

Available online at www.sciencedirect.com



Physica C 436 (2006) 38-42

**PHYSICA G** 

www.elsevier.com/locate/physc

# A reactivity study in the Mg–B system reaching for an improved synthesis of pure MgB<sub>2</sub>

Ruth Schmitt<sup>a</sup>, Jochen Glaser<sup>a</sup>, Thomas Wenzel<sup>b</sup>, Klaus G. Nickel<sup>b</sup>, H.-Jürgen Meyer<sup>a,\*</sup>

<sup>a</sup> Institut für Anorganische Chemie, Abteilung für Festkörperchemie und Theoretische Anorganische Chemie, Auf der Morgenstelle 18,

72076 Tübingen, Germany

<sup>b</sup> Institut für Geowissenschaften, Arbeitsbereich: Mineralogie und Geodynamik, Wilhelmstraße 56, 72074 Tübingen, Germany

Received 22 September 2005; accepted 12 January 2006 Available online 17 February 2006

#### Abstract

The binary Mg–B system was studied with respect to the existing phases MgB<sub>2</sub>, MgB<sub>4</sub>, MgB<sub>7</sub>, and MgB<sub>12</sub> and their transformations into each other. As a result of these studies, a new synthesis route is reported for MgB<sub>2</sub> by reacting MgB<sub>4</sub> and Mg with each other. The obtained MgB<sub>2</sub> was characterized by Rietveld refinement of the powder XRD pattern ( $R_{Bragg} = 3.56\%$ ,  $R_{wp} = 10.6\%$ ), magnetic measurements, and by electron probe microanalysis (EPMA). With this new synthesis route, a better phase homogeneity is obtained when compared with MgB<sub>2</sub> samples prepared from the elements.

© 2006 Elsevier B.V. All rights reserved.

Keywords: MgB<sub>2</sub>; Synthesis; Phase analysis; Mg borides

## 1. Introduction

The recent discovery of superconductivity in MgB<sub>2</sub>, a compound known for decades, with the remarkably high transition temperature of 39 K [1] has attracted great interest, because it introduces a new, simple binary superconductor with record high superconducting transition temperature for a non-oxide and non-C<sub>60</sub>-based compound. MgB<sub>2</sub> appears to have many advantages in application compared to Nb<sub>3</sub>Ge, which are on the one hand the nearly twice as high transition temperature and on the other the clearly lower weight. For this reason, there were made numerous attempts concerning the synthesis of MgB<sub>2</sub> [2-5], and theoretical calculations [6-8]. Variations in the chemical composition of  $MgB_2$  [9], like the doping with carbon in the boron network [10,11] or the Al substitution [12-14], did not lead to an improvement of the superconducting properties. Carbon doping by CVD process leads to an increase of  $H_{c2}(0)$  from 16 to 32 T but to a lower of the transition temperature of 36.2 K [15].

The synthesis of the *ordinary* compound MgB<sub>2</sub> has turned out to be more difficult than expected, especially when a high yield of a high-purity sample is desired. These difficulties are related to the chemical and thermodynamic features of the Mg–B system. If the elements boron and magnesium are used for preparation, a higher Mg-boride, MgB<sub>12</sub>, is always formed [16]. Once MgB<sub>2</sub> is annealed at temperatures higher than the melting temperature of magnesium (650 °C), which is inevitable in the synthesis process, the material turns to become more and more Mg deficient. In addition, traces of MgO are discovered as the most common impurity in nearly all preparations. For this reason, new reaction channels must be found to improve the methods of synthesis for MgB<sub>2</sub>, and on this basis to allow a specific introduction of pinning centres.

The phase diagram for the Mg–B system is not yet completely available. At present five phases, MgB<sub>2</sub>, MgB<sub>4</sub>, MgB<sub>7</sub>, MgB<sub>12</sub>, and MgB<sub>20</sub>, were reported in this binary system. The characterisation of MgB<sub>2</sub> was first published by Jones and March [17] in 1953. MgB<sub>2</sub> crystallizes in the

<sup>\*</sup> Corresponding author. Tel.: +49 7071 29 76226; fax: +49 7071 29 5702.

