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Abstract: The chemoselective reactions of selenium dioxide with differently
substituted adducts generated by 1,4-addition on benzylidene acetophenone are
described. This reaction has been shown to be dependent on the nature of the
substituent present, leading to different products by a-oxidation=a-oxidation
followed by dehydrogenation=dehydrogenation, enolization, and cyclization.
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1,2-Diketones are synthetically important because they are well known
as precursors for the synthesis of heterocyclic compounds such as
pyrazine,[1] oxazoline,[2] quinoxaline,[3] imidazoles,[4] and heterocyclic
N-oxides.[5,6] Obviously different methods of generating 1,2-diketones
receive attention, and there are a number of synthetic routes available
for the preparation of 1,2-diketones, the most important being the
selenium dioxide oxidation of active methyl or methylene group a- to
the carbonyl group.[7] 1,2-Diketones can also be prepared by the nitrosa-
tion of enols using sodium nitrite and hydrochloric acid,[8] self-coupling
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reactions of acyl group catalyzed by lanthanide salts such as samarium
diiodide,[9,10] and oxidation of substituted alkenes[11] and alkynes.[12]

Recently, a-diketones have been prepared using cobalt phthalocyanine
tetrasulphonamide[13] and ruthenium complex[14] as catalysts. This article
describes selenium dioxide–mediated oxidation of ketones generated by
1,4-addition on benzylidene acetophenone to give 1,2-diketones.

The starting materials, 1-propanone derivatives (2, 4, and 6), were
prepared by the Michael addition of corresponding nucleophiles to sub-
stituted benzylidene acetophenone 1. Compounds 2 and 4 were prepared
by the addition of diethyl malonate and benzyl cyanide respectively to
substituted chalcones in the presence of sodium ethoxide in diethyl ether
at room temperature.[15]

The selenium dioxide oxidation of compound 2 was effected in
acetic acid in a 1:5 ratio of substrate–selenium dioxide by heating the
reaction mixture on a water bath for 3 h (Scheme 1). The product 3

was isolated as a viscous liquid by silica-gel chromatography in 30%
yield. The structure of 3 was analyzed by infrared (IR), mass, and 1H
and 13C NMR spectroscopy.

It is interesting to note that when 3,5-diaryl-5-oxo-2-phenylpentane-
nitrile (4) has been subjected to selenium dioxide oxidation under the
same conditions, product 5 was obtained in 30–35% yield (Scheme 2).

Scheme 1. Selenium dioxide oxidation of diethyl 2-(3-oxo-1,3-diarylpropyl)
malonate.

Scheme 2. Selenium dioxide oxidation of 3,5-diaryl-5-oxo-2-phenylpentanenitrile.
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The structural features of the product, 5, were analyzed by IR and 1H
and 13C NMR spectroscopy.

The oxidation of ethyl 3,5-diaryl-2-cyano-5-oxopentanoate (6) was
then investigated under identical conditions (Scheme 3). The reaction
led to the formation of two products, 7 and 8, in an overall yield of
40%, with the former one being the major product. Compounds 7a and
8b were separated from the reaction mixture by column chromatography
in pure form, but the other compounds (7b, 8a, 7c, and 8c) could not be
obtained in pure form.

EXPERIMENTAL

Melting points are uncorrected. One- and two-dimensional NMR spectra
were recorded on a Bruker 300-MHz instrument in CDCl3 using tetra-
methylsilane (TMS) as internal standard. Chemical shifts are given in
parts per million (d-scale), and coupling constants are given in hertz.
IR spectra were recorded on a Jasco Fourier transform (FT)–IR instru-
ment (KBr pellet=CHCl3 solution).

General Procedure for the Reaction of Michael Adducts

with Selenium Dioxide

A solution of 2.77 g (0.025mol) of finely powdered selenium dioxide in
10mL of glacial acetic acid was added by portions to a warm solution
of 0.005mol of Michael adduct 2, 4, or 6 in 10mL of glacial acetic acid,
and the reaction mixture was heated on a water bath for 3 h. The

Scheme 3. Seleniumdioxide oxidation of ethyl 3,5-diaryl-2-cyano-5-oxopentanoate.
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deposited selenium metal was filtered off, and the filtrate was poured
onto crushed ice and extracted with chloroform. The product was
purified by column chromatography using silica gel (60–120 mesh) with
petroleum ether–ethyl acetate (98:2).

