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Graphical Abstract 

 

 
A 3D Cu(II)-based MOF was successfully synthesized and used as a heterogeneous 
catalyst for the CO2 cycloaddition reaction and Knoevenagel condensation reaction. 
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Abstract 

A three-dimensional (3D) Cu(II)-based MOF, [CuL·Cl]n (namely complex 1), was 

successfully generated through the in-situ reaction of CuCl2, NaN3, and 

4-(4-cyanostyryl)pyridine. Notably, –CN and N3
– can directly react to form a 

tetrazolate group during the crystal growth process. This reaction was further proved 

by single crystal X-ray diffraction data. Thanks to the excellent stability, various 

N-donors as Lewis basic sites and Cu(II) centres as Lewis acid sites, the as-made 

complex 1 has a potential application as a bifunctional heterogeneous catalyst for the 

CO2 cycloaddition reaction and Knoevenagel condensation reaction. In addition, 

complex 1 has the excellent recyclability for both reactions at least six cycles. 

Keywords: In situ reaction; heterogeneous catalyst; CO2 cycloaddition reaction; 

Knoevenagel condensation reaction; recyclability. 

1. Introduction 

Recently, metal–organic frameworks (MOFs) [1,2] are organic-inorganic hybrid 

crystalline materials, which have been developed rapidly thanks to their various 

structures and greatly potential applications in small gas sorption [3-5], bio-carrier 

[6,7], luminescent detector [8-10], optical device [11,12], and catalysis [13,14]. 

Compared with other solid materials, MOFs have lots of unique features, including 

structural diversity, designability, multifunctional site, and adjustability [15-17]. 

Taking into account of some previous reports, diversiform MOFs can be tuned and 

constructed by rationally choosing metal centres and organic building blocks with 

various coordination sites to achieve excellent properties [18-20]. Among all 

properties, MOFs exhibit greatly potential applications as heterogeneous catalysts for 

many catalytic reactions because of their catalytic centres, including Lewis acid sites 

(open metal site) [21-23], Brønsted acidic sites (–COOH and –OH) [24-26], and 

Lewis basic sites (–NH2) [27-29]. However, the poor stability of MOFs greatly limits 

the development of these materials as heterogeneous catalysts in practical applications. 

Up to now, some useful approaches have been developed to enhance the stability of 
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MOFs to expand their real usability, such as surface hydrophobic coating, soft and 

hard acid base theory, multi-wall and high connected multicore structure [30-32]. 

Bridging organic linkers have significantly important influences for the structures and 

properties of MOFs. Most attentions have been still focused on carboxylic acid 

organic ligands due to their excellent coordination abilities and easy preparation of 

MOFs [33,34]. On the other hand, another sort of linkers focuses on the heterocyclic 

nitrogen rings (pyridine, imidazole, triazole, and tetrazole) in the assemble process of 

MOFs with transition metals [35-38]. Compared with the carboxylic acid linkers, such 

linkers are always difficult to prepare MOFs, but the as-synthesized MOFs always 

have the excellent stability. In addition, the free N-donors and metal centers in MOFs 

can be served as Lewis basic sites and Lewis acid sites for different catalytic reactions 

[39-41]. Hence, it is a significant change to construct highly stable MOFs based on 

organic linkers with various N-donors to investigate their catalytic applications. 

Based on the above discussion, we chosen an organic linker 

4-(4-cyanostyryl)pyridine with pyridine and cyano groups as a bridging linker to 

assemble with Cu(II) and NaN3. The cyano group can react with N3
– to generate 

tetrazole groups in suit, which was further assembled with Cu(II) to construct MOFs. 

As we expect, a novel three-dimensional (3D) Cu(II)-organic framework, [CuL·Cl]n 

(namely complex 1), has been successfully prepared via the solvothermal reaction; 

meanwhile, the tetrazole groups are found in the structure of complex 1. The 

as-prepared sample was detailly characterized and analysed by lots of testing methods. 

More importantly, complex 1 exhibits the excellent catalytic performance for the CO2 

cycloaddition reaction and Knoevenagel condensation reaction with the outstanding 

recyclability. 

