Organic & Biomolecular Chemistry

PAPER

Cite this: DOI: 10.1039/c5ob00277j

Indium-catalyzed oxidative cross-dehydrogenative coupling of chromenes with 1,3-dicarbonyls and aryl rings†

Fanmei Li,^{‡a,b} Zhilin Meng,^{‡a} Jing Hua,^c Wei Li,^b Hongxiang Lou^a and Lei Liu^{*a,c}

Received 8th February 2015, Accepted 12th April 2015 DOI: 10.1039/c5ob00277j An effective indium-catalyzed oxidative cross-dehydrogenative coupling of electronically varied chromenes with 1,3-dicarbonyl compounds and aryl rings has been established. Both the C–H alkylation and arylation proceed smoothly at room temperature to afford diverse α -substituted chromene compounds in up to 91% yields. Besides these two types of C–H components, simple ketones like cyclohexanones also prove to be well tolerated.

www.rsc.org/obc

Introduction

Alkyl and aryl substituted chromans are present in a number of biologically active natural products and synthetic pharmaceuticals possessing antioxidative, antipsychotic, antibacterial, antifungal, antiviral, and anticancer activities (Fig. 1).¹ The nucleophilic addition of carbon-centered reagents to chromene-based oxocarbenium ions represents an efficient and powerful approach to access the substructures.² In these reactions, oxocarbenium intermediates are typically generated in situ through the acid-mediated collapse of the corresponding acetals. However, the substrate preparation suffers from extra and unproductive steps and reagents.³ On the other hand, the direct oxidative cross-dehydrogenative coupling (CDC) of chromenes with readily available C-H components provides excellent opportunities to synthesize the target simply by connecting two C-H bonds with a minimal amount of intermediary refunctionalizations and with high atom economy.^{4,5} Over the past several years, the oxidative CDC reaction involving the isochroman type substrate has received much attention, with several reaction systems well developed.⁶ However, the direct C-H functionalization of chromenes remains relatively unexplored. The Floreancig group developed an oxidative coupling of chromenes with diverse allylic silanes and enolsilanes in high efficiency.7 Very recently, we reported

Fig. 1 Representative α-substituted chromans.

a trityl ion-mediated oxidative C–H arylation of chromenes employing nucleophilic potassium aryltrifluoroborate salts as coupling components.⁸ Huang and coworkers disclosed a proline-catalyzed oxidative CDC of the unsubstituted 2*H*-chromene with aldehydes.⁹ Albeit the above three pioneer studies, the C–H functionalization of electronically varied chromenes with dicarbonyls and aryl rings has not been established to date. Herein, we reported our recent efforts on the oxidative CDC reaction of chromenes using 1,3-dicarbonyls and aryl rings as coupling partners.

Results and discussion

Initially, the oxidative CDC of chromene **1a** with diisopropyl malonate **2a** was selected as the model reaction for optimiz-

View Article Online

^aKey Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Jinan 250012, P. R. China. E-mail: leiliu@sdu.edu.cn

^bDepartment of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China

^cKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Ministry of Education of China, Guilin 541004, China †Electronic supplementary information (ESI) available. See DOI: 10.1039/ c5ob00277j

[‡]These authors contributed equally to this work.

H + O O oxidant, additive solvent O O O'Pr				
Entry	Oxidant	Additive	Solvent	$\operatorname{Yield}^{b}(\%)$
1	DDQ	_	CH_2Cl_2	<5
2	DDQ	CuI	CH_2Cl_2	35
3	DDQ	CuBr	CH_2Cl_2	22
4	DDQ	CuCl	CH_2Cl_2	31
5	DDQ	$CuCl_2$	CH_2Cl_2	16
6	DDQ	$Cu(OAc)_2$	CH_2Cl_2	43
7	DDQ	CuOTf	CH_2Cl_2	55
8	DDQ	$Cu(OTf)_2$	CH_2Cl_2	65
9	DDQ	Fe(OTf) ₂	CH_2Cl_2	50
10	DDQ	$Zn(OTf)_2$	CH_2Cl_2	46
11	DDQ	In(OTf) ₃	CH_2Cl_2	79
12	DDQ	AgOTf	CH_2Cl_2	<5
13	DDQ	Bi(OTf) ₃	CH_2Cl_2	<5
14	DDQ	$Mg(OTf)_2$	CH_2Cl_2	<5
15^{c}	DDQ	In(OTf) ₃	CH_2Cl_2	60
16^d	DDQ	In(OTf) ₃	CH_2Cl_2	70
17^e	DDQ	In(OTf) ₃	CH_2Cl_2	66
18	$PhI(OAc)_2$	In(OTf) ₃	CH_2Cl_2	8
19	$Na_2S_2O_8$	In(OTf) ₃	CH_2Cl_2	<5
20	CAN	In(OTf) ₃	CH_2Cl_2	<5
21	MnO_2	In(OTf) ₃	CH_2Cl_2	<5
22	TBHP/CuBr ₂	In(OTf) ₃	CH_2Cl_2	<5
23	DDQ	In(OTf) ₃	DCE	90
24	DDO	In(OTf) ₃	CHCl ₃	28
25	DDÒ	In(OTf) ₃	CH ₃ NO ₂	63
26	DDQ	In(OTf) ₃	Toluene	46
27	DDQ	$In(OTf)_3$	PhCF ₃	50
28	DDQ	$In(OTf)_3$	EtOAc	56
29	DDQ	In(OTf) ₃	Hexane	33
30	DDQ	$In(OTf)_3$	CH_3CN	<5

