were performed on  $CdP_2N_4$ , which revealed that the megacalsilite superstructure is not equally pronounced in all

crystallites. By adding NH<sub>4</sub>Cl as mineralizer, single crystals were obtained that exhibit unequally pronounced superstructure reflections. Consequently, an averaged structural model was used and refined by the Rietveld method [*P*6<sub>3</sub>22, *a* = 16.7197(3), *c* = 7.6428(2) Å, *V* = 1850.3(2) Å<sup>3</sup>, *R*<sub>p</sub> = 0.0671, *wR*<sub>p</sub> = 0.0869 for CdP<sub>2</sub>N<sub>4</sub> and *P*6<sub>3</sub>22, *a* = 16.5543(2), *c* = 7.5058(2) Å, *V* = 1781.3(1) Å<sup>3</sup>, *R*<sub>p</sub> = 0.0526, *wR*<sub>p</sub> = 0.0697 for MnP<sub>2</sub>N<sub>4</sub>]. The <sup>31</sup>P NMR spectra exhibit four signal groups at (6.4, 4.8), 0.8, and -9.7 ppm with pronounced shoulders belonging to the same phase in an approximate area ratio of 4.8:1.1:2.0, thereby proving at least eight P sites.

## Introduction

Nitridophosphates represent a class of materials with high potential for various applications.<sup>[1]</sup> Binary P<sub>3</sub>N<sub>5</sub>, which was first described in 1862, although its structure was only elucidated in 1997<sup>[2–4]</sup> finds application as a gate insulator material in electronic devices and has been used for the production of incandescent lamps.<sup>[5-7]</sup> Ternary nitridophosphates have been identified as Li<sup>+</sup> ion conductors (LiPN<sub>2</sub>, Li<sub>7</sub>PN<sub>4</sub>),<sup>[8,9]</sup> possible gas storage materials  $[P_4N_4(NH)_4NH_3]$ ,<sup>[10,11]</sup> and hard materials (e.g.,  $\gamma$ - $\mathsf{P}_3\mathsf{N}_5$  and  $\mathsf{BeP}_2\mathsf{N}_4).^{[12-15]}$  Recent work shows that  $\mathsf{Eu}^{2+}\text{-doped}$ nitridophosphates like  $MP_2N_4$ :Eu<sup>2+</sup> (M = Ca, Sr, Ba) and  $Ba_3P_5N_{10}X:Eu^{2+}$  (X = Cl, I, Br) are promising luminescent materials that may find application as phosphors in (pc)LEDs.[16-18] One reason for this remarkable variety in materials properties is their structural similarity to silicates.<sup>[1]</sup> The element combination P/N has the same number of valence electrons as the combination Si/O. Similarly to silicates, an anionic three-dimensional network of edge-sharing PN4 tetrahedra can be formed. However, N can guite easily connect not only two, but even three or four tetrahedron centers.[1,3,4,19-31]

 [a] Department of Chemistry, Chair in Inorganic Solid-State Chemistry, University of Munich (LMU), Butenandtstr. 5–13 (D), 81377 München, Germany E-mail: wolfgang.schnick@uni-muenchen.de http://www.cup.uni-muenchen.de/ac/schnick

[b] Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany

ORCID(s) from the author(s) for this article is/are available on the WWW under http://dx.doi.org/10.1002/ejic.201600042.

In nitridophosphates, P typically occurs in networks of more or less condensed PN<sub>4</sub> tetrahedra. But higher coordination numbers of P with respect to N can occur as well. Besides tetrahedra, square-pyramidal PN<sub>5</sub> structures have also been found in the high-pressure polymorphs  $\gamma$ -P<sub>3</sub>N<sub>5</sub> and trigonal-bipyramids in  $\gamma$ -P<sub>4</sub>N<sub>6</sub>(NH) leading to a higher bond density and thus greater hardness.<sup>[12,13,32]</sup> BeP<sub>2</sub>N<sub>4</sub>, which has recently been described, is another example with high hardness, and an even denser and harder high-pressure polymorph has been predicted.<sup>[14,15]</sup> Transition-metal nitridophosphates are more difficult to synthesize because the corresponding phosphides are rather stable and their formation has to be avoided by carefully choosing appropriate synthesis conditions and starting materials. Besides  $Zn_6P_{12}N_{24}$ , which later was proved to be the quaternary compound  $Zn_8P_{12}N_{24}O_2$ ,<sup>[33,34]</sup> and  $Mn_2PN_3$ , which crystallizes in a wurtzite-like structure,<sup>[35]</sup> only main-group-element-containing ternary nitridophosphates have been described.<sup>[36-48]</sup> With respect to the intriguing properties that can be expected (e.g., color, magnetism, electronic properties), access to transition-metal nitridophosphates remains a challenge.