2. Experimental 

2.1. Materials and general methods 

All chemicals and solvents were purchased and used directly. Powder X-ray 

diffraction (PXRD) patterns were carried out on a Bruker D8 GADDS from 5° to 40°. 
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Thermogravimetric analyses (TGA) data were measured on a TGA Q500 under N2 

from room temperature to 800 °C. The catalytic yield was obtained on a Thermo 

Fisher Trace ISQ GC/MS. Elemental analysis of C, H and N was performed on a 

CE-440 analyzer (Leeman Laboratories). 

2.2. Synthesis of complex 1 

CuCl2 (0.1 mmol), NaN3 (0.1 mmol), and 4-(4-cyanostyryl)pyridine (0.1 mmol) were 

all added in a mixture solution of ethanol (1.2 mL) and H2O (2.8 mL) and carefully 

sealed in a Teflon-lined steel. The mixture was putted and heated at 165 °C for 4 days. 

Then, it was cooled slowly to room temperature at a decreasing rate of 5 °C h–1. 

Finally, blue crystals with high quality were collected and washed with ethanol. These 

crystals were dried in air with the yield of 61% based on the linker. Anal. Calc. (%) 

for C14H10CuN5: C, 53.85; H, 3.21; N, 22.44. Found: C, 54.01; H, 3.26; N, 22.39. 

2.3. Single crystal X-ray diffraction of complex 1 

Single crystal X-ray diffraction of complex 1 was measured on a Bruker SMART 

CCD diffractometer with Mo Kα (λ = 0.71073 Å) radiation. The structure of complex 

1 can be well solved by using SHELXL-2015 [42,43] in the OLEX2 program [44]. All 

non-H atoms were added by the anisotropic parameters. The crystal data and structure 

refinement of complex 1 are summarized in Table 1. 

2.4. The Knoevenagel condensation reaction 

In a typical catalytic reaction, benzaldehyde with different substitutional groups (1.00 

mmol) and malononitrile (1.05 mmol) were both dissolved in toluene (4 mL) in a 

reaction bottle with complex 1 (100 mg). The reaction mixture was heated in an oil 

bath at 100 °C for 4 hours under slowly stirring. The catalytic yields can be calculated 

by using the GC method with biphenyl as an internal standard substance. 

2.5. The CO2 cycloaddition reaction 
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In a typical reaction, epoxides (10 mmol), n-Bu4NBr (0.35 mmol), and complex 1 

(100 mg) were all added in a high-pressure reaction equipment with CO2 (1 MPa) at 

100 °C for 8 hours. The yields of cyclic carbonates can be obtained by the GC 

approach with n-dodecane as an internal standard. 

Table 1. Crystal data and structure refinement. 

Sum formula C14H10CuN5 

Formula weight 311.82 

Crystal system monoclinic 

Space group P21/c 

a (Å) 13.4232(12) 

b (Å) 9.1569(9) 

c (Å) 10.1126(9) 

α (º) 90 

β (º) 99.916(2) 

γ (º) 90 

Volume (Å3) 1224.4(2) 

Z 4 

Dx (g cm-3) 1.692 

Mu (mm-1) 

Nref 

1.779 

2621 

R(int) 0.0336 

Goodness-of-fit on F2 1.045 

R1, wR2 [I > 2σ(I)] 0.0885, 0.0875 

R1, wR2 (all data) 0.0467, 0.0915 

3. Results and discussion 

3.1. Structural description for complex 1 

The as-synthesized crystals can be generated by mixing 4-(4-cyanostyryl)pyridine, 
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CuCl2, and NaN3 in a mixture solution of water and ethanol. The large single crystal 

of complex 1 with high-quality was used to collect the single crystal X-ray diffraction 

data, illustrating that it crystalized in the P21/c space group of the monoclinic system 

with the cell parameters of a = 3.4232(12) Å, b = 9.1569(9) Å, c = 10.1126(9) Å, α = 

90°, β = 99.916(2)°, γ = 90°. The asymmetric structural unit of complex 1 has one Cu 

atom and an organic linker, which evidently exhibits the formation of tetrazole in this 

linker as the similar report [45] (Fig. 1a). Fig. 1b shows the coordination mode of the 

bridging linker as µ4-η1: η1: η1: η1 to connect with four Cu atoms by one pyridine and 

three N-donors from tetrazole rings. Each Cu atom links with four N-donors from 

three different tetrazole rings and one pyridine. Interestingly, all Cu atoms and 

tetrazole rings can generate a two-dimensional (2D) layer (Fig. 1c), which are further 

connected with each other by pyridine rings from linkers to finally construct a 3D 

structure. The 3D structure of complex 1 is shown in different directions (Figs. 1d-1f). 