^{*a*} General conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), DDQ (0.2 mmol), additive (10 mol%), and solvent (3.0 mL) at room temperature for 5 h, unless stated otherwise. ^{*b*} Isolated yield. ^{*c*} 5 mol% In(OTf)₃ employed. ^{*d*} 15 mol% In(OTf)₃ employed.

ation (Table 1). No reaction was observed when 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) was employed as the oxidant without any additive (entry 1, Table 1). Therefore, a variety of metal additives were applied to the CDC reaction in CH_2Cl_2 . Delightedly, copper salts effected the coupling, with $Cu(OTf)_2$ affording the best yields (entries 2–8, Table 1). Next, an extensive investigation on different metal sources bearing a triflate counteranion revealed 10 mol% of $In(OTf)_3$ as the ideal choice (entries 9–17). Other oxidants that are effective in promoting the oxidative CDC reaction of isochromans including PhI (OAc)₂, Na₂S₂O₈, CAN (cerium ammonium nitrate), MnO₂, and *tert*-butyl hydroperoxide (TBHP)/CuBr₂ failed to effect the model reaction (entries 18–22). The reaction was found to be highly dependent on the solvent choice, and 1,2-dichloroethane was identified as the optimal candidate (entries 23–30).

With the optimized reaction conditions in hand, the scope of 1,3-dicarbonyl components was investigated (Scheme 1). Commonly encountered symmetric 1,3-diesters were found to be well compatible with the oxidation system in good to excel-

Scheme 1 The scope of CDC reactions of chromenes and 1,3-dicarbonyl compounds.

lent yields (3a-3h). β -Keto esters proved to be suitable coupling partners for the reaction, with 3i and 3j bearing a quaternary carbon accessed. 1,3-Diketone moieties were also tolerated, as demonstrated by the formation of 3k. The substituent effect of the chromene component was next explored. Chromenes bearing electron-donating as well as -withdrawing substituents were well compatible with the oxidative CDC reaction in good yields (3l-3n). Notably, bromine was well tolerated for further diversifications and manipulations.

The high efficiency of the CDC with 1,3-dicarbonyl components prompted us to explore the possibility of employing simple ketones as nucleophilic partners (Scheme 2). In the presence of phenylalanine (20 mol%), TFA (20 mol%), LiClO₄ (1.5 equiv.), and DDQ (1.0 equiv.), the oxidative CDC reaction of **1a** with cyclohexanone (**4a**) proceeded smoothly at room temperature delivering **5a** in 60% yield with a dr of 1 : 1.

 α -Aryl substituted chromans are key building blocks in numerous biologically active natural products and synthetic pharmaceuticals. The existing approaches rely on the nucleophilic attack of organoboranes onto cyclic oxocarbenium intermediates. While high efficiency was achieved, the preparation of these boronate nucleophiles requires extra steps. Employing aryl rings instead of the corresponding aryl boronates would be an attractive solution to the issue of atoms as

Scheme 2 Oxidative CDC reaction of chromene with cyclohexanone.

Scheme 3 The scope of CDC reactions of chromenes with aryl rings.

Fig. 2 A proposed mechanism for the In(OTf)₃-catalyzed CDC reaction.

well as step economy. Therefore, we next examined the CDC reaction of chromenes with aryl rings under the optimized reaction conditions (Scheme 3). Aryls bearing electron-donating substituents served as suitable nucleophilic partners delivering **7a–7c**. The heteroaryl moiety (**6d**) was also tolerated with the C–H functionalization process. With respect to the chromene partner, the electron-deficient moiety was tolerated providing **7e** in modest yield, though no reactivity was observed for the electron-rich one (**7f**).

According to the pioneering study of Li, a plausible mechanism for the indium-catalyzed oxidative CDC of chromenes was proposed in Fig. 2.^{6c} In the presence of $In(OTf)_3$, DDQ promoted the C-H oxidation of chromene **1a** to provide oxocarbenium intermediate **8**. $In(OTf)_3$ activated the dicarbonyl compound giving **9** for the subsequent nucleophilic addition process to afford **3b**. The arylation of **8** with **6a** generated **7a**.

Conclusions

In summary, we have developed an indium-catalyzed oxidative C-H alkylation and arylation of chromenes promoted by DDQ and a catalytic amount of $In(OTf)_3$. The scope of nucleophilic components for the CDC is broad, with a wide range of dicarbonyl compounds and aryl rings well tolerated. The simple ketone like cyclohexanone also serves as an effective coupling partner. The scope with respect to chromenes is also broad, with electron-donating and -withdrawing substituents well

tolerated. The mild conditions endowed good functional group compatibility, with bromine and ester tolerated for further manipulation.

Experimental

Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance spectra were recorded at 300, 400, or 600 MHz and 75, 100, or 151 MHz, respectively. The chemical shifts are given in parts per million (ppm) on the delta (δ) scale. The solvent peak was used as a reference value, for ¹H NMR: CDCl₃ = 7.27 ppm, for ¹³C NMR: CDCl₃ = 77.23 ppm. Analytical TLC was performed on precoated silica gel GF254 plates. HRMS were carried out using an Orbitrap analyzer.

