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The development of artificial nucleases capable of mimicking the
action of nature enzymes is a long-standing goal in bioorganic
chemistry [1–6]. These studies will offer many applications, such as in
understanding the chemistry of the natural nucleases, providing
valuable tools in the manipulation of DNA, and developing the drugs
for gene diagnosis and treatments. According to the active structures
of the natural enzymes, much attention has been paid to the design
and preparation of synthetic metallonucleases where metal ions
complexed to suitable organic ligands perform their catalytic function
in the cleavage of phosphodiester bonds [7–12]. Ligands capable of
coordinating two or more metal ions play important roles in the
design of artificial nucleases due to the following advantages of
multinuclear complexes: 1) by double Lewis acid activation of a
phosphate; 2) through bifunctional catalysis in which the metal ions
activate the phosphate and supply a metal-coordinated hydroxide
acted as nucleophile or base; 3) as an electrostatic reservoir of positive
charge to interact with the anionic phosphate to stabilize the
transition state for the phosphoryl transfer reaction; 4) by assisting
the departure of the phosphate's leaving group through coordination.
However, syntheses of these ligands are often expensive and time-
consuming. To develop an efficient method in the preparation of
multi-nucleating ligands is always desirable.

As a modular synthetic approach, click chemistry has been
explosively applied in all areas of modern chemistry from drug
discovery to material science in recent years [13–15]. This method
refers to a Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition of azides
and alkynes, which provides 1,4-disubstituted 1,2,3-triazole ring in
high yield without the need for further purification, without
generating side reactions and proceeding under friendly conditions,
in aqueous media at room temperature. On the other hand, [12]aneN3

unit is a very useful building block in the design and construction of
artificial nucleases due to its facial tridentate coordinating ability. The
systems containing one or more [12]aneN3 units have shown
prominent results in the detailed mechanism studies and excellent
catalytic performance [16–20]. Recently we found that the dinuclear
zinc(II) complex of 1,3-bis-[12]aneN3-propane accelerates the cleav-
age of model phosphate diesters by a remarkable factor of 1012-fold,
when compared to the background reactions [21,22].

With the above consideration, we report here on the syntheses and
characterization of artificial nucleases containing mono-, di- and tri-
nucleating [12]aneN3 ligating units through click reactions between
propargyl modified [12]aneN3 and various azides.

Our syntheses started from tri-tert-butyl-3-hydroxy-1,5,9-triaza-
cyclododecane-1,5,9-tricarboxylate 1, which was prepared according
to the literature reported by Lönnberg [16]. The synthetic route of the
propargyl modified [12]aneN3 compound, tri-tert-butyl-3-(prop-2-
ynyloxy)-1,5,9-triazacyclododecane-1,5,9-tricarboxylate 2 is outlined
in Scheme 1. The reaction of 1 with propargyl bromide in freshly
distilled anhydrous DMF smoothly afforded 2 in 96% yield in the
presence of sodium hydride at room temperature [23].

The mono-, bis-, and tri-azido compounds used for the following
click reactions were prepared from the corresponding bromides
following literature methods [24–26]. Among them, ethyl azide was
not isolated but directly used in the click reaction.

The click reactions between 2 and the mono-, di- and tri-azide
were processed smoothly and efficiently in DMF–H2O–THF mixture
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Scheme 1. Preparation of the propargyl modified [12]aneN3.

Scheme 2. Reagents and conditions: i) VcNa, CuSO4·5H2O, DMF–H2O–THF, RT, 3–4 h; ii) MeOH, HCl(aq.), reflux, 6 h; iii) NaOH (10 M), 0.5 h; iv) Zn(OTf)2 or Cu(OTf)2.

Table 1
Kinetic data for the cleavage of HPNPP (0.04 mM) by zinc(II) and copper(II) complexes
(0.1 mM) with ligands 3, 4, and 5 at 25.0±0.1 °C.