Data

Diethyl 2-(2,3-dioxo-1,3-diphenylpropyl)malonate (3a)

Viscous liquid (30%): IR (CHCl3) cm�1: nmax 2983, 2939, 2906, 2873,
1730, 1676, 1597, 1371, 1306. 1H NMR (300MHz, CDCl3): d 0.95 (t,
J¼ 7.2Hz, 3H), 1.25 (t, J¼ 7.2Hz, 3H), 3.95 (q, J¼ 7.2Hz, 2H), 4.22
(q, J¼ 7.2Hz, 2H), 4.41 (d, J¼ 12.0Hz, 1H), 5.34 (d, J¼ 12.0Hz, 1H),
7.22–7.36 (m, 5H), 7.40 (m, 2H), 7.54 (t, J¼ 7.5Hz, 1H), 7.87 (d, J¼
8.1Hz, 2H) ppm. 13C NMR (75MHz, CDCl3): d 14.1, 14.4, 52.6, 55.0,
61.9, 62.6, 128.9, 129.0, 129.5, 129.9, 130.7, 132.4, 132.8, 134.7, 167.6,
168.3, 190.2, 197.0 ppm.

Diethyl 2-[1-(4-methylphenyl)-2,3-dioxo-3-phenylpropyl]malonate (3b)

Viscous liquid (28%): IR (CHCl3) cm�1: nmax 2983, 2939, 2906, 2873,
1730, 1676, 1597, 1371, 1306 cm�1. 1H NMR (300MHz, CDCl3): d
1.00 (t, J¼ 7.2Hz, 3H), 1.26 (t, J¼ 7.2Hz, 3H), 2.26 (s, 3H), 3.97 (q, J¼
7.2Hz, 2H), 4.22 (q, J¼ 7.2Hz, 2H), 4.36 (d, J¼ 11.7Hz, 1H), 5.30 (d,
J¼ 11.7Hz, 1H), 7.09 (d, J¼ 8.1Hz, 2H), 7.20 (d, J¼ 8.1Hz, 2H), 7.40
(t, J¼ 7.5Hz, 2H), 7.55 (tt, J¼ 7.5, 1.8Hz, 1H), 7.87 (dd, J¼ 7.5,
1.8Hz, 2H) ppm. 13C NMR (75MHz, CDCl3): d 13.8, 14.0, 21.1, 51.9,
54.6, 61.5, 62.2, 128.5, 128.7, 129.3, 129.8, 130.3, 132.5, 134.2, 138.3,
167.2, 168.0, 189.9, 196.7 ppm.

Diethyl 2-[3-(4-chlorophenyl)-1-(4-methylphenyl)-2,3-
dioxopropyl]malonate (3c)

Viscous liquid (27%): IR (CHCl3) cm�1: nmax 2983, 2939, 2906, 2873,
1730, 1680, 1589, 1371, 1307 cm�1. 1H NMR (300MHz, CDCl3): d
1.00 (t, J¼ 7.2Hz, 3H), 1.26 (t, J¼ 7.2Hz, 3H), 2.27 (s, 3H), 4.00 (q, J¼
7.2Hz, 2H), 4.22 (q, J¼ 7.2Hz, 2H), 4.36 (d, J¼ 12.0Hz, 1H), 5.27 (d,
J¼ 12.0Hz, 1H), 7.09 (d, J¼ 8.1Hz, 2H), 7.20 (d, J¼ 8.1Hz, 2H), 7.39
(d, J¼ 8.4Hz, 2H), 7.84 (d, J¼ 8.4Hz, 2H) ppm. 13C NMR (75MHz,
CDCl3): d 13.8, 14.0, 21.1, 51.7, 54.6, 61.5, 62.2, 128.6, 128.9, 129.2,
129.9, 130.8, 131.7, 138.4, 140.9, 167.1, 168.0, 188.5, 196.3 ppm.
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5-(4-Chlorophenyl)-3-(4-methoxyphenyl)-4,5-dioxo-2-phenyl-2-
pentenenitrile (5a)

Colorless solid (30%), mp 150�C. Anal. calcd. for C24H16ClNO3: C,
71.73; H, 4.01; N, 3.49. Found: C, 71.79; H, 4.10; N, 3.51. IR (KBr): nmax

1604, 1670, 2208 cm�1. 1H NMR (300MHz, CDCl3): d 3.87 (s, 3H), 7.00
(d, J¼ 7.5Hz, 2H), 7.15–7.45 (m, 7H), 7.54 (d, J¼ 8.7Hz, 2H), 7.75 (d,
J¼ 8.7Hz, 2H) ppm. 13C NMR (75MHz, CDCl3): d 55.4, 114.5, 117.6,
117.8, 126.7, 128.7, 129.4, 129.7, 129.9, 130.5, 130.6, 130.9, 131.3,
141.1, 152.6, 161.5, 187.7, 193.4 ppm.