General procedure for the oxidative CDC reaction of chromenes

To the solution of **1a** (26.4 mg, 0.2 mmol) and **2a** (56.4 mg, 0.3 mmol) in DCE (3.0 mL) was added DDQ (45.4 mg, 0.2 mmol) followed by $In(OTf)_3$ (11.2 mg, 0.02 mmol). The reaction mixture was stirred at room temperature for 5 h. Then it was quenched with sat. aqueous NaHCO₃ solution in an icebath and extracted twice with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. The residue was purified by chromatography on silica gel to yield the desired **3a** in 90% yield (57.2 mg).

Characterization data for the products in Scheme 1

Diisopropyl 2-(2*H***-chromen-2-yl)malonate (3a). ¹H NMR (600 MHz, CDCl₃) \delta = 7.12 (td,** *J* **= 8.0, 1.4 Hz, 1H), 6.99 (dd,** *J* **= 7.4, 1.2 Hz, 1H), 6.88 (td,** *J* **= 7.4, 0.6 Hz, 1H), 6.75 (d,** *J* **= 8.1 Hz, 1H), 6.49 (d,** *J* **= 9.9 Hz, 1H), 5.90 (dd,** *J* **= 9.9, 4.0 Hz, 1H), 5.48 (ddd,** *J* **= 9.3, 3.9, 0.7 Hz, 1H), 5.14 (dt,** *J* **= 12.5, 6.2 Hz, 1H), 5.06 (dt,** *J* **= 12.5, 6.3 Hz, 1H), 3.80 (d,** *J* **= 9.3 Hz, 1H), 1.30–1.26 (m, 6H), 1.23 (dd,** *J* **= 6.2, 0.7 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) \delta = 166.4, 166.1, 152.4, 129.7, 126.8, 125.4, 122.7, 121.8, 121.5, 116.7, 72.9, 69.5, 69.4, 57.6, 21.9, 21.8, 21.7; IR \nu_{max} 2986, 2920, 2845, 1740, 1480, 1456, 1358, 1270, 1202, 1148, 1113, 1011, 773 cm⁻¹; HRMS (EI)** *m/z* **[M + H]⁺ calculated for C₁₈H₂₃O₅: 319.1540, found 319.1541.**

Dimethyl 2-(2*H*-chromen-2-yl)malonate (3b). ¹H NMR (600 MHz, CDCl₃) δ = 7.13 (t, *J* = 7.0 Hz, 1H), 7.00 (d, *J* = 6.7 Hz, 1H), 6.90 (d, *J* = 6.6 Hz, 1H), 6.76 (d, *J* = 7.5 Hz, 1H), 6.52 (d, *J* = 9.6 Hz, 1H), 5.96–5.84 (m, 1H), 5.58–5.45 (m, 1H), 3.90 (d, *J* = 9.1 Hz, 1H), 3.80 (s, 3H), 3.73 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 167.2, 166.8, 152.1, 129.9, 126.9, 125.7, 122.3, 122.0, 121.4, 116.7, 72.9, 56.7, 52.9, 52.8; IR ν_{max} 2986, 2919, 2845, 1738, 1433, 1459, 1270, 1202, 1145, 1111, 1011, 775, 694 cm⁻¹; HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₄H₁₅O₅: 263.0914, found 263.0917.

Diethyl 2-(2*H*-chromen-2-yl)malonate (3c). ¹H NMR (600 MHz, CDCl₃) δ = 7.13 (t, *J* = 6.7 Hz, 1H), 6.99 (d, *J* = 6.9 Hz, 1H), 6.90 (d, *J* = 7.1 Hz, 1H), 6.75 (d, *J* = 7.8 Hz, 1H), 6.51 (d, *J* = 9.6 Hz, 1H), 5.98-5.82 (m, 1H), 5.56-5.44 (m, 1H), 4.31–4.15 (m, 4H), 3.86 (d, J = 9.0 Hz, 1H), 1.30 (t, J = 5.4 Hz, 3H), 1.24 (t, J = 5.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 166.8$, 166.5, 152.2, 129.8, 126.9, 125.6, 122.5, 121.9, 121.4, 116.6, 72.9, 61.9, 61.9, 57.1, 14.3, 14.2; IR $\nu_{\rm max}$ 2986, 2921, 2843, 1737, 1423, 1459, 1277, 1229, 1145, 1112, 1011, 775, 694 cm⁻¹; HRMS (EI) m/z [M + H]⁺ calculated for C₁₆H₁₉O₅: 291.1227, found 291.1225.

Dibenzyl 2-(2*H*-chromen-2-yl)malonate (3d). ¹H NMR (600 MHz, CDCl₃) δ = 7.37–7.33 (m, 8H), 7.30–7.26 (m, 2H), 7.08 (t, *J* = 7.2 Hz, 1H), 6.98 (d, *J* = 6.9 Hz, 1H), 6.88 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 1H), 6.48 (d, *J* = 9.9 Hz, 1H), 5.85 (dd, *J* = 9.8, 4.0 Hz, 1H), 5.56 (dd, *J* = 9.2, 3.9 Hz, 1H), 5.26–5.10 (m, 4H), 4.00 (d, *J* = 9.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ = 166.5, 166.2, 152.1, 135.5, 135.2, 129.8, 128.8, 128.7, 128.6, 128.6, 128.5, 128.3, 126.9, 125.7, 122.3, 122.0, 121.4, 116.7, 72.9, 67.5, 57.1; IR ν_{max} 2952, 2924, 2851, 1737, 1519, 1488, 1457, 1384, 1292, 1226, 1208, 1113, 962, 806, 748 cm⁻¹; HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₂₆H₂₃O₅: 415.1540, found 415.1542.

