Diphosphonites as highly efficient ligands for enantioselective rhodium-catalyzed hydrogenation

Manfred T. Reetz,*† Andreas Gosberg, Richard Goddard and Suk-Hun Kyung

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany

Chiral ligands with achiral backbones such as ethano- or ferroceno-bridges linking two phosphonites derived from chiral diols such as binaphthol (BINOL) have been prepared; the corresponding Rh complexes are excellent catalysts in the hydrogenation of prochiral olefins such as itaconic acid dimethyl ester or 2-acetamido methyl acrylate, the ee values being 90–99.5%.

Although a number of chiral diphosphanes and diphosphinites have been shown to be effective ligands in transition metal catalyzed asymmetric reactions,¹ the search for new types of chiral auxiliaries continues.² Surprisingly, very little is known concerning chiral diphosphonites as ligands in these reactions.³ Perhaps this is due to the fact that in all cases reported so far the enantioselectivity is poor (ee = 0-32%).³ We speculated that chelating diphosphonites derived from a proper combination of an achiral backbone and a chiral diol might constitute useful and easily accessible ligands.⁴

Using ferrocene and (*R*)- or (*S*)-BINOL as cheap building blocks,⁵ the diphosphonite **1** was easily assembled in three steps (Scheme 1).⁶ **1** is an orange–brown crystalline compound, which in the solid state[‡] shows some interesting features (Fig. 1). In spite of their different environments, the two independent molecules in the unit cell have almost identical conformations [P1–Cp1–Cp2–P2 –9(1)°, P3–Cp3–Cp4–P4 –7(1)°; Cp, centroid], with the two P atoms in each molecule situated close to one another [P1--P2 3.506(3), P3--P4 3.428(3) Å].

The ethano-bridged analog 2 was also readily synthesized (Scheme 2).

In order to prepare hydrogenation catalysts, the ligands were treated with $Rh(cod)_2BF_4$ under standard conditions,⁷ affording the corresponding complexes (*R*,*R*)-(1)Rh(cod)BF₄ or (*R*,*R*)-(2)Rh(cod)BF₄, which were characterized by NMR, ESI-MS and IR spectroscopy. Thus far it has not been possible to obtain crystals suitable for crystallographic investigations. Two different types of olefins were chosen as substrates for asymmetric

Scheme 1 Reagents and conditions: i (a) 2.2 equiv. BuLi–TMEDA, hexane, r.t., 12 h; (b) 2.2 equiv. ClP(NEt₂)₂, THF, -78 °C, 67%; ii, excess HCl, Et₂O, -78 °C, 95%; iii, 2 equiv. (*R*)-(+)-BINOL, toluene, heat, 36 h, 90%

Fig. 1 Molecular structures of the two independent molecules of **1**. Side (upper structure, molecule 1) and top views (the toluene solvent of crystallization has been omitted for clarity).

Scheme 2 Reagents and conditions: i, 1.95 equiv. (R)-(+)-BINOL, THF, heat, 48 h, (70–85%)

hydrogenation, namely itaconic acid dimethyl ester **3** and 2-acetamido methyl acrylate **5**, leading to the products **4** and **6**, respectively. The results of the hydrogenation experiments with formation of the *R*-configurated products **4** and **6** are remarkable in several ways (Table 1).

Table 1 Enantioselective hydrogenation of dimethyl itaconate (3) and 2-acetamido methyl acrylate $(5)^a$

Entry	Ligand	Substrate	S/C^d	Yield $(\%)^e$	ee (%) ^e
1	1	3	1000	100	>99.5
2	1	3	2000	100	>99.5
3^b	1	3	5380	100	>99.5
4	2	3	1000	100	97–99
5	2	3	2000	100	97–99
6 ^c	1	5	1000	100	99.5
7 ^c	2	5	1000	100	90

^{*a*} Hydrogenations were carried out under the following general conditions: 1.3 bar H₂, dichloromethane, r.t., 20 h, $c(\text{substrate}) = 0.1 \text{ mol } l^{-1}$, catalysts prepared *in situ* with Lig/Rh = 1.1 (4 runs each). ^{*b*} Using preformed (*R*,*R*)-(1)Rh(cod)BF₄. ^{*c*} Lig/Rh = 1.0. ^{*d*} Substrate to catalyst ratio. ^{*e*} Determined by GC analysis.