Usually, ternary nitridophosphates are synthesized from the corresponding nitrides or azides and  $P_3N_5$ .<sup>[36-48]</sup> Azides are advantageous, especially in combination with high-pressure high-temperature synthesis.<sup>[43,44]</sup> However, synthesis temperatures of around 1000 °C are necessary and  $P_3N_5$  as well as most nitridophosphates undergo thermal decomposition with evolution of  $N_2$  above 850 °C. By following the principle of Le Chatelier, an increased  $N_2$  pressure stabilizes both the starting material  $P_3N_5$  as well as the formed nitridophosphate. For most transition metals, the corresponding azides are highly explosive and have

Wiley Online Library

```
1497
```



to be handled with particular care.<sup>[49]</sup> Additionally, for most transition metals only subnitrides are stable and therefore an additional nitrogen source would be required when synthesizing ternary nitridophosphates. The use of halides and chalcogenides leads to quaternary compounds, and several (oxo)-nitride sodalites, for example,  $M_{[6+(y/2)-x]}H_{2x}[P_{12}N_{24}]Z_y$  (M = Fe, Co, Ni, Mn; Z = Cl, Br, I;  $0 \le x \le 4$ ;  $y \le 2$ ) and  $M_{8-m}H_m[P_{12}N_{18}O_6]X_2$  (M = Cu, Li; X = Cl, Br, I) have been synthesized in this way.<sup>[50,51]</sup>

In this work we report on the synthesis of  $CdP_2N_4$  and  $MnP_2N_4$ . Although  $CdP_2N_4$  may be prepared from the highly explosive azide,<sup>[52]</sup> it is much more feasible to start from Cd powder and phosphorus nitride imide HPN<sub>2</sub>. Metal powder and HPN<sub>2</sub> has been successfully used for the preparation of  $Mn_2PN_3$ , however, under different synthesis conditions.<sup>[35]</sup> Analogously to Si(NH)<sub>2</sub> in the synthesis of nitridosilicates, HPN<sub>2</sub> can be regarded as a polymeric acid in which the metal is dissolved.<sup>[34,53]</sup> This safer preparation method was then successfully applied to the synthesis of  $MnP_2N_4$ .

#### **Results and Discussion**

CdP<sub>2</sub>N<sub>4</sub> can either be synthesized at 5–8 GPa and 1000–1300 °C from the metal azide and P<sub>3</sub>N<sub>5</sub> according to Equation (1) or from Cd powder and HPN<sub>2</sub> according to Equation (2). The latter method can also be applied for the synthesis of MnP<sub>2</sub>N<sub>4</sub>. Crystallinity can be improved by adding small amounts of NH<sub>4</sub>Cl.<sup>[54]</sup>

$$3 \text{ Cd}(N_3)_2 + 2 \text{ P}_3 \text{N}_5 \rightarrow 3 \text{ CdP}_2 \text{N}_4 + 8 \text{ N}_2$$
(1)

$$M + 2 \text{ HPN}_2 \rightarrow MP_2N_4 + H_2 (M = \text{Cd}, \text{Mn})$$
(2)

In the case of  $MnP_2N_4$ , the crude product contains considerable amounts of Mn phosphides, which can be dissolved by treating the product with dilute HCl.

Both compounds exhibit powder X-ray diffractograms that are very similar to the corresponding patterns of megacalsilitetype SrP<sub>2</sub>N<sub>4</sub> and CaP<sub>2</sub>N<sub>4</sub> and give similar lattice parameters upon indexing the reflections. Structure elucidation of the latter compounds from powder samples was difficult, because the megacalsilite superstructure is realized by the ordering effects of the N atoms.<sup>[42]</sup> This results in very weak reflections corresponding to the superstructure. Owing to the larger diffraction contrast between Cd and N compared with Ca or Sr and N as in CaP<sub>2</sub>N<sub>4</sub> and SrP<sub>2</sub>N<sub>4</sub>, it is even more difficult to visualize these structural details solely from PXRD data. Therefore, electron diffraction experiments were carried out on CdP<sub>2</sub>N<sub>4</sub> samples. Three different types of crystallites were identified (Figure 1). Type 1 exhibits an analogous superstructure to that of SrP<sub>2</sub>N<sub>4</sub> (megacalsilite type). However, as observed by X-ray diffraction, due to the larger difference in the number of electrons in Cd<sup>2+</sup> compared with Sr<sup>2+</sup> and the fact that the superstructure is mainly caused by the displacement of the N atoms, the superstructure reflections are considerably weaker in CdP<sub>2</sub>N<sub>4</sub> crystallites. Type 2 crystals show diffuse scattering and an incommensurate superstructure occurs in type 3 crystallites. The diffuse intensities of the type 2 crystallites are oriented towards the reflections of the basic structure and are not always easy to distinguish from the megacalsilite superstructure.





