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A 3D Cu(ll)-based MOF was successfully synthesized and used as a heterogeneous
catalyst for the CO, cycloaddition reaction and Knoevenagel condensation reaction.
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Abstract

A three-dimensional (3D) Cu(ll)-based MOF, [CuL-C{hamely complexl), was
successfully generated through the in-situ reactioh CuCh, NalN;, and
4-(4-cyanostyryl)pyridine. Notably, —CN andzNcan directly react to form a
tetrazolate group during the crystal growth procé@$ss reaction was further proved
by single crystal X-ray diffraction data. Thanks ttee excellent stability, various
N-donors as Lewis basic sites and Cu(ll) centreteasis acid sites, the as-made
complex1 has a potential application as a bifunctional tegfeneous catalyst for the
CO, cycloaddition reaction and Knoevenagel condensateaction. In addition,

complexl has the excellent recyclability for both reactianseast six cycles.

Keywords:. In situ reaction; heterogeneous catalyst;,@cloaddition reaction;

Knoevenagel condensation reaction; recyclability.

1. Introduction

Recently, metal-organic frameworks (MOFs) [1,2] ameganic-inorganic hybrid
crystalline materials, which have been developgudha thanks to their various
structures and greatly potential applications iralérgas sorption [3-5], bio-carrier
[6,7], luminescent detector [8-10], optical devif¥l,12], and catalysis [13,14].
Compared with other solid materials, MOFs have @itsinique features, including
structural diversity, designability, multifunctidngite, and adjustability [15-17].
Taking into account of some previous reports, diferm MOFs can be tuned and
constructed by rationally choosing metal centred arganic building blocks with
various coordination sites to achieve excellentpproes [18-20]. Among all
properties, MOFs exhibit greatly potential applicas as heterogeneous catalysts for
many catalytic reactions because of their catalyiatres, including Lewis acid sites
(open metal site) [21-23], Brgnsted acidic site€@OH and —OH) [24-26], and
Lewis basic sites (—NpI [27-29]. However, the poor stability of MOFs gtlgdimits
the development of these materials as heterogerabalysts in practical applications.

Up to now, some useful approaches have been dedkopenhance the stability of



MOFs to expand their real usability, such as serfagdrophobic coating, soft and
hard acid base theory, multi-wall and high connéateulticore structure [30-32].
Bridging organic linkers have significantly impantanfluences for the structures and
properties of MOFs. Mosattentions have been still focused on carboxylic ac
organic ligands due to their excellent coordinatadmilities and easy preparation of
MOFs [33,34]. On the other hand, another sortridrs focuses on the heterocyclic
nitrogen rings (pyridine, imidazole, triazole, aetrazole) in the assemble process of
MOFs with transition metals [35-38]. Compared wvitilke carboxylic acid linkers, such
linkers are always difficult to prepare MOFs, bhe tas-synthesized MOFs always
have the excellent stability. In addition, the fid@lonors and metal centers in MOFs
can be served as Lewis basic sites and Lewis #&eslfer different catalytic reactions
[39-41]. Hence, it is a significant change to camst highly stable MOFs based on

organic linkers with various N-donors to investgéteir catalytic applications.

Based on the above discussion, we chosen an orgdm&er
4-(4-cyanostyryl)pyridine with pyridine and cyanoogps as a bridging linker to
assemble with Cu(ll) and NaNThe cyano group can react withy NO generate
tetrazole groups in suit, which was further asseshilith Cu(ll) to construct MOFs.
As we expect, a novel three-dimensional (3D) Cwugthanic framework, [CuL-Cl]
(namely complexl), has been successfully preparéd the solvothermal reaction;
meanwhile, the tetrazole groups are found in thecsire of complexl. The
as-prepared sample was detailly characterized aalgsed by lots of testing methods.
More importantly, comple® exhibits the excellent catalytic performance fog CQ
cycloaddition reaction and Knoevenagel condensataation with the outstanding

recyclability.

2. Experimental

2.1. Materials and general methods

All chemicals and solvents were purchased and udieectly. Powder X-ray

diffraction (PXRD) patterns were carried out onraler D8 GADDS from 5° to 40°.



