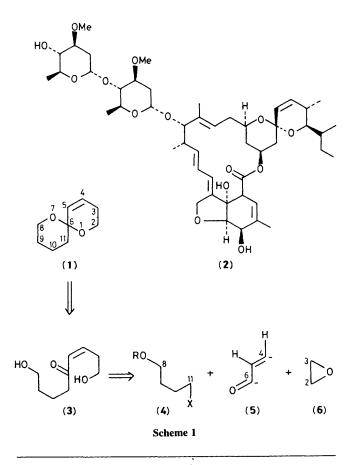
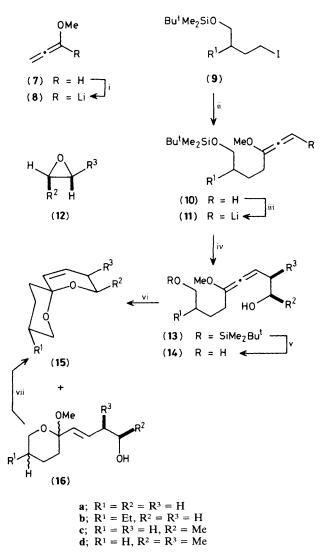
A New Synthesis of 1,7-Dioxaspiro[5.5]undec-4-enes *via* Metallated Allenol Ethers. A Formal Synthesis of Talaromycins A and B†


Richard Whitby and Philip Kocieński*

Department of Chemistry, The University, Southampton SO9 5NH, U.K.

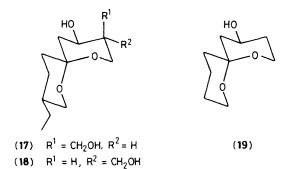
Sequential dialkylation of methoxypropadiene via the corresponding lithium derivatives gives 1,3-dialkylated methoxyallenes which undergo acid-catalysed ring closure to 1,7-dioxaspiro[5.5]undec-4-enes; by this route $(6S^*,9S^*)$ -9-ethyl-1,7-dioxaspiro[5.5]undec-4-ene (**15b**) has been prepared which has previously been converted into talaromycins A and B.


The 1,7-dioxaspiro[5.5]undec-4-ene ring system (1) is an important structural feature of the avermectins. In recent approaches¹ to avermectin B_{1a} (2) the unsaturated spiroacetal moiety was constructed by a modification of the procedure of Deslongchamps and co-workers² in which the requisite *cis* double bond was introduced by reduction of an alkyne. Other promising routes to related systems involve pyrolytic elimination of sulphoxides³ and selenoxides.⁴ We now report a new route to 1,7-dioxaspiro[5.5]undec-4-enes based on the retrosynthetic analysis shown in Scheme 1 in which the principal feature is the use of metallated derivatives of readily available methoxypropadiene⁵ as a synthon for the dianion (5).⁶

The preparation of the four spiroacetals (15a-d) (Scheme 2) illustrates the scope and some of the limitations of the method. The sequence of metallation and alkylation reactions used to prepare the key allenol ether intermediates (14a-d) were generally clean and efficient and easy to perform on a substantial scale. The poor yield (27%) in the alkylation of

(11d) with *trans*-1,2-dimethyloxirane was exceptional (Table 1). Although the cause of the inefficiency could not be ascertained, it is noteworthy that the analogous alkylation of 1-lithio-3-methoxyocta-1,2-diene went in 60% yield.

The diols (14a-d) and to a lesser extent the precursors (10a-b) and (13a-d) were labile compounds which were



Scheme 2. Reagents and conditions: i, BuⁿLi (0.95 equiv.), THF-hexane, -25 °C, 0.5 h; ii, (8) (1.8 equiv.), THF-hexane, -25 °C, 4 h; iii, Bu¹Li (1.1 equiv.), THF-pentane, -50 °C, 0.75 h; iv, add (12) (4 equiv.) and hexamethylphosphoramide (HMPA) (2 equiv.), -20 °C; v, Buⁿ₄NF (2 equiv.), THF, 20 °C, 12 h; vi, pyridinium toluene-*p*-sulphonate (0.2 equiv.), MeOH (1 equiv.), CH₂Cl₂, 20 °C, 12 h; vii, trace I₂, 20 °C, 12 h.