Bis(4-methylbenzyl) 2-(2*H*-chromen-2-yl)malonate (3e). ¹H NMR (400 MHz, CDCl₃) δ = 7.22 (d, *J* = 8.0 Hz, 2H), 7.19–7.11 (m, 6H), 7.10–7.04 (m, 1H), 6.97 (dd, *J* = 7.4, 1.4 Hz, 1H), 6.87 (td, *J* = 7.4, 0.7 Hz, 1H), 6.59 (d, *J* = 8.1 Hz, 1H), 6.47 (d, *J* = 9.9 Hz, 1H), 5.84 (dd, *J* = 9.8, 4.0 Hz, 1H), 5.52 (ddd, *J* = 9.3, 4.0, 0.7 Hz, 1H), 5.23–5.04 (m, 4H), 3.95 (d, *J* = 9.3 Hz, 1H), 2.37 (s, 3H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 166.6, 166.2, 152.1, 138.5, 138.4, 132.5, 132.3, 129.8, 129.4, 129.4, 128.6, 128.5, 126.8, 125.7, 122.4, 121.9, 121.4, 116.7, 72.9, 67.5, 57.1, 21.4; IR ν_{max} 2953, 2924, 2852, 1736, 1519, 1488, 1457, 1385, 1293, 1228, 1205, 1113, 960, 805, 748 cm⁻¹; HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₂₈H₂₇O₅: 443.1853, found 443.1853.

Bis(4-methoxybenzyl) 2-(2*H*-chromen-2-yl)malonate (3f). ¹H NMR (400 MHz, CDCl₃) δ = 7.25 (d, *J* = 8.7 Hz, 2H), 7.20 (d, *J* = 8.6 Hz, 2H), 7.10–7.03 (m, 1H), 6.96 (dd, *J* = 7.2, 1.2 Hz, 1H), 6.90–6.81 (m, 5H), 6.57 (d, *J* = 8.0 Hz, 1H), 6.46 (d, *J* = 9.9 Hz, 1H), 5.81 (dd, *J* = 9.8, 4.0 Hz, 1H), 5.50 (dd, *J* = 9.2, 3.9 Hz, 1H), 5.19–5.02 (m, 4H), 3.92 (d, *J* = 9.3 Hz, 1H), 3.82 (s, 3H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 166.6, 166.3, 160.0, 159.9, 152.1, 130.4, 130.3, 129.8, 127.7, 127.4, 126.8, 125.7, 122.4, 121.9, 121.4, 116.7, 114.1, 114.1, 72.9, 67.4, 67.4, 57.1, 55.5, 55.5; IR ν_{max} 2955, 2924, 2852, 1737, 1520, 1488, 1450, 1364, 1293, 1228, 1202, 1113, 963, 805, 748, 695 cm⁻¹; HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₂₈H₂₇O₇: 475.1751, found 475.1755.

Bis(4-bromobenzyl) 2-(2*H*-chromen-2-yl)malonate (3g). ¹H NMR (400 MHz, CDCl₃) δ = 7.52–7.42 (m, 4H), 7.18 (d, *J* = 8.3 Hz, 2H), 7.15–7.06 (m, 3H), 6.98 (dd, *J* = 7.4, 1.4 Hz, 1H), 6.89 (t, *J* = 7.3 Hz, 1H), 6.58 (d, *J* = 8.2 Hz, 1H), 6.48 (d, *J* = 9.9 Hz, 1H), 5.83 (dd, *J* = 9.8, 4.0 Hz, 1H), 5.57–5.47 (m, 1H), 5.17–5.01 (m, 4H), 3.97 (d, *J* = 9.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 166.3, 166.0, 152.0, 134.4, 134.1, 132.0, 131.9, 130.1, 130.0, 129.9, 126.9, 125.8, 122.8, 122.7, 122.1, 122.0, 121.2, 116.6, 72.8, 66.7, 66.7, 57.0; IR ν_{max} 2951, 2921, 2848, 1736, 1488, 1456, 1389, 1271, 1202, 1147, 1113, 1071, 800, 759 cm⁻¹; HRMS (EI) *m/z* [M + H]⁺ calculated for C₂₆H₂₁Br₂O₅: 570.9750, found 570.9751. Bis(3-chlorobenzyl) 2-(2*H*-chromen-2-yl)malonate (3h). ¹H NMR (400 MHz, CDCl₃) δ = 7.34–7.26 (m, 6H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.17–7.07 (m, 2H), 6.99 (d, *J* = 7.3 Hz, 1H), 6.90 (t, *J* = 7.4 Hz, 1H), 6.63 (d, *J* = 8.1 Hz, 1H), 6.51 (d, *J* = 9.8 Hz, 1H), 5.85 (dd, *J* = 9.8, 4.0 Hz, 1H), 5.55 (dd, *J* = 9.1, 3.9 Hz, 1H), 5.24–5.05 (m, 4H), 4.01 (d, *J* = 9.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 166.3, 166.0, 152.0, 137.4, 137.1, 134.7, 134.6, 130.1, 130.1, 130.0, 128.8, 128.8, 128.4, 128.3, 127.0, 126.4, 126.3, 125.9, 122.1, 122.0, 121.3, 116.7, 72.8, 66.6, 66.6, 57.0; IR ν_{max} 2954, 2922, 2848, 1736, 1489, 1457, 1386, 1270, 1204, 1137, 1111, 1071, 801, 760 cm⁻¹; HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₂₆H₂₁Cl₂O₅: 483.0761, found 483.0766.