Thermogravimetric analyses (TGA) data were measore@g TGA Q500 under N
from room temperature to 800 °C. The catalytic d/ielas obtained on a Thermo
Fisher Trace ISQ GC/MS. Elemental analysis of Cartd N was performed on a

CE-440 analyzer (Leeman Laboratories).
2.2. Synthesis of complex 1

CuCk (0.1 mmol), NaN (0.1 mmol), and 4-(4-cyanostyryl)pyridine (0.1 mineere

all added in a mixture solution of ethanol (1.2 nand BO (2.8 mL) and carefully
sealed in a Teflon-lined steel. The mixture wasgqauand heated at 165 °C for 4 days.
Then, it was cooled slowly to room temperature ateareasing rate of 5 °C*h
Finally, blue crystals with high quality were calted and washed with ethanol. These
crystals were dried in air with the yield of 61%sbd on the linker. Anal. Calc. (%)

for C14H10CuNs: C, 53.85; H, 3.21; N, 22.44. Found: C, 54.013k26; N, 22.39.
2.3. Sngle crystal X-ray diffraction of complex 1

Single crystal X-ray diffraction of complek was measured on a Bruker SMART
CCD diffractometer with Mo K (A = 0.71073 A) radiation. The structure of complex
1 can be well solved by usir8HELXL-2015 [42,43] in théOLEX2 program [44]. All

non-H atoms were added by the anisotropic parasielée crystal data and structure

refinement of compled are summarized in Table 1.
2.4. The Knoevenagel condensation reaction

In a typical catalytic reaction, benzaldehyde vditfierent substitutional groups (1.00
mmol) and malononitrile (1.05 mmol) were both diged in toluene (4 mL) in a
reaction bottle with compleg (100 mg). The reaction mixture was heated in &n oi
bath at 100 °C for 4 hours under slowly stirrinpeTcatalytic yields can be calculated

by using the GC method with biphenyl as an intestahdard substance.

2.5. The CO, cycloaddition reaction



In a typical reaction, epoxides (10 mmat}BusNBr (0.35 mmol), and complek
(100 mg) were all added in a high-pressure reacmripment with CQ(1 MPa) at
100 °C for 8 hours. The yields of cyclic carbonatesy be obtained by the GC

approach witm-dodecane as an internal standard.

Table 1. Crystal data and structure refinement.

Sum formula G@H10CUNs
Formula weight 311.82
Crystal system monoclinic
Space group P21/c

a(R) 13.4232(12)
b (A) 9.1569(9)
c(A) 10.1126(9)
a (©) 90

B () 99.916(2)

7 () 90

Volume (&) 1224.4(2)

Z 4

Dx (g cm®) 1.692

Mu (mmnit) 1.779

Nref 2621

R(int) 0.0336

Goodness-of-fiton¥ 1.045
Ry, WR,[I>20()]  0.0885, 0.0875
Ry, WR, (all data) 0.0467, 0.0915

3. Results and discussion

3.1. Structural description for complex 1

The as-synthesized crystals can be generated bygni(4-cyanostyryl)pyridine,



CuCh, and NaN in a mixture solution of water and ethanol. Theyéasingle crystal
of complexl with high-quality was used to collect the singtgstal X-ray diffraction
data, illustrating that it crystalized in tRR21/c space group of the monoclinic system
with the cell parameters af= 3.4232(12) Ap = 9.1569(9) Ac = 10.1126(9) Ap =
90°, 4 =99.916(2)°y = 90°. The asymmetric structural unit of complelkas one Cu
atom and an organic linker, which evidently extslilte formation of tetrazole in this
linker as the similar report [45] (Fig. 1a). Fidp 4hows the coordination mode of the
bridging linker asus-7: 7% 17 n* to connect with four Cu atoms by one pyridine and
three N-donors from tetrazole rings. Each Cu atorks| with four N-donors from
three different tetrazole rings and one pyridinetedestingly, all Cu atoms and
tetrazole rings can generate a two-dimensional (@i®r (Fig. 1c), which are further
connected with each other by pyridine rings fronkdirs to finally construct a 3D

structure. The 3D structure of compleis shown in different directions (Figs. 1d-1f).
<Figure 1>