E-mail address: juergen.meyer@uni-tuebingen.de (H.-J. Meyer).

<sup>0921-4534/\$ -</sup> see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2006.01.004

hexagonal AlB<sub>2</sub> type in the space group *P6/mmm* with the lattice parameters a = 3.0834(3) Å, c = 3.522(2) Å. The crystal structure of MgB<sub>4</sub> was refined by Naslain et al. [18] in the orthorhombic space group *Pnam* with the lattice parameters a = 5.464(3) Å, b = 7.472(3) Å, and c = 4.428(3) Å. Guette et al. [19] reported the determination of the crystal structure of MgB<sub>7</sub>, which crystallizes in the space group *Imam* with a = 5.597(3) Å, b = 8.125(3) Å, and c = 10.480(5) Å. The compositions MgB<sub>12</sub> and MgB<sub>20</sub> can be considered as stuffed derivatives of the structure of  $\beta$ -rhombohedral boron ( $R\bar{3}m$ , a = 10.932(2) Å, c = 23.819(5) Å [20]). MgB<sub>12</sub>[21,16] and MgB<sub>20</sub>[22] also crystallize rhombohedral with their lattice parameters of a = 11.014(7) Å, c = 24.170(2) Å and a = 10.9830(4) Å, c = 24.1561(2) Å being closely related to those of  $\beta$ -rhombohedral boron.

In this paper, we report a new synthesis route for  $MgB_2$ and we present a possible reaction scheme that correlates the different Mg-B phases  $MgB_2$ ,  $MgB_4$ ,  $MgB_7$ , and  $MgB_{12}$  and supplements the calculated binary Mg-B phase diagram [23].

## 2. Experimental

## 2.1. Syntheses

All manipulations for the synthesis of the magnesium borides were performed in an Ar filled glove-box (MBraun) with magnesium (chips 99+, Strem) and  $\beta$ -rhombohedral boron (crystal powder 99.7%, ABCR) as starting materials. Appropriate quantities of Mg and B were filled into niobium containers, which were sealed under Ar with an electric arc and then placed into a vacuum-sealed silica ampoule. Four types of samples are referenced here (1–4) with respect to their syntheses and compositions, as examined by means of powder XRD and EPMA.

 $MgB_{12}$  (sample 1) was synthesized from stoichiometric (1:12) quantities of Mg and B, heated at 1000 °C for 3 weeks.

MgB<sub>4</sub> (sample 2) was synthesized from stoichiometric (1:4) quantities of Mg and B. The sample was first heated to 650 °C for one day and then heated to 1200 °C and remained at this temperature for 5 days.

A typical sample of MgB<sub>2</sub> (sample 3) was prepared by the common way from the elements with the nominal composition Mg:B = 1:3 at 850 °C for 3 days. To our experience, this composition leads to higher yields of MgB<sub>2</sub> (90%) than the 1:2 composition (70%). Reaction products contained MgB<sub>2</sub> besides MgB<sub>12</sub> and unreacted magnesium. The remained metal can be edulcorated with a solution of EtOH/I<sub>2</sub> from the reaction product.

In a different set of reactions  $MgB_2$  (sample 4) was synthesized from  $MgB_4$ . For this reaction the previously prepared  $MgB_4$  was sealed with an equal molar quantity of magnesium into a niobium container, fused into an evacuated silica tube, and heated at 750 °C for 5 days. After cooling down slowly, a grey micro-crystalline powder of  $MgB_2$  (sample 4) was obtained as the only product detectable in the X-ray powder pattern.

#### 2.2. X-ray diffraction studies

The reaction products were inspected with an X-ray powder transmission diffractometer (STOE, StadIP) using monochromatic Cu- $K_{\alpha l}$  radiation. The XRD pattern of samples 1–4 were indexed in accord with the literature data. Samples were obtained X-ray pure. Only the powder pattern of sample 3 showed some MgB<sub>12</sub> as a side phase. An additional XRD powder pattern was recorded for MgB<sub>2</sub> (sample 4) in a reflection set-up with a Philips PW 1830 diffractometer. This powder pattern was indexed and the crystal structure was refined with the aid of the program FullProf [24] (Fig. 1). Results of the structure refinement are given in Table 1. Atom positions and isotropic displacement parameters are provided in Table 2. The refined pattern is shown in Fig. 1.