Ethyl 2-(2*H*-chromen-2-yl)-3-oxobutanoate (3i). ¹H NMR (400 MHz, CDCl₃) δ = 7.13 (t, *J* = 7.7 Hz, 1H), 6.99 (t, *J* = 6.0 Hz, 1H), 6.95–6.86 (m, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 6.49 (t, *J* = 10.1 Hz, 1H), 5.88–5.80 (m, 1H), 5.62–5.45 (m, 1H), 4.27 (q, *J* = 7.1 Hz, 1H), 4.21–4.16 (m, 1H), 4.04 (d, *J* = 9.4 Hz, 1H), 2.33 (s, 2H), 2.23 (s, 1H), 1.32–1.23 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 201.0, 200.5, 166.9, 166.5, 152.3, 152.0, 129.9, 129.8, 127.0, 126.9, 125.6, 125.4, 122.9, 122.7, 122.1, 121.9, 121.5, 114.5, 116.6, 116.5, 73.3, 73.0, 64.8, 63.5, 62.0, 61.8, 30.6, 30.5, 14.3, 14.2; IR ν_{max} 2987, 2918, 2845, 1742, 1717, 1487, 1456, 1356, 1272, 1222, 1149, 1113, 1019, 773 cm⁻¹; HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₅H₁₇O₄: 261.1121, found 261.1122.

Ethyl 1-(2*H*-chromen-2-yl)-2-oxocyclopentanecarboxylate (3j). ¹H NMR (600 MHz, CDCl₃) δ = 7.07 (t, *J* = 7.7 Hz, 1H), 6.95–6.90 (m, 1H), 6.83 (t, *J* = 7.3 Hz, 1H), 6.63 (d, *J* = 7.9 Hz, 1H), 6.51–6.43 (m, 1H), 5.81 (s, 1H), 5.65 (dd, *J* = 10.0, 2.6 Hz, 1H), 4.28–4.15 (m, 2H), 2.58–2.41 (m, 3H), 2.40–2.31 (m, 1H), 2.06–1.95 (m, 2H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 212.5, 168.7, 153.5, 129.7, 126.9, 126.2, 121.9, 121.5, 120.6, 115.5, 77.9, 65.5, 61.9, 39.3, 28.3, 20.3, 14.2; IR ν_{max} 2988, 2919, 2845, 1744, 1716, 1480, 1446, 1358, 1277, 1204, 1148, 1113, 1011, 773, 754, 695 cm⁻¹; HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₁₉O₄: 287.1278, found 287.1278.

3-(2*H***-Chromen-2-yl)pentane-2,4-dione** (3k). ¹H NMR (600 MHz, CDCl₃) δ = 7.14 (t, *J* = 7.0 Hz, 1H), 7.00 (d, *J* = 7.3 Hz, 1H), 6.91 (t, *J* = 7.3 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.48 (d, *J* = 9.7 Hz, 1H), 5.74 (dd, *J* = 9.8, 3.9 Hz, 1H), 5.61–5.55 (m, 1H), 4.28 (d, *J* = 9.7 Hz, 1H), 2.33 (s, 3H), 2.19 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 201.6, 201.2, 152.1, 130.0, 127.1, 125.7, 122.5, 122.2, 121.5, 116.6, 73.7, 73.1, 31.2, 29.6; IR ν_{max} 2937, 2859, 1707, 1483, 1457, 1385, 1230, 1205, 1128, 1113, 1013, 779, 754, 571 cm⁻¹; HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₁₄H₁₅O₃: 231.1016, found 231.1013.

Diisopropyl 2-(6-methyl-2*H***-chromen-2-yl)malonate (3m). ¹H** NMR (600 MHz, CDCl₃) δ = 6.92 (d, *J* = 8.1 Hz, 1H), 6.80 (s, 1H), 6.65 (d, *J* = 8.1 Hz, 1H), 6.46 (d, *J* = 9.8 Hz, 1H), 5.90 (dd, *J* = 9.8, 4.0 Hz, 1H), 5.43 (dd, *J* = 9.1, 3.6 Hz, 1H), 5.14 (dt, *J* = 12.5, 6.3 Hz, 1H), 5.05 (dt, *J* = 12.5, 6.3 Hz, 1H), 3.79 (d, *J* = 9.5 Hz, 1H), 2.25 (s, 3H), 1.28 (t, *J* = 6.7 Hz, 6H), 1.22 (d, *J* = 6.2 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ = 166.4, 166.1, 150.1, 131.1, 130.2, 127.3, 125.6, 122.8, 121.4, 116.4, 72.8, 69.4, 69.4, 57.4, 21.9, 21.8, 21.7, 20.7; IR ν_{max} 2957, 2928, 2845, 1743, 1480, 1459, 1358, 1270, 1138, 1113, 1011, 773 cm⁻¹; HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₉H₂₅O₅: 333.1697, found 333.1694.