3.2. PXRD and thermal analysis

As displayed in Fig. 2a, the PXRD peaks of as-ssited bulk samples were
measured at room temperature, which are consistelhtwith those of the simulated
pattern. The result clearly proves that the askmgized samples are purity as the
obtained single structure. The TGA data of as-ssited compleX indicates that
the resultant sample has the outstanding stalbktipre ~300 °C; meanwhile, the
skeleton of complexl shows a rapid weight loss with the increasing eétimg
temperature (Fig. 2b). The TGA result shows thatglex 1 has the excellent heating
stability.

<Figure 2>

3.3. Catalytic properties
Thanks to lots of Lewis base sites in complexhe as-synthesized sample may be

investigated and applied as a basic catalyst ®Kinoevenagel condensation reaction



[46-51]. Prior these catalytic reactions, as-sysittexl1 was soaked in fresh toluene
for 1 hour, which was further filtered and driedaiin. In the typical catalytic reaction,
the benzaldehyde containing various substitutiogabups (1.00 mmol) and
malononitrile (1.05 mmol) were both dissolved imd toluene in a reaction bottle.
The addition of compleg (100 mg) in the reaction system is considered Galyst.
The reaction was heated in an oil bath at 100 ?@ foours under slowly stirring. The
yields can be obtained by the GC method with bighes an internal standard
substance. All catalytic results in this work atensnarized in Table 2. As seen in
entry 1, the product yield of 2-benzylidenemalomlei is higher than 99% within 4
hours. This reaction was further selected as aiogamode to investigate the kinetic
catalytic rate (Fig. 3). The catalytic result inabes that the catalytic reaction can be
almost completely reacted after 4 hours at 100 P€.evaluate the necessity of
complex1 for the reaction, the reaction will quickly stopae filtering complexi
from the reaction system. In addition, the yieldtlos reaction is only 9% in the
absence of complek (entry 2). The control experiments illustrate thamplex1 is
the necessary catalysis for the Knoevenagel coatiensreaction. The catalytic
substrates were expanded with different sizes andtibnal groups under the same
reaction condition. It evidently exhibits that tbatalytic results are also higher than
99% (entries 3 and 4), which is mainly attributedhe electron-withdrawing groups
of —F and —NQ@ in aldehydes to facilitate the reaction. Contxegdyi, the aldehydes
with the electron-donor and large size group of -€03iow lower catalytic yields to
88% and 81% for one —OMe group (entry 5) and twdvieOgroups (entry 6),

respectively. The catalytic performance is similéth some previous reports [46-51].
<Figure 3>

Table 2. All catalytic yields of different aldehyde reactsin

o CN
+
)I\ e oy — /_<
R H R oN



Entry Substrate Product Yield (%)

o &

The stability and recyclability of complegx are both important factors for
heterogeneous catalysts. After each reaction ofzdldahyde as the substrate,
complex1 can be easily re-collected by centrifuging at 86@@in™ for 2 minutes.
The reused sample can be recovered after washthgteluene for 2 times. As seen
in Fig. 4a, the catalytic yields of reused sampkms be well kept even after recycling
six times. The corresponding PXRD profile of comxpleafter reusing six times are
well preserved to prove the high stability of coexil for this reaction (Fig. 4b).

<Figure 4>

Because of the metal sites as Lewis acid catalyictres, complexl can be
considered as a potential heterogeneous catalyshéoCQ cycloaddition reaction