Catalyst kobs s−1
s
spHa kobs

MeO−s−1 b Acceleration Relative kc

Zn:3 3.1×10−4 10.04 4.77×10−10 6.5×105
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(volume ratio 4:3:3) in the presence of hydrated copper(II) sulfate
and sodium ascorbate at room temperature under N2 (Scheme 2) [27].
The reactions were monitored by TLC and stopped when the starting
material was found disappearing. After the treatment with saturated
NH4Cl aqueous solution, the resulted Boc-protected triazole com-
pounds were isolated through flash chromatography on silica gel with
the yields of 80–86%, theywere not completely dried but directly used
in the next step. The removal of Boc protecting groups was processed
in refluxing methanol in the presence of concentrated HCl for 6 h. The
resulted hydrochloride salts were then neutralized with sodium
hydroxide (10 M) to afford the free ligands 3–5.

The three new ligands were characterized with 1H NMR, 13C NMR,
and high resolutionmass spectra [28]. It can be seen that the protons on
the triazole moieties generally appear at 7.50–7.60 ppm in singlet, the
protons from CH−O−CH2 moieties between triazole and [12]aneN3

units appear at 3.66 (multiplet) and 4.70 (singlet) ppm, respectively.
The protons from methylene groups of [12]aneN3 generally appear
around 1.60, 2.50, and 2.80 ppm asmultiplet, which are consistentwith
those reported in the literature [16].

The corresponding mono-, di-, and tri-nuclear zinc(II) and copper
(II) complexes were prepared in situ following the literature method,
i.e. by mixing ligand, base, andmetal salts in appropriate ratio [21,22].
The catalytic activities of zinc(II) and copper complexes on the
Scheme 3. Methanolysis of phosphate HPNPP.
methanolysis of phosphate diester, 2-hydroxypropyl-p-nitrophenyl
phosphate (HPNPP), which is often used as model compound of RNA
(Scheme 3), were tested [29]. The results are summarized in Table 1.

It can be seen that relative to themethoxide promoted background
reaction, the mono-nuclear, di-nuclear, and tri-nuclear zinc(II)
complexes at 1.0×10−4 mol dm−3 could accelerate the reactions by
6.5×105, 4.4×107, and 1.5×109 folds, respectively. kobs of the di-
nuclear and tri-nuclear zinc(II) complexes are 56 and 210-fold larger,
respectively, than that of the mononuclear complex Zn:3. For the
corresponding copper complexes, excellent catalytic activities were
also observed. At the concentration of 1.0×10−4 mol dm−3, the
mono-nuclear, di-nuclear, and tri-nuclear copper(II) complexes could
accelerate the reactions by 4.9×105, 4.7×107, and 7.3×108 folds,
respectively. The di-nuclear and tri-nuclear complexes also showed
good synergistic effects, kobs of the di-nuclear and tri-nuclear copper
Zn2:4 1.74×10−2 9.96 3.96×10−10 4.4×107 56
Zn3:5 6.51×10−2 9.35 9.73×10−11 1.5×109 210
Cu:3 6.2×10−5 9.40 1.26×10−10 4.9×105

Cu2:4 5.5×10−3 9.40 1.17×10−10 4.7×107 89
Cu3:5 1.2×10−2 8.70 1.65×10−11 7.3×108 194

a The reaction s
spH for the self-buffered metal complex solutions [30].

b Data for the methoxide promoted background reaction. Second-order rate
constants for the cleavage of HPNPP by methoxide are 2.56×10−3 M−1 s−1 [31].

c kobs(M2:4)/kobs(M:3) or kobs(M3:5)/kobs(M:3).
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(II) complexes are 89 and 194-fold larger than that of the
mononuclear copper(II) complex.

In conclusion, we have successfully applied the copper-mediated
click reactions for the preparation of mono-, di-, and tri-nucleating
[12]aneN3 ligands in higher yields. The synthetic route is efficient and
versatile. Compound 2 is a useful building block in the construction of
the functional bio-molecules containing [12]aneN3, such as modified
sugar and peptides. The preliminary work has shown that the zinc(II)
and copper complexes of those novel [12]aneN3 ligands are very
efficient in the cleavage of RNA model compound HPNPP. Further
kinetic works in methanol and aqueous solution are being undertaken
in our group.
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