Figure 1. Electron diffraction images of three different types of  $CdP_2N_4$  crystallites, prepared from  $Cd(N_3)_2$  and  $P_3N_5$ , viewed along the [111] direction (superstructure cell). Type 1:  $SrP_2N_4$ -like. Type 2: Diffuse intensities. Type 3: Incommensurate reflection intensities.

Examining the type 3 crystallites, the incommensurate reflections are closer to the main reflections of the basic structure than the corresponding reflections of the commensurate megacalsilite structure.

Several crystallites of  $CdP_2N_4$  were examined and it was concluded that powder samples of  $CdP_2N_4$  consist of several different phases that are distinguished by a more or less predominant superstructure. To allow the N atoms to order, temperature-programmed powder X-ray diffraction investigations were conducted. Although  $CdP_2N_4$  is stable up to the remarkably high thermal decomposition temperature of 1050 °C, the incommensurate reflections move towards their regular Bragg positions (Figure 2). This point is reached at 400 °C and is stable up to 650 °C. At higher temperatures, these reflections disappear completely. Diffuse intensities could not be seen in this case, because they result solely in a broadening of the reflections. This broadening correlates to nearly 100 % of the background.



Figure 2. Section of the powder X-ray diffractogram of CdP<sub>2</sub>N<sub>4</sub>, prepared from Cd(N<sub>3</sub>)<sub>2</sub> and P<sub>3</sub>N<sub>5</sub>. With increasing temperature, the incommensurate reflections move towards their regular Bragg positions. The (621) reflection occurs as a satellite of the (413) reflection at 20 °C and is at its regular Bragg position at 500 °C.

In spite of these findings, the annealing of  $CdP_2N_4$  samples at higher temperatures did not lead to single-phase samples at room temperature. Consequently, a structure model to be refined from room-temperature powder X-ray diffraction data by the Rietveld method has to be an averaged model taking all the different types of crystallites into account (Figure 3). The megacalsilite superstructure can be derived from a highly symmetric basic structure (space group  $P6_322$ ) by gradually reducing the symmetry. After a *klassengleiche* transition the unit cell of the superstructure is determined. In the following *translationengleiche* transition, two-fold axes are removed from the *ab* plane leading to space group  $P6_3$ .<sup>[42,45]</sup> The first step of this symmetry reduction starting from the basic structure towards the full megacalsilite superstructure proved to be the best





model for  $CdP_2N_4$ . In the basic structural model the P–N–P angles along the *c* axis exhibit values of 180°. By reducing the symmetry, the values for this angle can be refined to a more realistic value. However, the N atoms cannot order as freely as in the megacalsilite structure type (space group  $P6_3$ ) because there is still a two-fold axis in the *ab* plane left.



Figure 3. Crystal structure of  $MnP_2N_4$  and  $CdP_2N_4$ , viewed along the *c* (left) and *b* (right) axes.

The <sup>31</sup>P NMR spectra exhibit four signal groups belonging to a single crystalline phase with pronounced shoulders (Figure 4). The peak areas of these groups obtained by deconvolution of a quantitative 1D MAS NMR spectrum (not shown) have a ratio of approximately 4.8:1.1:2.0 for the peaks at (6.4, 4.8), 0.8 and -9.7 ppm, respectively, which reveals that the symmetry must be as low as in the megacalsilite structure so that eight P atoms occupy crystallographic sites with equal multiplicity. However, the PXRD data were not sufficient to prove this assumption sufficiently. In situ NMR experiments at higher temperature showed a slight reversible shift of the resonances but no fundamental change, which evidences the stability of the structure and indicates the absence of phase transitions.



Figure 4. <sup>31</sup>P NMR double-quantum (DQ) single-quantum (SQ) correlation spectrum of CdP<sub>2</sub>N<sub>4</sub>, prepared from Cd(N<sub>3</sub>)<sub>2</sub> and P<sub>3</sub>N<sub>5</sub>, recorded at room temperature. The diagonal line marks the position of the isochronous DQ spin pairs. DQ coherences were excited with the INADEQUATE sequence (symmetric protocol, 3 ms DQ excitation time). The spectrum proves that the observed peak groups at 6.4, 4.8, 0.8 and –9.7 ppm all belong to a single crystalline phase.