<Figure 1> 

3.2. PXRD and thermal analysis 

As displayed in Fig. 2a, the PXRD peaks of as-synthesized bulk samples were 

measured at room temperature, which are consistent well with those of the simulated 

pattern. The result clearly proves that the as-synthesized samples are purity as the 

obtained single structure. The TGA data of as-synthesized complex 1 indicates that 

the resultant sample has the outstanding stability before ~300 °C; meanwhile, the 

skeleton of complex 1 shows a rapid weight loss with the increasing of heating 

temperature (Fig. 2b). The TGA result shows that complex 1 has the excellent heating 

stability. 

<Figure 2> 

3.3. Catalytic properties 

Thanks to lots of Lewis base sites in complex 1, the as-synthesized sample may be 

investigated and applied as a basic catalyst for the Knoevenagel condensation reaction 
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[46-51]. Prior these catalytic reactions, as-synthesized 1 was soaked in fresh toluene 

for 1 hour, which was further filtered and dried in air. In the typical catalytic reaction, 

the benzaldehyde containing various substitutional groups (1.00 mmol) and 

malononitrile (1.05 mmol) were both dissolved in 4 mL toluene in a reaction bottle. 

The addition of complex 1 (100 mg) in the reaction system is considered as a catalyst. 

The reaction was heated in an oil bath at 100 °C for 4 hours under slowly stirring. The 

yields can be obtained by the GC method with biphenyl as an internal standard 

substance. All catalytic results in this work are summarized in Table 2. As seen in 

entry 1, the product yield of 2-benzylidenemalononitrile is higher than 99% within 4 

hours. This reaction was further selected as a reaction mode to investigate the kinetic 

catalytic rate (Fig. 3). The catalytic result indicates that the catalytic reaction can be 

almost completely reacted after 4 hours at 100 °C. To evaluate the necessity of 

complex 1 for the reaction, the reaction will quickly stop once filtering complex 1 

from the reaction system. In addition, the yield of this reaction is only 9% in the 

absence of complex 1 (entry 2). The control experiments illustrate that complex 1 is 

the necessary catalysis for the Knoevenagel condensation reaction. The catalytic 

substrates were expanded with different sizes and functional groups under the same 

reaction condition. It evidently exhibits that the catalytic results are also higher than 

99% (entries 3 and 4), which is mainly attributed to the electron-withdrawing groups 

of –F and –NO2 in aldehydes to facilitate the reaction. Contrastively, the aldehydes 

with the electron-donor and large size group of –OMe show lower catalytic yields to 

88% and 81% for one –OMe group (entry 5) and two –OMe groups (entry 6), 

respectively. The catalytic performance is similar with some previous reports [46-51]. 

<Figure 3> 

Table 2. All catalytic yields of different aldehyde reactants. 
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H
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5 
O
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O

 

O

CN

CN

 

88 

6 O

H

O

O

 

O

O

CN

CN

 

81 

The stability and recyclability of complex 1 are both important factors for 

heterogeneous catalysts. After each reaction of benzaldehyde as the substrate, 

complex 1 can be easily re-collected by centrifuging at 8000 r⋅min-1 for 2 minutes. 

The reused sample can be recovered after washing with toluene for 2 times. As seen 

in Fig. 4a, the catalytic yields of reused samples can be well kept even after recycling 

six times. The corresponding PXRD profile of complex 1 after reusing six times are 

well preserved to prove the high stability of complex 1 for this reaction (Fig. 4b). 

<Figure 4> 

Because of the metal sites as Lewis acid catalytic centres, complex 1 can be 

considered as a potential heterogeneous catalyst for the CO2 cycloaddition reaction 

with epoxides to form cyclic carbonates [52-62]. The prepared samples after washing 
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with CH2Cl2 were directly dried in air before the catalytic reaction of CO2 and 

epoxides. The reaction condition is set as 1 MPa CO2 at 100 °C for 8 hours by mixing 

epoxides (10 mmol), n-Bu4NBr (0.35 mmol), and complex 1 (100 mg) in a 

high-pressure reaction equipment under slowly stirring. The yields of targeted cyclic 

carbonates can be calculated by the GC approach with n-dodecane as an internal 

standard substance. All catalytic results are concluded in Table 3. Only complex 1 or 

n-Bu4NBr as the catalyst for epichlorohydrin and CO2 has a very low catalytic yields 

of complex 1 (31%, entry 1) or n-Bu4NBr (~9%, entry 2), displaying that they can’t 

catalyse this CO2 reaction by independent one. However, complex 1 is able to 

catalyse this reaction with a high yield of >99% with n-Bu4NBr simultaneously (entry 