Fig. 1. Observed (solid line) and calculated (discrete points) XRD-powder pattern of MgB<sub>2</sub> (sample 4) with Bragg reflections, and the difference curve.

40

Table 1 Crystal data and parameters for data collection and structure refinement of MgB<sub>2</sub>

| ** *******              |                                                                                                 |
|-------------------------|-------------------------------------------------------------------------------------------------|
| Sum formula             | MgB <sub>2</sub>                                                                                |
| Formula weight          | 45.927 g/mol                                                                                    |
| Temperature             | 298 K                                                                                           |
| Wave length             | 154.051 pm CuK <sub><math>\alpha</math>1</sub> , 154.433 pm CuK <sub><math>\alpha</math>2</sub> |
| Crystal system          | Hexagonal                                                                                       |
| Space group             | P61mmm                                                                                          |
| Lattice parameters      | a = b = 308.468(8)  pm, c = 352.44(1)  pm                                                       |
| Measured range          | $20^\circ \leqslant 2\theta \leqslant 130^\circ$                                                |
| Independent reflections | 22                                                                                              |
| Refined parameters      | 19                                                                                              |
| R <sub>Bragg</sub>      | 3.56%                                                                                           |
| R <sub>wp</sub>         | 10.6%                                                                                           |
| R <sub>p</sub>          | 9.59%                                                                                           |
| $\chi^2$                | 3.61                                                                                            |
|                         |                                                                                                 |

| Table 2                                                  |  |
|----------------------------------------------------------|--|
| Atomic coordinates and isotropic displacement parameters |  |

| Atom | Wyckoff-<br>Position | x/a | y/b | z/c | $U_{\rm eq}/{ m \AA}^2$ | Occupation |
|------|----------------------|-----|-----|-----|-------------------------|------------|
| Mg   | 1a                   | 0   | 0   | 0   | 0.0197(3)               | 0.9360(1)  |
| В    | 2d                   | 1/3 | 2/3 | 1/2 | 0.0254(6)               | 1          |

The correlation between  $U_{eq}$  and the occupation of Mg is 0.08.

#### 2.3. Magnetic studies

The magnetic susceptibility of MgB<sub>2</sub> (sample 4) was studied with a SQUID magnetometer (Quantum Design, MPMS) in the temperature region between 5 and 50 K using a static field (H = 20 G). A sample of MgB<sub>2</sub> was used for the measurement in a gelatine capsule. The compound showed superconducting behavior with a transition temperature of 39 K (Fig. 2).

## 2.4. EPMA analysis

The samples for EPMA examinations were prepared as reported in [16]. EPMA-WDX analyses were performed with a JEOL 8900 RL Superprobe operated at 15 kV acceleration voltage and a probe current of 15 nA. The electron beam was generally focused (<1  $\mu$ m diameter). LDEB, TAP and LDE1H crystals were used as analyzing crystals for B, Mg, and O K<sub> $\alpha$ </sub> X-rays, respectively. Synthetic MgO and metallic  $\beta$ -B (99.994 wt.% B) were used as standards for the calibration. Whereas Mg and O were