Recently, we succeeded in growing single crystals of a highly condensed nitridophosphate, namely  $\beta$ -HPN<sub>2</sub>, by adding NH<sub>4</sub>Cl as mineralizer.<sup>[54]</sup> Under the reaction conditions, NH<sub>4</sub>Cl decomposes into NH<sub>3</sub> and HCl, which probably protonates reversibly the growing nitridophosphate network. This cleaving and re-



Figure 5. Rietveld refinement of MnP<sub>2</sub>N<sub>4</sub> (top) and CdP<sub>2</sub>N<sub>4</sub> (bottom). Observed (crosses), calculated (line), and difference (gray line). Allowed Bragg reflection positions are marked with vertical lines.

Eur. J. Inorg. Chem. 2016, 1497–1502 w

www.eurjic.org





building of bonds seems to support crystallization.<sup>[1]</sup> This method can also be applied to  $CdP_2N_4$  and  $MnP_2N_4$ . However, as can be seen from the electron diffraction experiments, the megacalsilite superstructure is not equally pronounced in different crystals. This fact also applies to larger crystals, which can be investigated by single-crystal X-ray diffraction experiments. Consequently, even when utilizing the NH<sub>4</sub>Cl method, the bulk compounds are best investigated by Rietveld refinement of powder samples leading to an averaged superstructure.

Rietveld refinement of bulk samples of CdP<sub>2</sub>N<sub>4</sub> and MnP<sub>2</sub>N<sub>4</sub> consequently only allows the determination of averaged structural data (Figures 3 and 5). Owing to the high diffraction contrast between the metal ions and the N atoms, the latter are not easily located accurately and tend to be closer to the metal ions than the sum of the ionic radii. To circumvent this problem, the P–N distances can be restrained, because this type of bond typically has a rather narrow range of between 1.5 and 1.7 Å.<sup>[45]</sup> Table 1 shows the results of the Rietveld refinement of CdP<sub>2</sub>N<sub>4</sub> and MnP<sub>2</sub>N<sub>4</sub>.

Table 1. Crystallographic data for  ${\rm CdP_2N_4}$  and  ${\rm MnP_2N_{4,}}$  and details of the Rietveld refinement.

|                                         | $CdP_2N_4$            | $MnP_2N_4$                              |
|-----------------------------------------|-----------------------|-----------------------------------------|
| Molar mass [g mol <sup>-1</sup> ]       | 230.39                | 172.92                                  |
| Crystal system                          | hexagonal             |                                         |
| Space group                             |                       | <i>P</i> 6 <sub>3</sub> 22 (no. 182)    |
| Cell parameters                         |                       |                                         |
| a [Å]                                   | 16.7197(3)            | 16.5543(2)                              |
| b [Å]                                   | 16.7197(3)            | 16.5543(2)                              |
| c [Å]                                   | 7.6428(2)             | 7.5058(2)                               |
| Cell volume [Å <sup>3</sup> ]           | V = 1850.3(2)         | V = 1781.3(1)                           |
| Formula units per cell                  |                       | 24                                      |
| $\varrho_{calcd}$ [g cm <sup>-3</sup> ] | 4.9623(2)             | 3.6168(1)                               |
| Diffractometer                          | Stoe StadiP           |                                         |
| Temperature [K]                         |                       | 298                                     |
| Radiation, λ [Å]                        |                       | Mo- <i>K</i> <sub>α1</sub> , 0.70930    |
| Detector                                |                       | lin. PSD, $\Delta 2 \theta = 5^{\circ}$ |
| Diffraction range [°]                   | $6 < 2\theta < 75$    | $5 < 2\theta < 60$                      |
| Step width [°] (internal                | 0.3 (0.01)            |                                         |
| step width [°])                         |                       |                                         |
| Data points                             | 6900                  | 5400                                    |
| Obsd. reflections                       | 1964                  | 1095                                    |
| Background function                     | shifted Chebyshev     |                                         |
| Profile function                        | fundamental parameter |                                         |
| Refined parameters                      | 75                    | 70                                      |
| GoF                                     | 1.110                 | 1.359                                   |
| Final R indices                         |                       |                                         |
| R <sub>p</sub>                          | 0.06707               | 0.05261                                 |
| wRp                                     | 0.07780               | 0.06979                                 |