In the case of substrate **3** both catalysts afford essentially enantiomerically pure product **4**. However, in the hydrogenation of **5** pronounced differences in enantioselectivity were observed (Table 1). Thus, the ferrocene-based catalyst (R,R)-(**1**)Rh(cod)BF₄ leads to complete enantioselectivity for both substrates (ee > 99.5%). Although experiments directed towards elucidating mechanistic and structural aspects need to be carried out, the present study shows that catalyst (R,R)-(**1**)Rh(cod)BF₄ is not only readily accessible, but also highly effective. It remains to be seen how well ligand **1** performs in other hydrogenation reactions and in C–C bond forming processes, metals other than rhodium constituting further possibilities.

Notes and References

E-mail: reetz@scmpi-muelheim.mpg.de

‡ Crystal data for 1: C₅₀H₃₂FeO₄P₂· \tilde{C}_7 H₈, $M_r = 906.7$, orange–brown plate, crystal size 0.08 × 0.59 × 0.66 mm, a = 9.7235(3), b = 16.5610(4), c = 27.5239(7) Å, $\beta = 97.765(1)^\circ$, U = 4391.6(2) Å³, T = 100 K, monoclinic, space group P2₁ (no. 4), Z = 4, $D_c = 1.37$ g cm⁻³, $\mu = 0.47$ mm⁻¹. Siemens SMART diffractometer, Mo-Kα X-radiation, $\lambda = 0.71073$ Å. 39615 measured reflections, analytical absorption correction (T_{min} 0.7343, T_{max} 0.9626), 15179 unique, 11532 observed [$I > 2.0\sigma(F_0^2)$]. The structure was solved by direct methods (SHELXS-97) and refined by full-matrix least-squares (SHELXL-97) on F^2 for all data (C atoms of toluene solvate, isotropic) with Chebyshev weights to R = 0.089 (obs.), wR = 0.232 (all data), absolute stereochemistry determined [Flack parameter 0.00(3)], S =1.17, H atoms riding, max. shift/error 0.001, residual $\rho_{max} = 1.039$ e Å⁻³. CCDC 182/964.

- See for example: R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994, 1st edn. Catalytic Asymmetric Synthesis, ed. I. Ojima, VCH, New York, 1993.
- 2 Recent examples are: M. J. Burk, J. E. Feaster, W. A. Nugent and R. L. Harlow, J. Am. Chem. Soc., 1993, **115**, 10125; A. S. C. Chan, W. Hu, C.-C. Pai and C.-P. Lau, J. Am. Chem. Soc., 1997, **119**, 9570; P. J. Pye, K. Rossen, R. A. Reamer, N. N. Tsou, R. P. Volante and P. J. Reider, J. Am. Chem. Soc., 1997, **119**, 6207; G. Zhu, P. Cao, Q. Jiang and X. Zhang, J. Am. Chem. Soc., 1997, **119**, 1799; V. Enev, C. L. J. Ewers, M. Harre, K. Nickisch and J. T. Mohr, J. Org. Chem., 1997, **62**, 7092; T. V. RajanBabu, T. A. Ayers, G. A. Halliday, K. K. You and J. C. Calabrese, J. Org. Chem., 1997, **62**, 6012; G. Zhu and X. Zhang, J. Org. Chem., 1998, **63**, 3133; F.-Y. Zhang, C.-C. Pai and A. S. C. Chan, J. Am. Chem. Soc., 1998, **120**, 5808; Q. Jiang, Y. Jiang, D. Xiao, P. Cao and X. Zhang, Angew. Chem., 1998, **110**, 1203; Angew. Chem., Int. Ed. Engl., 1998, **37**, 1100; H. Doucet and J. M. Brown, Tetrahedron: Asymmetry, 1997, **8**, 3775; C. Pasquier, S. Naili, L. Pelinski, J. Brocard, A. Mortraux and J. Agbassou, Tetrahedron: Asymmetry, 1998, **9** 193.
- 3 I. E. Nifantev, L. F. Manzhukova, M. Y. Antipin, Y. T. Struchkov and E. E. Nifant'ev, *Russ. J. Gen. Chem.*, 1995, **65**, 682; recent examples of chiral monophosphinates: D. Haag, J. Runsink and H. D. Scharf, *Organometallics*, 1998, **17**, 398; J. Sakaki, W. B. Schweizer and D. Seebach, *Helv. Chim. Acta*, 1993, **76**, 2654.
- 4 M. T. Reetz and A. Gosberg, patent applied for 1998.
- 5 Enantiomerically pure (*R*)- and (*S*)-BINOL are commercially available from Kankyo Kagaku Center (Japan) at a price of about \$1300 per kilo.
- 6 We thank A. Meiswinkel for performing some of the experiments.
- 7 R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 1971, 93, 2397.

Received in Cambridge, UK, 16th July 1998; 8/05524F