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Chemiluminescent reactions studied by laser ablation. 
Detection of A10 (B 2C+) in the Al+02 system 
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The chemiluminescent reaction between Al atoms produced by pulsed laser ablation and O2 molecules has been studied. The 
blue-green emission observed is assigned to the AI0 B-+X transition. The vibrational distribution of AI0 B state is describable 
as a Boltzmann distribution at 4500 & 300 IL A mechanism for production of the Al0 B state via an AlOs intermediate is proposed. 

Chemiluminescent reactions of metal atoms in the 
gas phase have been an interesting topic for a long 
time. However, high boiling points of metals have 
been the limiting factor in these studies: only the re- 
actions of metals with low boiling points such as Ca, 
Ba, Sr, etc., have been studied so far. Recently, laser 
ablation turned out to be a very simple and powerful 
technique to produce metal atoms or clusters in the 
gas phase. In this study we used laser ablation to gen- 
erate Al atoms, and observed the chemilumines- 
cence due to their reaction with O2 molecules. 

A small cubic chamber (70 x 70 x 70 mm) was 
evacuated by a rotary pump (200 Q/min) to circa 1 
mTorr (1 Torr=133.322 Pa). O2 gas (Takachiho, 
99.95%) was passed slowly through the chamber. The 
pressure of O1 gas was monitored by a Pirani gauge. 
A small piece of Al substrate (Japan Lamp Indus- 
tries, 99.9994) was set in the vacuum chamber. It 
was rotated with a small motor during the measure- 
ment so that a new surface of the substrate was 
ablated for each laser shot. The frequency-doubled 
output of an Nd3+ :YAG laser (Quanta-Ray, DCR- 
2, 532 nm, circa 50 mJ, 10 Hz) was softly focused 
on the substrate by a quartz lens (f=20 cm). The 
diameter of the laser spot on the Al substrate was 
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circa 1 mm. Chemiluminescence due to the reaction 
of ablated Al atoms with O2 molecules was collected 
by a quartz lens and detected by a photomultiplier 
tube (Hamamatsu photonics, R928) through a 
monochromator (Jasco, CT-80D or Nikon, G-250) 
blazed at 500 nm. A cylindrical wall (5 mm in height) 
on the substrate was effective to shield the observing 
zone from the strong emission of the plume. The sig- 
nal from the photomultiplier tube was fed into a 
boxcar integrator (NF circuit, BX-530). 

An intense blue-green emission of the Al0 B+X 
transition was observed in addition to emissions of 
Al atoms and ions generated by laser ablation. Al- 
though a weak UV emission due to the Al0 LX 
transition was also observed, no emission of the Al0 
AAX transition was detected. The observed Av= 
U’ -v” = - 1 sequence of the Al0 B-X transition is 
shown in fig. la. Since the relative intensities of vi- 
brational bands of the Au= - 1 sequence were in- 
dependent of O2 pressure in the range of 0.1-0.5 Ton; 
vibrational relaxation of the Al0 B state is thought 
to be negligible at pressures lower than 0.5 Torr. The 
intensity of the (0,O) band of the Al0 B-X tran- 
sition showed a quadratic dependence on the 0, 
pressure. 

Although some of the Al atoms ablated are in ex- 
cited states, their contribution to the production of 
the Al0 B state is probably negligible because almost 
all Al atoms are thought to relax to the ground state 

0009-2614/90/f 03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 71 



Volume 174, number 1 CHEMICAL PHYSICS LETTERS 26October 1990 

5 

Y 
3 4 

4 
u 
z3 Y 
e 
d 
c 2 

6 ._ 
y1 .cn 1 

WE 

0 
500 505 510 515 520 525 

Wavelength I nm 

i 

Wavelength / nm 

I I I I r 

AI0 B-+X Auz-l (c: 
I I I Iilll 

IJ’I 0 1 2 34567 

0 I I I 

500 505 510 515 520 52' 

Wavelength I nm 

Fig. 1. (a) Observed Au= - 1 sequence of the Al0 B+X transi- 
tion of chemihuninescence spectrum. The pressure of O2 was 0. I 
Torr. (b) Simulated spectrum with Ta=2200 IL (c) Simulated 
spectrum based on the phase space theory. The last state of O2 
wasassumedtobeb*Z+ I . 

before they arrive in the observing zone (farther than 
5 mm from the substrate). 