# Conclusions

 $CdP_2N_4$  and  $MnP_2N_4$  have successfully been synthesized under high-pressure high-temperature conditions.  $CdP_2N_4$  is accessible from the corresponding azide and  $P_3N_5$  or from Cd powder and HPN<sub>2</sub>. The latter method is evidently safer because  $Cd(N_3)_2$ is highly hazardous and tends to deflagrate violently when exposed to thermal or mechanical shock.  $MnP_2N_4$  was subsequently synthesized from Mn powder and HPN<sub>2</sub>. Because in this case no additional N<sub>2</sub> pressure from the decomposition of the azide is available, partial dissociation of the product is observed and besides MnP<sub>2</sub>N<sub>4</sub> there is also a reasonable amount of phosphides in the crude product. To obtain a phase-pure sample, the crude product can be treated with diluted mineral acids, a procedure in which the corresponding phosphides dissolve, but the nitridophosphate is left intact. Both compounds CdP<sub>2</sub>N<sub>4</sub> and MnP<sub>2</sub>N<sub>4</sub> are isotypic to SrP<sub>2</sub>N<sub>4</sub>, however, the megacalsilite superstructure is less pronounced. Electron diffraction analysis of  $CdP_2N_4$  samples proved the presence of three different types of crystallites in the bulk material, which can be distinguished by differences in their diffraction intensities related to their superstructure. Temperature-programmed powder X-ray diffraction experiments showed that above 400 °C ordering effects can be observed and above 650 °C only the megacalsilite superstructure is stable. The <sup>31</sup>P NMR spectroscopic data is in agreement with at least eight different P sites, which is also in accord with the megacalsilite superstructure. However, the powder Xray diffraction data recorded at room temperature only allow for Rietveld refinement in a higher symmetric space group (P6<sub>3</sub>22) with only five distinguishable P sites. The main difference compared with the megacalsilite superstructure (space group  $P6_3$ ) is the presence of a two-fold axis in the *ab* plane leading to higher ordering of the N atoms. The latter are far more difficult to locate compared with, for example, in SrP<sub>2</sub>N<sub>4</sub> due to the considerably larger diffraction contrast between Cd and N. By applying the corresponding restraints to the Rietveld refinement of the bulk powder samples, the average structure, including a partial superstructure, could be refined. Although a superstructure in space group P63 was confirmed for SrP2N4, only a higher symmetric averaged structure could successfully be refined for CdP<sub>2</sub>N<sub>4</sub>. However, NMR measurements support the presence of at least eight different P sites, analogously to the structure proven for SrP<sub>2</sub>N<sub>4</sub>. Electron diffraction experiments showed that the superstructure is not equally pronounced in several crystallites, which was confirmed by singlecrystal X-ray diffraction experiments on larger crystals of CdP<sub>2</sub>N<sub>4</sub> and MnP<sub>2</sub>N<sub>4</sub>. Consequently, the structural properties of bulk samples are best described by means of Rietveld refinement, whereas each single crystallite reveals different details of the real structure.

## **Experimental Section**

**Synthesis of the Starting Materials:**  $P_3N_5$  and  $HPN_2$  were synthesized from (PNCl<sub>2</sub>)<sub>3</sub> in a flow of dried NH<sub>3</sub> (Messer Griesheim, 3.8) according to literature procedures.<sup>[55]</sup> Portions of around 8 g of (PNCl<sub>2</sub>)<sub>3</sub> (ABCR, 98 %) were placed in an alumina boat that had previously been dried in vacuo ( $5 \times 10^{-4}$  mbar) at 950 °C. The starting material was then heated to 100 °C at a rate of 0.8 °C/min in a light flow of NH<sub>3</sub> that had been dried by flowing through a column of KOH. The temperature was kept at 100 °C for 10 h. After cooling to room temperature, NH<sub>3</sub> was expelled with a flow of argon and the sample ground to a powder in a mortar. It was then placed in the crucible again and the procedure repeated at 130, 190, and 300 °C. In the last step, the sample was heated to 600 °C in vacuo to remove NH<sub>4</sub>Cl and produce amorphous HPN<sub>2</sub>. For P<sub>3</sub>N<sub>5</sub>, instead of 600 °C, a temperature of only 450 °C was applied, followed by a final step of 950 °C for 2 h in a flow of NH<sub>3</sub>.

 $Cd(N_3)_2$  was synthesized from  $CdCO_3$  (Merck, puriss.) and an aqueous solution of  $HN_3$  according to a literature procedure.  $^{[56]}$  Special





caution was necessary when handling even dilute solutions of  $HN_3$  because the vapors are highly poisonous. Pure  $HN_3$ , which is highly explosive and may detonate violently upon friction or thermal shock, may condensate onto cool surfaces, and is therefore important to avoid. A solution of about 24 % can be obtained by careful distillation. This solution was slowly added in excess (ca. 100 mL) to solid CdCO<sub>3</sub> (6 g, 34.8 mmol) and stirred for 3 d. The crystalline product was isolated and washed with cold water followed by ethanol and finally diethyl ether. After drying over  $P_4O_{10}$  in an evacuated desiccator the purity of the product was confirmed by powder X-ray diffraction.