Table 3 Results of WDX analysis of powder samples 1–4

| Sample                 | B in<br>wt.% | Mg in<br>wt.% | O in<br>wt.%     | Totals in<br>wt.% | Composition          |
|------------------------|--------------|---------------|------------------|-------------------|----------------------|
| 1 (MgB <sub>12</sub> ) | 84.89        | 15.81         | $0^{\mathrm{a}}$ | 100.7             | MgB <sub>12.07</sub> |
|                        | 85.14        | 14.46         | $0^{\mathrm{a}}$ | 99.6              | MgB <sub>13.24</sub> |
|                        | 84.64        | 14.95         | 0.05             | 99.64             | MgB <sub>12.73</sub> |
|                        | 84.41        | 15.65         | $0^{\mathrm{a}}$ | 99.86             | MgB <sub>12.13</sub> |
|                        | 83.7         | 16.15         | $0^{\mathrm{a}}$ | 99.86             | MgB <sub>11.65</sub> |
| 2 (MgB <sub>4</sub> )  | 65.34        | 34.28         | 0.74             | 100.36            | MgB <sub>4.29</sub>  |
|                        | 64.23        | 34.49         | 1.05             | 99.77             | MgB <sub>4.19</sub>  |
|                        | 65.96        | 34.04         | 0.43             | 100.43            | MgB <sub>4.36</sub>  |
|                        | 64.70        | 34.09         | 1.10             | 99.89             | MgB <sub>4.27</sub>  |
|                        | 65.46        | 34.11         | 0.62             | 100.19            | MgB <sub>4.31</sub>  |
| 3 (MgB <sub>2</sub> )  | 43.31        | 55.53         | 0.57             | 99.41             | MgB <sub>1.75</sub>  |
|                        | 44.51        | 54.46         | 0.34             | 99.31             | MgB <sub>1.84</sub>  |
|                        | 82.50        | 17.46         | 0.06             | 100.02            | MgB <sub>10.63</sub> |
|                        | 82.54        | 17.15         | $0^{\mathrm{a}}$ | 99.7              | MgB <sub>10.82</sub> |
|                        | 82.38        | 17.32         | 0.1              | 99.8              | MgB <sub>10.70</sub> |
|                        | 82.52        | 17.46         | 0.05             | 100.03            | MgB <sub>10.63</sub> |
| 4 (MgB <sub>2</sub> )  | 48.45        | 53.88         | 0.16             | 102.49            | MgB <sub>2.02</sub>  |
| /                      | 49.59        | 53.97         | 0.2              | 103.76            | MgB <sub>2.07</sub>  |
|                        | 46.21        | 54.3          | 0.21             | 100.73            | $MgB_{1.91}$         |
|                        | 48.13        | 54.0          | 0.22             | 102.35            | MgB <sub>2.00</sub>  |

<sup>a</sup> Below detection limit of 160 ppm O.



Fig. 2. Temperature dependence of the magnetic susceptibility of MgB<sub>2</sub> (sample 4).

analyzed by means of the fixed time method of counting at the peak position, the area intensity measurement mode was used for the analysis of B to overcome problems of peak shifts and peak shape alterations. Further details of the analytical procedure were reported in [16]. Typical results of EPMA analysis of some samples are shown in Table 3.

## 3. Results and discussion

As it is well known, MgB<sub>2</sub> can be formed in a straight forward reaction of appropriate (1:2 or 1:3 molar) stoichiometry of Mg and B at temperatures lower than 865 °C. However traces of MgB<sub>12</sub> are detected by EPMA in all of our MgB<sub>2</sub> samples synthesized from the elements. MgB<sub>12</sub> was also detected during the early stages of reactions with varying Mg and B compositions (from 1:2 to 1:7) by powder XRD. These findings open grounds for the supposition that this boron-rich compound is always produced first in reactions between magnesium and boron through diffusion of magnesium into the β-rhombohedral boron modification.  $MgB_{12}$  is obtained as the main phase at temperatures between 800 and 1000 °C from the reaction of a 1:12 molar ratio of Mg and B. During the past, intercalation compounds of β-rhombohedral boron were reported as  $M_x B_{12}$  with M = Li, Cu [25], having similar lattice parameters as MgB<sub>12</sub>, although structure solution and refinement of this compound have not yet been successfully performed because of the poor peak to background ratio in the XRD powder pattern. A structure refinement based on synchrotron data has been reported for the composition  $MgB_{20}$  or rather  $Mg_{0.6}B_{12}$ , with Mg ions being partially distributed over three distinct crystallographic sites.

DTA examinations have already shown that MgB<sub>2</sub> can be transformed by increase of temperature (610 < T < 862 °C) [26] to yield MgB<sub>4</sub>, the next more boron-rich compound in this binary system. When MgB<sub>4</sub> is heated up, it is gradually (655 < T < 881 °C) [26] converted into MgB<sub>7</sub> by further evaporation of magnesium. Finally MgB<sub>7</sub> is converted into MgB<sub>12</sub> by arc melting.