Since the reaction 

Alto*+Ilo(x)+o (1) 

is almost isoenergetic, the Al0 B state cannot be pro- 
duced by a single collision between an Al atom and 
an O2 molecule. The probable mechanism for the 
production of the A10 B state is 

AlW+AlO(X) to, (1) 

Alt0+02+A10(B)+02, (2) 

which is consistent with the quadratic dependence of 
the emission intensity of the A10 B+X transition on 
the O2 pressure. 

One might propose another mechanism: 

Alto,+4lo(x)to, (1) 

oto~+o*+o~ +02 ) (3) 

AltO,-+AlO(B)+O,. (4) 

However, this mechanism can safely be eliminated 
for following reasons. First, this mechanism predicts 
a cubic dependence of the emission intensity of Al0 
B+X on the O2 pressure, while a quadratic depen- 
dence was observed experimentally. Second, no in- 
crease of Al0 emission intensity due to the accu- 
mulation of O3 molecule was observed. 

The vibrational distribution of the A10 B state was 
determined by spectral simulation of the B+X tran- 
sition. The values of the molecular constants and 
Franck-Condon factors of Al0 determined by Coxon 
and Naxakis [I ] were used in the simulation. The 
rotational distribution was assumed to be a Boltz- 
mann distribution. Parameters used for spectral sim- 
ulation of the A10 B-+X transition were the rota- 
tional temperature and the relative vibrational 
population of the AI0 B state. Fig. lb shows a sim- 
ulated spectrum of the Av= - 1 sequence of the Al0 
B-X transition. The rotational temperature was de- 
termined to be circa 2200 K. The vibrational distri- 
bution obtained is shown in fig. 2. The vibrational 
distribution of the Al0 B state was found to be a 
Boltzmann distribution at 4200 K. Similarly, an 
analysis of the Au = 1 sequence of the A10 B-+X tran- 
sition gave a rotational and vibrational temperature 
of 2000 and 4800 K, respectively. As an averaged 

72 



Volume 174, number 1 CHEMICAL PHYSlCS LETTERS 26 October 1990 

U’ 
01234567 
I I I I I I I II 

Tv=4200K 

01234561 

3 I 103cm-l 

Fig. 2. Vibrational distribution of the Al0 B state obtained by 
analysis of the Au= - 1 sequence of the AL0 B+X transition. 

value of both sequences, a rotational temperature of 
2100 k 100 K and a vibrational temperature of 
4500 It_ 300 K were obtained for the A10 B state. 

The good fit to a Boltzmann distribution of the vi- 
brational populations of the Al0 B state suggests that 
the last step of Al0 production is slow. If we assume 
an AlO intermediate, step (2) can be rewritten as 

Al+O+02+A103, (2-l) 

A103+A10(B) +0,(X, a, b) . (2-2) 

We have applied phase space theory (PST) [ 21 to 
step (2-2) in order to predict the energy distribution 
of the A10 B state. The theory assumes that the dis- 
tributions of reaction products among various states 
are governed only by state densities. 