**Extreme caution** is necessary when handling  $Cd(N_3)_2$ . It detonates vigorously upon friction or thermal shock. For safety reasons only amounts of up to a maximum of 90 mg were used. Spatulas of horn were used instead of metal ones. Mixing with other starting materials is preferably performed by using a micro ball mill after careful premixing in an agate mortar to avoid high friction.

High-Pressure Syntheses: High-pressure syntheses were carried out by using a modified Walker-type multianvil set-up.<sup>[57]</sup> The starting materials were thoroughly and in the case of  $Cd(N_3)_2$  very carefully mixed by using a micro ball mill three times for 3 min. A micro ball mill causes less friction than the usual agate mortar and pestle and is thus more suitable for handling highly sensitive compounds like transition-metal azides. The reaction mixture was then placed in a crucible of hexagonal BN (Hebosint S100, Henze, Germany), which was closed with a lid of the same material. The crucible was set in a graphite tube (SGL carbon, Germany) that serves as resistance heating. To minimize a thermal gradient, this tube was placed in a larger tube of the same material with two plates of porous MgO (Technoker, Germany) used to center the inner tube. This arrangement was placed in a tube of zirconia (Cesima Ceramics, Germany) as thermal insulator. Electrical contact was achieved through two small plates of Mo. The tube was then placed in an octahedron of Cr-doped MgO (5 % Cr<sub>2</sub>O<sub>3</sub>, Ceramic Substrates, United Kingdom) as pressure medium with an edge length of 18 mm. Cubes of WC (6 % Co, Hawedia, Germany) with truncated edges (11 mm truncated edge length) were used as anvils in a Walker-type multianvil apparatus. To prevent the pressure medium from flowing out through the gaps between the cubes, gaskets of pyrophyllite were used. These were supported by sheets of Bristol cardboard (269 g/ m<sup>2</sup>, Bähr, Germany). Isolation of the cubes was realized by applying PTFE foil (Vitaflon, Germany). The assembled anvils form a larger cube that was held together by plates of glass-fiber-enhanced resin plates, to which small strips of copper were applied for electrical contact. This set-up was placed in a Walker-type multianvil apparatus. After reaching the desired synthesis pressure at a rate of 1 bar/ min of hydraulic oil pressure, the electrical heating was turned on. Following the temperature program the pressure was slowly reduced (1/3 bar/min). After the experiment, the sample was recovered by cracking the pressure medium open and removing carefully all other materials.

**X-ray Diffraction**: X-ray diffraction experiments were carried out with a Stoe StadiP diffractometer with Debye–Scherrer geometry, a PSD detector, and Mo- $K_{\alpha 1}$  radiation. For temperature-programed measurements, an electrical resistance furnace was employed. Rietveld refinement was carried out by using the GSAS/EXPGUI and the TOPAS Version 4.1 program packages.<sup>[58–60]</sup>

Single-crystal X-ray diffraction was carried out with Bruker d8 venture and Nonius–Kappa CCD diffractometers using Mo- $K_{\alpha}$  radiation ( $\lambda = 0.71073$  Å) and a graphite monochromator. Single-crystal structure solution was achieved by direct methods with the software package WinGX, which was also used for refinement using SHELX97.<sup>[61]</sup>

Further details of the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de), on quoting the deposition numbers CSD-428137 (MnP<sub>2</sub>N<sub>4</sub>) and CSD-428140 (CdP<sub>2</sub>N<sub>4</sub>).

**Electron Diffraction:** Electron diffraction experiments were carried out with a Philips CM 30 transmission electron microscope with a super twin lens and  $LaB_6$  cathode in SAD mode.

**NMR Spectroscopy:** NMR spectra were recorded with a 500 MHz (11.4 T) Bruker DSX 500 Avance FT NMR spectrometer. Zirconia rotors with diameters of 2.5 and 4 mm were used in combination with Bruker double-resonance probe heads at rotation frequencies of up to 25 kHz. The <sup>31</sup>P chemical shifts are given relative to 85 % phosphoric acid ( $\delta = 0$  ppm). High-temperature NMR experiments were performed with a LASER-heated Bruker 7 mm MAS NMR probe head at a spinning frequency of 3800–4000 Hz with a Tecmag Apollo console in a magnetic field of 4.7 T.