Diisopropyl 2-(6-bromo-2*H***-chromen-2-yl)malonate (3n). ¹H** NMR (600 MHz, CDCl₃) δ = 7.21 (d, *J* = 7.3 Hz, 1H), 7.11 (s, 1H), 6.63 (d, *J* = 8.2 Hz, 1H), 6.43 (d, *J* = 9.5 Hz, 1H), 6.02–5.93 (m, 1H), 5.48 (dd, *J* = 4.8, 3.8 Hz, 1H), 5.18–5.10 (m, 1H), 5.10–5.02 (m, 1H), 3.76 (d, *J* = 8.7 Hz, 1H), 1.27 (s, 6H), 1.23 (d, *J* = 5.5 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ = 166.2, 165.9, 151.5, 132.3, 129.3, 124.4, 124.1, 123.3, 118.4, 113.9, 73.1, 69.6, 69.6, 57.5, 21.9, 21.8, 21.8, 21.7; IR ν_{max} 2988, 2920, 2845, 1742, 1480, 1456, 1348, 1202, 1148, 1112, 1011, 779 cm⁻¹; HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₈H₂₂BrO₅: 397.0645, found 397.0644.

2-(2H-Chromen-2-yl)cyclohexanone (5a). ¹H NMR (600 MHz, CDCl₃) δ = 7.13–7.06 (m, 1H), 6.97–6.91 (m, 1H), 6.88–6.81 (m, 1H), 6.78 (d, *J* = 8.1 Hz, 0.5H), 6.72 (d, *J* = 8.1 Hz, 0.5H), 6.46–6.36 (m, 1H), 5.88–5.67 (m, 1H), 5.52–5.45 (m, 0.5H), 5.21–5.12 (m, 0.5H), 2.92–2.69 (m, 1H), 2.49–2.40 (m, 1.5H), 2.38–2.21 (m, 1.5H), 2.11–1.98 (m, 1.5H), 1.94–1.91 (m, 0.5H), 1.73–1.61 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 211.0, 210.8, 154.2, 153.3, 129.4, 126.8, 126.7, 125.7, 125.0, 124.1, 123.3, 121.4, 121.2, 116.2, 115.7, 74.2, 73.6, 56.1, 55.7, 42.9, 42.5, 29.9, 28.2, 27.9, 27.7, 24.9, 24.7; IR ν_{max} 3042, 2938, 2859, 1706, 1485, 1455, 1375, 1222, 1202, 1128, 1112, 1014, 754, 571 cm⁻¹; HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₁₅H₁₇O₂: 229.1223, found 229.1224.

Characterization data for the products in Scheme 2

2-(2H-Chromen-2-yl)cyclohexanone (5a). ¹H NMR (600 MHz, CDCl₃) δ = 7.13–7.06 (m, 1H), 6.97–6.91 (m, 1H), 6.88–6.81 (m, 1H), 6.78 (d, *J* = 8.1 Hz, 0.5H), 6.72 (d, *J* = 8.1 Hz, 0.5H), 6.46–6.36 (m, 1H), 5.88–5.67 (m, 1H), 5.52–5.45 (m, 0.5H), 5.21–5.12 (m, 0.5H), 2.92–2.69 (m, 1H), 2.49–2.40 (m, 1.5H), 2.38–2.21 (m, 1.5H), 2.11–1.98 (m, 1.5H), 1.94–1.91 (m, 0.5H), 1.73–1.61 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 211.0, 210.8, 154.2, 153.3, 129.4, 126.8, 126.7, 125.7, 125.0, 124.1, 123.3, 121.4, 121.2, 116.2, 115.7, 74.2, 73.6, 56.1, 55.7, 42.9, 42.5, 29.9, 28.2, 27.9, 27.7, 24.9, 24.7; IR ν_{max} 3042, 2938, 2859, 1706, 1485, 1455, 1375, 1222, 1202, 1128, 1112, 1014, 754, 571 cm⁻¹; HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₅H₁₇O₂: 229.1223, found 229.1224.

Characterization data for the substrates in Scheme 3

2-(4-Methoxyphenyl)-*2***H-chromene** (7a). ¹H NMR (600 MHz, CDCl₃) δ = 7.39 (d, *J* = 7.9 Hz, 2H), 7.10 (t, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 7.4 Hz, 1H), 6.93–6.85 (m, 3H), 6.76 (d, *J* = 8.1 Hz, 1H), 6.55 (d, *J* = 9.8 Hz, 1H), 5.88 (s, 1H), 5.79 (dd, *J* = 9.8, 3.0 Hz,

1H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ = 160.0, 153.3, 133.1, 129.6, 128.9, 126.7, 125.1, 124.2, 121.6, 121.3, 116.3, 114.2, 77.0, 55.5; IR $\nu_{\rm max}$ 2930, 2837, 1610, 1586, 1513, 1485, 1457, 1304, 1268, 1250, 1227, 1205, 1175, 1111, 1037, 955, 932, 802, 756 cm⁻¹; HRMS (EI) *m*/*z* calcd for C₁₆H₁₅O₂: [M + H]⁺ 239.1067, found 239.1068.

2-(2,4-Dimethoxyphenyl)-2*H***-chromene (7b). ¹H NMR (400 MHz, CDCl₃) \delta = 7.38 (d,** *J* **= 8.4 Hz, 1H), 7.13–7.07 (m, 1H), 7.00 (d,** *J* **= 7.3 Hz, 1H), 6.85 (t,** *J* **= 7.4 Hz, 1H), 6.78 (d,** *J* **= 8.1 Hz, 1H), 6.53–6.43 (m, 3H), 6.29 (dd,** *J* **= 3.2, 1.7 Hz, 1H), 5.76 (dd,** *J* **= 9.9, 3.6 Hz, 1H), 3.86 (s, 3H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) \delta = 161.1, 157.5, 153.7, 129.4, 129.3, 126.6, 125.3, 123.7, 121.8, 121.6, 121.1, 116.2, 104.5, 98.9, 71.2, 55.8, 55.6; IR \nu_{max} 2956, 2921, 2850, 1611, 1588, 1505, 1485, 1356, 1227, 1208, 1157, 1120, 1110, 1035, 955, 766 cm⁻¹; HRMS (EI)** *m/z* **[M + H]⁺ calculated for C₁₇H₁₇O₃: 269.1172, found 269.1169.**