with epoxides to form cyclic carbonates [52-62]eTgrepared samples after washing



with CH,CI, were directly dried in air before the catalyticacgon of CQ and
epoxides. The reaction condition is set as 1 MPa&QO00 °C for 8 hours by mixing
epoxides (10 mmol),n-BusNBr (0.35 mmol), and compled (100 mg) in a
high-pressure reaction equipment under slowlyisgrrThe yields of targeted cyclic
carbonates can be calculated by the GC approadhnadbdecane as an internal
standard substance. All catalytic results are cated in Table 3. Only complekor
n-BusNBr as the catalyst for epichlorohydrin and £@s a very low catalytic yields
of complex1 (31%, entry 1) on-BusNBr (~9%, entry 2), displaying that they can’t
catalyse this C®reaction by independent one. However, compleis able to
catalyse this reaction with a high yield of >99%hwi-Bus;NBr simultaneously (entry
3). All results claim that complek andn-Bus;NBr can catalyse this reaction by the
synergy catalysis process. Different epoxides atected as substrates for this £O
reaction. The yields gradually reduce to 91% (eA)y82% (entry 5), and 79% (entry
6) for 1,2-epoxy-3-allyloxypropane, benzyl phenytgtlyl ether, and tert-butyl
glycidyl ether, which may be mainly ascribed to thterent groups with different
size and electronic effects [52-62]. The recycligbils also investigated by the
reaction and the corresponding PXRD pattern. Asvshio entry 7 and Fig. 5a, the
catalytic performance of recollected samples camék preserved for the chemical
transformation of epichlorohydrin and @€r six times. The PXRD pattern can well
preserve the main diffraction peaks to illustrdie high stability of recycled complex

1 after the successive using six times (Fig. 5b).

Table 3. The yields of this C@cycloaddition reaction with epoxides.

Entry Catalyst Epoxide Product Yield%
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1 complexl 0 ’/<° 31
O
A/u uWo
2 n-BusNBr o ’{o 9
O
A/CI d\/k/o
3 complexl + 0 P >99
n-Bu,NBr A/CI \/(C/{
Cl (o]
4 complexl + &/ P 91
n-Bu,;NBr I JO\///<O
/\/
5 complexl + A //<O 82
n-BusNBr %OO \)O\/o
i
6 complexl + &/ o 79
n-BusNBr °>< //<
Xo\/l\/o
7 Reused complex ¢ P >99
1+ n-BusNBr A/C' \/I/{
Cl (o]

<Figure 5>

The assumptive catalytic mechanism can be deduoed the previous reports for
this CQfixating reaction (Fig. 6) [52-62]. This reactioarcbe caused by the weak
interaction between O atoms in epoxide rings an@ICsites in complexl. Epoxide
rings will rapidly attacked by Brfrom n-BusNBr to open the epoxide rings. Then,
oxygen anions can be reacted with G@form the ionic alkycarbonate intermediate.
The cyclic carbonate product will generate by thelization process of the
alkycarbonate anion. However, the accurate mecmanss also significantly far
beyond our research capabilities.

<Figure 6>

4. Conclusion



11

In summary, a 3D Cu(ll)-organic framework based®8nCu-tetrazole layers can
be constructed and served as a bifunctional hetesmyus catalyst for the
Knoevenagel condensation reaction and chemicdidixaf CQ, with epoxides. Due
to the excellent stability of complek it has the excellent stability and recyclability

for both catalytic reactions at least six cycles.

Appendix A. Supplementary data

The luminescent spectra and crystal table aredlistehe supporting information.

The CCDC reference numberli877907.
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Fig. 1. (&) The asymmetrical unit; (b) the coordinationdm®f this organic linker; (c)
the 2D Cu(ll)-based layer; and (d-f) the 3D stroetof complex1l (H atoms are
removed for clarity).

Fig. 2. (a) The PXRD pattern of simulated (bottom, blacky aas-synthesized
complexl (up, red); and (b) the TGA curve of as-syntheszadplexl.

Fig. 3. The kinetic catalytic rates of benzaldehyde assthwstrat in complek (black),

after filtering complexXt (blue), and without any catalyst (pink).

Fig. 4. Recyclability (a) and PXRD profiles (b) of compli&x

Fig. 5. The recyclability (a) and the corresponding PXRDfifes (b) of complex.

Fig. 6. Theassumptive catalytic mechanism for this Gi®ating reaction.
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Figure 6



1. A Cu(ll)-organic framework was successfully synthesized via the solvothermal
reaction.

2. It can catalyse the Knoevenagel condensation reaction and chemical fixation of
CO, with epoxides.

3. Theas-synthesized sample has the excellent stability and recyclability.
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