#### **Acknowledgments**

Financial support by the Deutsche Forschungsgemeinschaft (DFG) (priority program SPP1236, project number SCHN 377/ 13) as well as by the Fonds der Chemischen Industrie (FCI) are gratefully acknowledged. The authors would like to thank Prof. Arndt Simon and his co-worker Viola Duppel at the MPI FKF in Stuttgart, Germany, for conducting electron-diffraction experiments as well as Prof. Leo van Wüllen and his co-worker Sebastian Wegner at the University of Augsburg for the double-quantum single-quantum NMR correlation spectrum of  $CdP_2N_4$ . The authors would also like to thank Christian Minke, Department of Chemistry at LMU Munich, for technical support.

**Keywords:** High-pressure synthesis · Electron diffraction · Phosphorus · Nitrides

- W. Schnick, Angew. Chem. Int. Ed. Engl. 1993, 32, 806; Angew. Chem. 1993, 105, 846.
- [2] R. Briegleb, H. Genther, Ann. Chem. Pharm. 1862, 123, 228.
- [3] S. Horstmann, E. Irran, W. Schnick, Angew. Chem. Int. Ed. Engl. 1997, 36, 1873; Angew. Chem. 1997, 109, 1938.
- [4] S. Horstmann, E. Irran, W. Schnick, Z. Anorg. Allg. Chem. 1998, 624, 620.
- [5] Y. H. Jeong, Y. T. Lee, Y. T. Hong, Appl. Phys. Lett. 1990, 57, 2680.
- [6] Y. H. Jeong, G. T. Kim, U. J. Jeong, J. Appl. Phys. 1991, 69, 6699.
- [7] Y. Hirota, T. Hisaki, O. Mikami, *Electron. Lett.* **1985**, *21*, 690.
- [8] W. Schnick, J. Lücke, Acta Crystallogr. (Suppl.) 1990, A46, C-363.
- [9] W. Schnick, J. Lücke, Solid State Ionics 1990, 38, 271.
- [10] F. Karau, W. Schnick, Angew. Chem. Int. Ed. 2006, 45, 4505; Angew. Chem. 2006, 118, 4617.
- [11] M. Pouchard, Nature 2006, 442, 878.
- [12] K. Landskron, H. Huppertz, J. Senker, W. Schnick, Z. Anorg. Allg. Chem. 2002, 628, 1465.
- [13] K. Landskron, H. Huppertz, J. Senker, W. Schnick, Angew. Chem. Int. Ed. 2001, 40, 2643; Angew. Chem. 2001, 113, 2713.
- [14] F. J. Pucher, S. R. Römer, F. W. Karau, W. Schnick, Chem. Eur. J. 2010, 16, 7208.
- [15] W. Y. Ching, S. Aryal, P. Rulis, W. Schnick, Phys. Rev. B 2011, 83, 155109– 1.
- [16] F. J. Pucher, A. Marchuk, P. J. Schmidt, D. Wiechert, W. Schnick, Chem. Eur. J. 2015, 21, 6443.