2-(4,5-Dimethoxy-2-methylphenyl)-*2H***-chromene** (7c). ¹H NMR (400 MHz, CDCl₃) δ = 7.15–7.10 (m, 1H), 7.06–7.01 (m, 2H), 6.88 (t, *J* = 7.4 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.73 (s, 1H), 6.58 (dd, *J* = 9.9, 1.7 Hz, 1H), 6.15–6.07 (m, 1H), 5.75 (dd, *J* = 9.8, 2.9 Hz, 1H), 3.89 (s, 3H), 3.81 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 153.8, 148.9, 147.3, 130.6, 129.6, 128.6, 126.8, 125.2, 124.9, 121.7, 121.4, 116.2, 114.1, 111.5, 74.7, 56.2, 56.1, 18.8; IR ν_{max} 2957, 2927, 2850, 1611, 1589, 1505, 1485, 1356, 1227, 1208, 1157, 1120, 1111, 1035, 959, 756 cm⁻¹; HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₈H₁₉O₃: 283.1329, found 283.1330.

3-(2H-Chromen-2-yl)-1H-indole (7d). ¹H NMR (400 MHz, CDCl₃) δ = 8.06 (s, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.25–7.14 (m, 3H), 7.07 (d, *J* = 7.5 Hz, 2H), 6.88 (t, *J* = 7.4 Hz, 1H), 6.77 (d, *J* = 7.9 Hz, 1H), 6.63 (d, *J* = 9.8 Hz, 1H), 6.26 (d, *J* = 1.7 Hz, 1H), 5.98 (dd, *J* = 9.8, 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 153.51, 136.7, 129.2, 126.5, 126.1, 124.6, 124.5, 124.0, 122.6, 122.0, 121.0, 120.1, 119.9, 116.4, 115.7, 111.3, 70.5; IR ν_{max} 3409, 2947, 2918, 2846, 1603, 1544, 1484, 1456, 1421, 1339, 1223, 1200, 1111, 1033, 1010, 938, 797, 744 cm⁻¹; HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₁₇H₁₄NO: 248.1070, found 248.1074.

6-Bromo-2-(4-methoxyphenyl)-2H-chromene (7e). ¹H NMR (600 MHz, CDCl₃) δ = 7.37 (t, J = 8.9 Hz, 2H), 7.15–6.86 (m, 5H), 6.72 (d, J = 8.1 Hz, 0.5H), 6.53 (d, J = 9.8 Hz, 0.5H), 5.91 (dd, J = 10.0, 3.4 Hz, 0.5H), 5.86 (d, J = 7.0 Hz, 1H), 5.83 (dd, J = 10.0, 3.4 Hz, 0.5H), 3.82 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 160.0, 154.3, 132.3, 130.0, 129.0, 127.6, 125.3, 124.3, 123.4, 119.6, 115.8, 114.2, 76.9, 55.5; IR ν_{max} 2923, 2835, 1610, 1594, 1558, 1513, 1481, 1445, 1304, 1247, 1208, 1174, 1035, 963, 820, 766 cm⁻¹; HRMS (EI) *m*/*z* calcd for C₁₆H₁₄BrO₂ [M + H]⁺ 317.0172, found 317.0173.

Acknowledgements

This work was supported by the National Science Foundation of China (no. 21202093 and 21472112), the Program for New Century Excellent Talents in University (no. NCET-13-0346),

Paper

the Shandong Science Fund for Distinguished Young Scholars (JQ201404), Young Scientist Foundation Grant of Shandong Province (no. BS2013YY001), the Fundamental Research Funds of Shandong University (no. 2014JC005), and the Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Ministry of Education of China (CHEMR2014-B11). We are also grateful to the Program for Changjiang Scholars and Innovative Research Team in University (IRT13028).