All these reactions, involving the temperature-dependent release of magnesium may be regarded as a disadvantage for the straight forward synthesis of MgB<sub>2</sub> from the elements, where elevated temperatures are desired to overcome the slow diffusion in solid state. During our work, we have raised the question whether the reverse reaction, the diffusion of Mg into a higher Mg boride, is possible or not. In course of our reactions, we could show that it is possible to synthesize the metal-rich boride MgB<sub>2</sub> out of MgB<sub>4</sub> or MgB<sub>7</sub>. MgB<sub>2</sub> is formed in high yield and good homogeneity from reactions of MgB<sub>4</sub> and Mg at 750 °C, as represented in the Figs. 1 and 3 and corresponding data in Table 3. The magnetic properties of our MgB<sub>2</sub> material is represented in Fig. 2.

In attempt to synthesize  $MgB_4$  by reacting  $MgB_7$  with Mg at 900 °C, this boride is not formed and the reaction product is a mixture of  $MgB_2$  and unreacted  $MgB_7$ . All



Fig. 3. Backscattered electron image of  $MgB_2$  made from  $MgB_4$  and Mg (above) and of the sample prepared directly from the elements (below).  $MgB_2$  (bright phase) forms rims around and veins through  $MgB_{12}$  (dark phase).

$$Mg + B \longrightarrow MgB_{12} \longrightarrow MgB_2 \longrightarrow MgB_4 \longrightarrow MgB_7 \longrightarrow MgB_{12}$$

these transformations obtained from reactions in the binary Mg-B system are summarized in Scheme 1.

Electron probe microanalyses (EPMA) were used to examine the compositions of our prepared samples (1-4)for a number of randomly selected spots. Results from these analyses are summarized in Table 3. They show that our MgB<sub>2</sub> sample (4) prepared via MgB<sub>4</sub> are more homogeneous than sample (3) prepared directly from the elements, which are composed of two different phases. These two phases, MgB<sub>2</sub> and Mg deficient MgB<sub>12</sub> are represented by the bright and dark areas in the backscattered electron image shown in Fig. 3 (below). The bright area, analyzed as MgB<sub>2</sub>, forms rims around and veins through the dark area, which has the composition near MgB<sub>12</sub> (Table 3, Fig. 3).

A backscattered electron image of a MgB<sub>2</sub> sample (4) obtained from the reaction of MgB<sub>4</sub> and Mg is shown on top in Fig. 3. The image shows a quite homogeneous (bright) domain of MgB<sub>2</sub> embedded into epoxy resin. The

average elemental ratio in the MgB<sub>2</sub> samples (4) obtained from the reaction of MgB<sub>4</sub> with Mg was found to be Mg<sub>0.98</sub>B<sub>2</sub> (Table 3). The Rietveld refinement of XRD powder data (Fig. 1) resulted in a Mg deficit as well. The occupancy was found to be 94% (Table 2) which is in good agreement with the EPMA analysis. The deviation from the ideal composition is similar to the findings of other groups who made refinements of MgB<sub>2</sub> from neutron powder data [27] and X-ray data [5].

### 4. Conclusion

We have shown a new synthesis route for magnesium diboride. With our experiments we were able to demonstrate that the synthesis of MgB<sub>2</sub> from MgB<sub>4</sub> and Mg yields a more homogeneous material than the synthesis from the elements as proven by EPMA and X-ray diffraction. From our studies we conclude the formation of a MgB<sub>12</sub>-phase as a first step in reactions. If there is enough magnesium present, the formation of MgB<sub>2</sub> starts at temperatures around 650 °C. With increasing temperature the Mg content in the material decreases leading to MgB<sub>4</sub> first and then to MgB<sub>7</sub>. At temperatures higher than 1200 °C again a MgB<sub>12</sub>-phase appears. This behavior is well known. We could show that the decomposition of MgB<sub>2</sub> into Mg and MgB<sub>4</sub> is reversible. This reversibility is the key for a high yield, high quality synthesis of MgB<sub>2</sub>. An alternative route for a good quality MgB<sub>2</sub> is the preparation from MgB<sub>7</sub> and Mg that leads also to MgB<sub>2</sub>.