According to Zamir and Levine [2], the proba- 
bility of finding two fragments in a particular quan- 
tum state is given by 

P(s.L v, J, E-r) =g(j) g(J) P(-&) 

x d(E*-ET-E,-EJ-E”-Ej)/p(E*) 1 

where v, j are the vibrational and rotational quantum 

numbers of one fragment, respectively, V,j are those 
of the other fragment, ET is the relative translation 
energy, g is the degeneracy of a rotational level, p(h) 
is the density of translational states, 6 is a delta func- 
tion, and E* is the available energy. EJ can be treated 
as a continuous variable to a good approximation and 
a density p(&) can be introduced such that 
p(E,) dE, is the number of rotational states in the 
range EJ, E,+ dEJ. In the case of dissociation of AlO3 
into two diatomic molecules, AlO(j, V) and O,(J, v), 

s(j) =2j+ 1 , 

p( EJ) = constant , 

p(E,)=E;“. 

Integrating over ET and EJ gives the probability of 
finding Al0 in the j and v state as follows: 

Fig. lc shows a simulated spectrum based on PST 
assuming that the O2 molecule at step (2-2) is pro- 
duced in the b ‘Zp’ state. The envelope of the speo 
trum in fig. lc reproduces well the experimental one 
(fig. la), although PST predicts a little less vibra- 
tional excitation and a little more rotational exci- 
tation than the experiment. The simulation with O2 
a ‘AB and X ‘2; states as the products of step (2-2) 
gave rotational excitation much higher than that ob- 
served. The simulated spectrum with the O2 X ‘Cc 
state also showed highly vibrational excitation. We 
also simulated the Al0 B-tX spectra based on the 
separate statistical ensembles @SE) method [ 31 
which is a modification of PST and was successfully 
applied to photodissociation of four-atom molecules 
such as NCNO [ 41. The method gave results similar 
to PST: SSE predicts almost the same rotational en- 
ergy distribution and a little higher vibrational en- 
ergy distribution of the Al0 B state than PST does. 
Therefore, it is expected that the A10 B state is pro- 
duced mainly with the O2 b ‘Cl state at step (2-2). 
The large velocity of ablated Al atoms might affect 
the energy distribution of the A10 B state. However, 
we believe only slow Al atoms contribute to the pro- 
duction of the AI0 B state because a large velocity 
of Al atoms is unfavorable for the three-body 
reaction. 

The existence of AlO is supported by a semiem- 
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pirical MO calculation. The MOPAC version 4.0 has 
been used for the MNDO UHF MO calculation. The 
optimized geometry of the AlO3 ground state has a 
C, symmetry and its energy level is circa 7200 cm-’ 
lower than that of AlO t02(X). A matrix iso- 
lation experiment at 20 K [ 5 ] also suggests the ex- 
istence of A103. 

Comparison of this study with previous ones on 
chemiluminescence of Al0 clarifies the advantages 
of the laser ablation technique. Reaction of a cw Al 
atom beam produced by using high temperature cru- 
cible with O2 caused no [ 6 ] or only very weak struo 
tureless [ 7 ] emission. There has been no report of 
A10 B+ X emission for cw Al beam experiments un- 
der single- or multi-collision conditions to the au- 
thor’s knowledge. However, Jiryanov et al. [ 81 ob 
served a strong emission from the Al0 B state 
produced by a reaction between Al atoms and air at 
atmospheric pressure. They obtained Al atoms by the 
ruby laser vaporization technique. Frank and Krauss 
[ 91 observed time-resolved Al0 B-tX emission by 
the high voltage discharge of 0, gas between Al elec- 
trodes. The Al0 B-X spectra they obtained show 
much higher temperature than ours, probably be- 
cause of heating of the O2 gas during the discharge. 

High density of Al vapor produced by a pulsed laser 
ablation is crucial to observe the Al0 B-X emission 

by the reaction Al t O+O?. The vaporization rate of 
Al atoms under our experimental conditions was de- 
termined to be circa 4~ lOL4 atoms/pulse based on 
the weight loss of the Al substrate. We estimated the 
pressure of Al atoms in the reaction zone to be of the 
order of 1 mTorr. This study demonstrates the use- 
fulness of the laser ablation technique to investigate 
multi-collision reactions of metal atoms. 

We thank Mr. S. Miwa for his assistance in the 
experiment. 
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