3). All results claim that complex 1 and n-Bu4NBr can catalyse this reaction by the 

synergy catalysis process. Different epoxides are selected as substrates for this CO2 

reaction. The yields gradually reduce to 91% (entry 4), 82% (entry 5), and 79% (entry 

6) for 1,2-epoxy-3-allyloxypropane, benzyl phenylglycidyl ether, and tert-butyl 

glycidyl ether, which may be mainly ascribed to the different groups with different 

size and electronic effects [52-62]. The recyclability is also investigated by the 

reaction and the corresponding PXRD pattern. As shown in entry 7 and Fig. 5a, the 

catalytic performance of recollected samples can be well preserved for the chemical 

transformation of epichlorohydrin and CO2 for six times. The PXRD pattern can well 

preserve the main diffraction peaks to illustrate the high stability of recycled complex 

1 after the successive using six times (Fig. 5b). 

Table 3. The yields of this CO2 cycloaddition reaction with epoxides. 

 

Entry Catalyst Epoxide Product Yield% 

O

R

CO2

1 MPa

O O

O

R
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1 complex 1 O

Cl
 

 

31 

2 n-Bu4NBr O

Cl
 

 

9 

3 complex 1 + 

n-Bu4NBr 
O

Cl
 

 

>99 

4 complex 1 + 

n-Bu4NBr 

O

O

 

O

O

O

O

 

91 

5 complex 1 + 

n-Bu4NBr 

O

O

 

O

O

O

O

 

82 

6 complex 1 + 

n-Bu4NBr 

 

 

79 

7 Reused complex 

1 + n-Bu4NBr 
O

Cl
 

 

>99 

 

<Figure 5> 

The assumptive catalytic mechanism can be deduced from the previous reports for 

this CO2 fixating reaction (Fig. 6) [52-62]. This reaction can be caused by the weak 

interaction between O atoms in epoxide rings and Cu(II) sites in complex 1. Epoxide 

rings will rapidly attacked by Br– from n-Bu4NBr to open the epoxide rings. Then, 

oxygen anions can be reacted with CO2 to form the ionic alkycarbonate intermediate. 

The cyclic carbonate product will generate by the cyclization process of the 

alkycarbonate anion. However, the accurate mechanism is also significantly far 

beyond our research capabilities. 

<Figure 6> 

4. Conclusion 
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In summary, a 3D Cu(II)-organic framework based on 2D Cu-tetrazole layers can 

be constructed and served as a bifunctional heterogeneous catalyst for the 

Knoevenagel condensation reaction and chemical fixation of CO2 with epoxides. Due 

to the excellent stability of complex 1, it has the excellent stability and recyclability 

for both catalytic reactions at least six cycles. 

Appendix A. Supplementary data 

The luminescent spectra and crystal table are listed in the supporting information. 

The CCDC reference number is 1977907. 
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Fig. 1. (a) The asymmetrical unit; (b) the coordination mode of this organic linker; (c) 

the 2D Cu(II)-based layer; and (d-f) the 3D structure of complex 1 (H atoms are 

removed for clarity). 

Fig. 2. (a) The PXRD pattern of simulated (bottom, black) and as-synthesized 

complex 1 (up, red); and (b) the TGA curve of as-synthesized complex 1. 

Fig. 3. The kinetic catalytic rates of benzaldehyde as the substrat in complex 1 (black), 

after filtering complex 1 (blue), and without any catalyst (pink). 

Fig. 4. Recyclability (a) and PXRD profiles (b) of complex 1. 

Fig. 5. The recyclability (a) and the corresponding PXRD profiles (b) of complex 1. 

Fig. 6. The assumptive catalytic mechanism for this CO2 fixating reaction. 
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1. A Cu(II)-organic framework was successfully synthesized via the solvothermal 
reaction. 

2. It can catalyse the Knoevenagel condensation reaction and chemical fixation of 
CO2 with epoxides. 

3. The as-synthesized sample has the excellent stability and recyclability. 
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