Notes and references

- 1 (a) Z. Lu, Z. Lin, W. Wang, L. Du, T. Zhu, Y. Fang, Q. Gu and W. Zhu, J. Nat. Prod., 2008, 71, 543; (b) R. E. TenBrink, C. L. Bergh, J. N. Duncan, D. W. Harris, R. M. Huff, R. A. Lahti, C. F. Lawson, B. S. Lutzke, I. J. Martin, S. A. Rees, S. K. Schlachter, J. C. Sih and M. W. Smith, J. Med. Chem., 1996, 39, 2435; (c) R. L. Clarke and L. S. Harris, J. Med. Chem., 1962, 5, 77; (d) U. Albrecht, M. Lalk and P. Langer, Bioorg. Med. Chem., 2005, 13, 1531; (e) S. Sawadjoon, P. Kittakoop, K. Kirtikara, V. Vichai, M. Tanticharoen and Y. Thebtaranonth, J. Org. Chem., 2002, 67, 5470; (f) D. J. Bauer, J. W. T. Selway, J. F. Batchelor, M. Tisdale, I. C. Caldwell and D. A. B. Young, Nature, 1981, 292, 369; (g) S. Gauthier, B. Caron, J. Cloutier, Y. L. Dory, Favre, D. Larouche, J. Mailhot, C. Ouellet, A. Schwerdtfeger, G. Leblanc, C. Martel, J. Simard, A. Y. Mérand, A. Bélanger, C. Labrie and F. Labrie, J. Med. Chem., 1997, 40, 2117.
- 2 (a) P. N. Moquist, T. Kodama and S. E. Schaus, Angew. Chem., Int. Ed., 2010, 49, 7096; (b) M. Rueping, C. M. R. Volla and L. Atodiresei, Org. Lett., 2012, 14, 4642.
- 3 (a) P. A. Wender, V. A. Verma, T. J. Paxton and T. H. Pillow, *Acc. Chem. Res.*, 2008, **41**, 40; (b) B. M. Trost, *Acc. Chem. Res.*, 2002, **35**, 695.
- 4 (a) K. Godula and D. Sames, Science, 2006, 312, 67;
 (b) W. R. Gutekunst and P. S. Baran, Chem. Soc. Rev., 2011,
 40, 1976; (c) R. Giri, B. F. Shi, K. M. Engle, N. Maugel and
 J. Q. Yu, Chem. Soc. Rev., 2009, 38, 3242; (d) C. Liu,
 H. Zhang, W. Shi and A. Lei, Chem. Rev., 2011, 111, 1780;
 (e) W. Shi, C. Liu and A. Lei, Chem. Soc. Rev., 2011, 40, 2761;
 (f) S. Y. Zhang, F. M. Zhang and Y. Q. Tu, Chem. Soc. Rev.

2011, **40**, 1937; (g) C. L. Sun, B. J. Li and Z. J. Shi, *Chem. Rev.*, 2011, **111**, 1293; (*h*) C. S. Yeung and V. M. Dong, *Chem. Rev.*, 2011, **111**, 1215; (*i*) A. A. O. Sarhan and C. Bolm, *Chem. Soc. Rev.*, 2009, **38**, 2730.

- 5 (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335; (b) S. A. Girard, T. Knauber and C.-J. Li, Angew. Chem., Int. Ed., 2014, 53, 74;
 (c) W. J. Yoo and C.-J. Li, Top. Curr. Chem., 2010, 292, 281;
 (d) C.-J. Scheuermann, Chem. – Asian J., 2010, 5, 436;
 (e) R. Rohlmann and O. García Mancheño, Synlett, 2013, 6;
 (f) M. Klussmann and D. Sureshkumar, Synthesis, 2011, 353;
 (g) C.-J. Li and Z. Li, Pure Appl. Chem., 2006, 78, 935.
- 6 (a) Y. Zhang and C.-J. Li, J. Am. Chem. Soc., 2006, 128, 4242; (b) S. J. Park, J. R. Price and M. H. Todd, J. Org. Chem., 2012, 77, 949; (c) Y. Zhang and C.-J. Li, Angew. Chem., Int. Ed., 2006, 45, 1949; (d) C. A. Correia and C.-J. Li, Heterocycles, 2010, 82, 555; (e) M. Ghobrial, K. Harhammer, M. D. Mihovilovic and M. Schnürch, Chem. Commun., 2010, 46, 8836; (f) H. Richter, R. Rohlmann and O. García Mancheño, Chem. - Eur. J., 2011, 17, 11622; (g) B. Zhang, Y. Cui and N. Jiao, Chem. Commun., 2012, 48, 4498; (h) Á. Pintér, A. Sud, D. Sureshkumar and M. Klussmann, Angew. Chem., Int. Ed., 2010, 49, 5004; (i) X. Liu, B. Sun, Z. Xie, X. Qin, L. Liu and H. Lou, J. Org. Chem., 2013, 78, 3104; (j) X. Pan, Q. Hu, W. Chen, X. Liu, B. Sun, Z. Huang, Z. Zeng, L. Wang, D. Zhao, M. Ji, L. Liu and H. Lou, Tetrahedron, 2014, 70, 3447; (k) Z. Meng, S. Sun, H. Yuan, H. Lou and L. Liu, Angew. Chem., Int. Ed., 2014, 53, 543; (l) M. Wan, Z. Meng, H. Lou and L. Liu, Angew. Chem., Int. Ed., 2014, 53, 13845; (m) H. Richter and O. García Mancheño, Eur. J. Org. Chem., 2010, 4460; (n) Z. Xie, L. Liu, W. Chen, H. Zheng, Q. Xu, H. Yuan and H. Lou, Angew. Chem., Int. Ed., 2014, 53, 3904; (o) W. Chen, H. Zheng, X. Pan, Z. Xie, X. Zan, B. Sun, L. Liu and H. Lou, Tetrahedron Lett., 2014, 55, 2879; (p) S. Sun, C. Li, P. E. Floreancig, H. Lou and L. Liu, Org. Lett., 2015, 17, 1684; (q) X. Liu, Z. Meng, C. Li, H. Lou and L. Liu, Angew. Chem., Int. Ed., 2015, DOI: 10.1002/anie.201500703.
- 7 (a) D. J. Clausen and P. E. Floreancig, *J. Org. Chem.*, 2012,
 77, 6574; (b) Y. Cui, L. A. Villafane, D. J. Clausen and
 P. E. Floreancig, *Tetrahedron*, 2013, 69, 7618.
- 8 W. Chen, Z. Xie, H. Zheng, H. Lou and L. Liu, *Org. Lett.*, 2014, **16**, 5988.
- 9 Z. J. Wu, J. Qian, T.-T. Wang and Z.-Z. Huang, *Synlett*, 2014, 2072.