- [17] A. Marchuk, S. Wendl, N. Imamovic, F. Tambornino, D. Wiechert, P. J. Schmidt, W. Schnick, *Chem. Mater.* **2015**, *27*, 6432.
- [18] A. Marchuk, W. Schnick, Angew. Chem. Int. Ed. 2015, 54, 2383; Angew. Chem. 2015, 127, 2413.
- [19] T. Schlieper, W. Schnick, Z. Anorg. Allg. Chem. 1995, 621, 1037.
- [20] T. Schlieper, W. Milius, W. Schnick, Z. Anorg. Allg. Chem. 1995, 621, 1380.
- [21] T. Schlieper, W. Schnick, Z. Anorg. Allg. Chem. 1995, 621, 1535.
- [22] K. Landskron, W. Schnick, J. Solid State Chem. 2001, 156, 390.
- [23] Ya. V. Ronis, B. Ya. Bondars, A. A. Vitola, T. N. Miller, *Latv. PSR Zinat. Akad. Vestis Kim., Ser.* **1990**, 299.
- [24] H. Jacobs, R. Nymwegen, Z. Anorg. Allg. Chem. 1997, 623, 429.
- [25] S. Horstmann, E. Irran, W. Schnick, Z. Anorg. Allg. Chem. 1998, 624, 221.
- [26] S. Horstmann, E. Irran, W. Schnick, Angew. Chem. Int. Ed. Engl. 1997, 36, 1992; Angew. Chem. 1997, 109, 2085.
- [27] J. Ronis, B. Bondars, A. Vitola, T. Millers, J. Schneider, F. Frey, J. Solid State Chem. 1995, 115, 265.
- [28] S. J. Sedlmaier, E. Mugnaioli, O. Oeckler, U. Kolb, W. Schnick, Chem. Eur. J. 2011, 17, 11258.
- [29] H. Huppertz, W. Schnick, Angew. Chem. Int. Ed. Engl. 1996, 35, 1983; Angew. Chem. 1996, 108, 2115.
- [30] H. Huppertz, W. Schnick, Z. Anorg. Allg. Chem. 1997, 623, 212.
- [31] H. Huppertz, W. Schnick, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997, 53, 1751.
- [32] D. Baumann, W. Schnick, Angew. Chem. Int. Ed. 2014, 53, 14490; Angew. Chem. 2014, 126, 14718.
- [33] J. Weitkamp, S. Ernst, F. Cubero, F. Wester, W. Schnick, Adv. Mater. 1997, 9, 247.
- [34] F. Karau, O. Oeckler, F. Schäfers, R. Niewa, W. Schnick, Z. Anorg. Allg. Chem. 2007, 633, 1333.
- [35] R. Marchand, Y. Laurent, Eur. J. Solid State Inorg. Chem. 1991, 28, 57.
- [36] P. Eckerlin, C. Langereis, I. Maak, A. Rabenau, Angew. Chem. 1960, 72, 268.
- [37] P. Eckerlin, C. Langereis, I. Maak, A. Rabenau, Special Ceramics: Proceedings of a Symposium Held by the British Ceramic Research Association (Ed.: P. Popper), Academic Press, New York/London, **1964**, p. 79.
- [38] R. Marchand, P. L'Haridon, Y. Laurent, J. Solid State Chem. 1982, 43, 126.

- [39] K. Landskron, S. Schmid, W. Schnick, Z. Anorg. Allg. Chem. 2001, 627, 2469.
- [40] W. Schnick, J. Lücke, Z. Anorg. Allg. Chem. 1990, 588, 19.
- [41] W. Schnick, J. Lücke, J. Solid State Chem. 1990, 87, 101.
- [42] F. W. Karau, L. Seyfarth, O. Oeckler, J. Senker, K. Landskron, W. Schnick, Chem. Eur. J. 2007, 13, 6841.
- [43] F. Karau, W. Schnick, Z. Anorg. Allg. Chem. 2006, 632, 231.
- [44] F. Karau, W. Schnick, J. Solid State Chem. 2005, 178, 135.
- [45] F. Karau, Dissertation, Ludwig-Maximilians-Universität München, Germany, 2007.
- [46] K. Landskron, W. Schnick, J. Solid State Chem. 2001, 156, 390.
- [47] K. Landskron, E. Irran, W. Schnick, Chem. Eur. J. 1999, 5, 2548.
- [48] A. Vitola, J. Ronis, T. Millers, Latv. PSR Zinat. Akad. Vestis Kim., Ser. 1990, 1, 35.
- [49] T. G. Müller, F. Karau, W. Schnick, F. Kraus, Angew. Chem. Int. Ed. 2014, 53, 13695; Angew. Chem. 2014, 126, 13913.
- [50] W. Schnick, N. Stock, J. Lücke, M. Volkmann, M. Jansen, Z. Anorg. Allg. Chem. 1995, 621, 987.
- [51] N. Stock, E. Irran, W. Schnick, Chem. Eur. J. 1998, 4, 1822.
- [52] F. Karau, W. Schnick, Z. Anorg. Allg. Chem. 2007, 633, 223.
- [53] W. Schnick, H. Huppertz, R. Lauterbach, J. Mater. Chem. 1999, 9, 289.
- [54] A. Marchuk, F. J. Pucher, F. W. Karau, W. Schnick, Angew. Chem. Int. Ed. 2014, 53, 2469; Angew. Chem. 2014, 126, 2501.
- [55] J. Lücke, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany, 1994.
- [56] F. Karau, W. Schnick, Z. Anorg. Allg. Chem. 2005, 631, 2315.
- [57] H. Huppertz, Z. Kristallogr. 2004, 219, 330.
- [58] A. C. Larson, R. B. Von Dreele, *General Structure Analysis System (GSAS)*, Los Alamos National Laboratory Report LAUR 86–748, Los Alamos, NM, 2000.
- [59] EXPGUI, a graphical user interface for GSAS: B. H. Toby, J. Appl. Crystallogr. 2001, 34, 210.
- [60] A. A. Coelho, TOPAS-Academic, version 4.1, Coelho Software, Brisbane, 2007.
- [61] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.

Received: January 18, 2016 Published Online: April 3, 2016