## References

- [1] J. Nagamatsu, N. Nakagawa, T. Muranka, Y. Zenitanim, J. Akimitsu, Nature 410 (2001) 33.
- [2] H. Fujii, K. Togano, H. Kumakura, Supercond. Sci. Technol. 15 (2002) 1571.
- [3] D. Souptel, G. Behr, W. Löser, W. Kopylov, M. Zinkevich, J. Alloys Compds. 349 (2003) 193.

- [4] M.H. Badr, K.-W. Ng, Supercond. Sci. Technol. 16 (2003) 668.
- [5] J. Schmitt, W. Schnelle, Yu. Grin, R. Kniep, Solid State Sci. 5 (2003) 535.
- [6] J.W. An, W.E. Pickett, Phys. Rev. Lett. 86 (2001) 4366.
- [7] N.I. Medvedeva, A.L. Ivanovskii, J.E. Medvedeva, A.J. Freeman, Phys. Rev. B 64 (2001) 020502.
- [8] I.I. Mazin, V.P. Antropov, Physica C 385 (2003) 49.
- [9] R.J. Cava, H.W. Zandbergen, K. Inumaru, Physica C 385 (2003) 8.
- [10] T. Takenobu, T. Ito, D.H. Chi, K. Prassides, Y. Iwasa, Phys. Rev. B 64 (2001) 134513.
- [11] R.A. Ribeiro, S.L. Bud'ko, C. Petorvic, P.C. Canfield, cond-mat/ 0210530.
- [12] J.S. Slusky, N. Rogado, K.A. Regan, M.A. Hayward, P. Khalifah, T. He, K. Inumaru, S.M. Loureiro, M.K. Haas, H.W. Zandbergen, R.J. Cava, Nature 410 (2001) 343.
- [13] O. de la Pena, A. Aguayo, R. de Cross, Phys. Rev. Lett. 86 (2001) 4366.
- [14] J.Q. Li, L. Li, F.M. Liu, C. Dong, J.Y. Xiang, Z.X. Zhao, Phys. Rev. B 65 (2002) 132505.
- [15] R.H.T. Wilke, S.L. Bud'ko, P.C. Canfield, D.K. Finnemore, R.J. Suplinskas, S.T. Hannahs, Phys. Rev. Lett. 92 (2004) 217003.
- [16] T. Wenzel, K.G. Nickel, J. Glaser, H.-J. Meyer, D. Eyidi, O. Eibl, Physica Status Solidi A 198 (2003) 374.
- [17] M.E. Jones, R.E. Marsh, J. Am. Chem. Soc. 76 (1953) 1434.
- [18] R. Naslain, A. Guette, M. Barret, J. Solid State Chem. 8 (1973) 68.
- [19] A. Guette, M. Barret, R. Naslain, P. Hagenmuller, L.E. Tergenius, T. Lundstrom, J. Less-Common Met. 82 (1981) 325.
- [20] G.A. Slack, C.I. Hejna, M.F. Garbauskas, J.S. Kasper, J. Solid State Chem. 76 (1988) 64.
- [21] L.Y. Markowski, Y.D. Kondrashev, G.V. Kaputovskaya, J. Gen. Chem. USSR 25 (1955) 409.
- [22] S. Brutti, M. Colapietro, G. Balducci, L. Barba, P. Manfrinetti, A. Palenzona, Intermetallics 10 (2002) 811.
- [23] Z.K. Liu, Y. Zhong, D.G. Schlom, Q. Li, X.X. Xi, CALPHAD: Comput. Coupling Phase Diagrams Thermochem 25 (2001) 299.
- [24] J. Rodriguez-Carval, Program system FullProf, PC-version 3.1c France, 1996.
- [25] H. Matsuda, T. Nakayama, K. Kimura, Y. Murakami, H. Suematsu, M. Kobayashi, I. Higashi, Phys. Rev. B 52 (1995) 6102.
- [26] S. Brutti, A. Ciccioli, G. Balducci, G. Gigli, P. Manfrinetti, A. Palenzona, Appl. Phys. Lett. 80 (2002) 2892.
- [27] D.G. Hinks, J.D. Jorgensen, H. Zheng, S. Short, Physica C 382 (2002) 166.