3-(4-Methoxyphenyl)-5-(4-methylphenyl)-4,5-dioxo-2-phenyl-2-
pentenenitrile (5b)

Colorless solid (34%), mp 156�C. Anal. calcd. for C25H19NO3: C, 78.72;
H, 5.02; N, 3.67. Found: C, 78.75; H, 5.09; N, 3.71. IR (KBr): nmax 1602,
1658, 1677, 2212 cm�1. 1H NMR (300MHz, CDCl3): d 2.41 (s, 3H), 3.92
(s, 3H), 6.97 (d, J¼ 9.0Hz, 2H), 7.38 (d, J¼ 8.4Hz, 2H), 7.43 (m, 5H),
7.52 (d, J¼ 9.0Hz, 2H), 7.70 (d, J¼ 8.4Hz, 2H) ppm. 13C NMR
(75MHz, CDCl3): d 21.9, 55.4, 114.5, 117.6, 117.8, 126.8, 128.8, 129.1,
129.2, 129.5, 130.2, 130.3, 130.9, 132.9, 145.8, 153.0, 161.3, 188.5,
193.5 ppm.

3,5-Bis(4-methylphenyl)-4,5-dioxo-2-phenyl-2-pentenenitrile (5c)

Colorless solid (31%), mp 117�C. Anal. calcd. for C25H19NO2: C, 82.17;
H, 5.24; N, 3.83. Found: C, 82.20; H, 5.27; N, 3.86. IR (KBr): nmax 1656,
1691, 2206 cm�1. 1H NMR (300MHz, CDCl3): d 2.39 (s, 3H), 2.41 (s,
3H), 7.12–7.52 (m, 11H), 7.72 (d, J¼ 8.4Hz, 2H) ppm. 13C NMR
(75MHz, CDCl3): d 21.5, 21.9, 117.6, 118.7, 129.0, 129.1, 129.1, 129.2,
129.5, 129.8, 130.3, 130.4, 131.6, 132.8, 141.0, 149.9, 153.5, 188.6,
193.6 ppm.

Ethyl 6-(4-chlorophenyl)-4-(methoxyphenyl)-2-oxo-2H-pyran-3-carboxylate (7a)

Colorless solid (32%), mp 119�C. Anal. calcd. for C21H17ClO5: C, 65.55;
H, 4.45. Found: C, 65.59; H, 4.52. IR (KBr): nmax 1604, 1625, 1708 cm

�1.
1H NMR (300MHz, CDCl3): d 1.13 (t, J¼ 7.2Hz, 3H), 3.84 (s, 3H), 4.20
(q, J¼ 7.2Hz, 2H), 6.71 (s, 1H), 6.96 (d, J¼ 8.7Hz, 2H), 7.41 (d,
J¼ 8.7Hz, 2H), 7.42 (d, J¼ 9.0Hz, 2H), 7.79 (d, J¼ 9.0Hz, 2H) ppm.
13C NMR (75MHz, CDCl3): d 13.8, 55.4, 61.8, 103.6, 114.3, 115.9,
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127.1, 128.0, 128.9, 129.2, 129.3, 137.6, 154.5, 158.9, 159.3, 161.3,
165.1 ppm.

4-(4-Methoxyphenyl)-6-(4-methylphenyl)-2-oxo-2H-pyran-3-
carbonitrile (8b)

Colorless solid (37%), mp 199�C. Anal. calcd. for C20H15NO3: C, 75.70; H,
4.76; N, 4.41. Found: C, 75.68; H, 4.77; N, 4.43. IR (KBr): nmax 1602, 1617,
1743, 2217 cm�1. 1H NMR (300MHz, CDCl3): d 2.44 (s, 3H), 3.90 (s, 3H),
6.89 (s, 1H), 7.07 (d, J¼ 8.7Hz, 2H), 7.32 (d, J¼ 8.4Hz, 2H), 7.76 (d,
J¼ 8.7Hz, 2H), 7.82 (d, J¼ 8.4Hz, 2H) ppm. 13C NMR (75MHz,
CDCl3): d 21.6, 55.4, 102.2, 114.6, 115.2, 126.3, 126.4, 127.2, 129.9 (two
carbons merged here), 130.0, 143.6, 157.6, 162.7, 162.9, 163 ppm.
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