† All compounds reported are racemic.

Table 1. Preparation of spiroacetals (15a-d).

	$(9) \rightarrow (10)$	$(10) \!\rightarrow\! (13)$	$\begin{array}{c} \text{Yields/\%} \\ \textbf{(13)} \rightarrow \textbf{(14)} \end{array}$	$(14) \rightarrow (15)$	Overall
a	99	88	85	60	44
b	100	98	86	80	67
с		91	91	77	63
d		27	100	55	15

best purified by rapid column chromatography on basic alumina eluting with Et₂O-light petroleum (b.p. 40-60 °C) containing *ca.* 5% NEt₃. In the case of the diols (**14a**-**d**) Grade 1 basic alumina deactivated with 15-20% H₂O was essential. The neat purified products were stable at -30 °C for a week or more in the presence of a trace of NEt₃.

In the crucial cyclisation of diols (14a—d) to spiroacetals (15a—d) we exploited the known⁶ stereoselective protonation of 1,3-disubstituted allenol ethers to give *cis*-double bonds. Thus, treatment of diols (14a—d) with pyridinium tosylate in CH₂Cl₂ containing 1 equiv. of MeOH gave a mixture of the desired spiroacetals (15a—d) as the major product along with variable amounts (10—25%) of the diastereoisomeric

monocyclic acetals (**16a**—d) containing a *trans*-double bond. Quantitative conversion of (**16a**—d) into (**15a**—d) was achieved by adding a trace of I_2 to the reaction medium followed by stirring at room temperature.

This work constitutes a new and efficient synthesis of certain unsaturated spiroacetals. The synthetic utility of this approach is illustrated by the preparation of (15b) which is a late intermediate in a recent synthesis⁷ of the avian toxins talaromycins A (17) and B (18)⁸ and by the synthesis of (15a) and its hydration in 83% yield to the olive fly pheromone (19)⁹ using dilute HCl in tetrahydrofuran (THF).

We thank Smith, Kline and French Ltd. for generous financial support.

Received, 13th February 1987; Com. 198

References

- S. Hanessian, A. Ugolini, and M. Therien, J. Org. Chem., 1983, 48, 4430; R. Baker, C. J. Swain, and J. C. Head, J. Chem. Soc., Chem. Commun., 1985, 309; M. Hirama, T. Nakamine, and S. Ito, Tetrahedron Lett., 1986, 27, 5281.
- 2 P. Deslongchamps, D. D. Rowan, N. Pothier, T. Sauve, and J. K. Saunders, *Can. J. Chem.*, 1981, **59**, 1105.
- 3 D. R. Williams, B. A. Barner, K. Nishitani, and J. G. Phillips, J. Am. Chem. Soc., 1982, 104, 4708.
- 4 A. G. Gonzalez, C. Betancor, C. G. Francisco, R. Hernandez, J. A. Salazar, and E. Suarez, *Tetrahedron Lett.*, 1977, 2959.
- 5 S. Hoff, L. Brandsma, and J. F. Arens, *Recl. Trav. Chim. Pays-Bas*, 1968, **87**, 916.
- 6 J. C. Clinet and G. Linstrumelle, *Tetrahedron Lett.*, 1978, 1137; F. Derguini and G. Linstrumelle, *ibid.*, 1984, 25, 5763.
- 7 A. B. Smith and A. S. Thompson, J. Org. Chem., 1984, 49, 1469.
- 8 Metallated enol ethers have previously been used to synthesise Talaromycin B: P. Kocieński and C. Yeates, J. Chem. Soc., Perkin Trans. 1, 1985, 1879.
- 9 R. Baker, R. H. Herbert, and A. H. Parton, J. Chem. Soc., Chem. Commun., 1982, 601. See also P. Kocieński and C. Yeates, Tetrahedron Lett., 1983, 24, 3905.