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Abstract—The 1,4-addition of diethylzinc and dimethylzinc to 5,6-hydro-2H-pyran-2-one using new chiral diphosphite–copper
catalysts gave products in up to 98% ee.
© 2003 Elsevier Ltd. All rights reserved.

The enantioselective 1,4-conjugate addition to �,�-
unsaturated lactones is a reaction of high interest
because the chiral lactone products constitute impor-
tant subunits in many natural products such as
sesquiterpenes,1 �-methylene lactones2 and macrolides.3

In addition, many lactone compounds exhibit impor-
tant biological properties and function as semiochemi-
cals, flavours and fragrances, or as antibiotics or

cytostatics. Enders et al. reported the preparation of
�-stereogenic lactone derivatives via reagent-controlled
asymmetric Michael addition of a stoichiometric
amount of chiral reagent to a non-chiral acceptor.4

The investigation of accessing chiral lactone com-
pounds by catalytic asymmetric synthetic method with
non-chiral starting material and catalytic amount of
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chiral source should be of high scientific and commer-
cial interest. The first attempt on that was reported in
1981 by Yoshikawa et al. who obtained lactones via
catalytic asymmetric hydrogenation of cyclic anhy-
drides with ee’s up to 20%.5 Thereafter, another route
was employed for chiral lactones with ee’s up to 94%
via DIOP-Rh catalyzed asymmetric hydrogenation of
itaconic acid esters, followed by selective hydride reduc-
tion.6 Doyle et al. developed a highly enantioselective
carbene insertion into an unactivated C�H bond of
diazoacetate with up to 96% ee by using a chiral
dirhodium(II) carboxamidate catalyst.7 Tomioka et al.
reported an enantioselective conjugate addition route in
which Grinard reagents reacted with 5,6-dihydro-2H-
pyran-2-one in the presence of 32 mol% of proline-
based chiral amidophosphines with up to 90% ee.8

Previously we also reported the enantioselective conju-
gate addition of diethylzinc to �,�-unsaturated lactones
with high enantioselectivities in the presence of copper
salts and chiral diphosphite ligands (2 mol%) derived
from binaphthol. When (S,S,S)-1 was used as chiral
ligand in the reaction, 8a was obtained in 73% ee.
Replacing the bridging part of (S,S,S)-1 from S-
binaphthol to achiral 3,3�,5�,5-tetra-tertbutyl-1,1�-bi-2-
phenol afforded (S,S)-2, which was utilized as chiral
ligand in the same reaction to give the chiral lactone in
up to 92% ee.9 Recently Reetz et al. reported the second
example in conjugate addition of ZnEt2 to lactones with
ee’s up to 88% by using ferrocene-based diphosphonites
and copper salts.10 In this paper, we report our recent
study on the copper-catalyzed enantioselective conju-
gate addition of dialkylzinc to 5,6-dihydro-2H-pyran-2-
one (Scheme 1).

Previous studies by us11 and others12 showed that chiral
catalysts derived from partially hydrogenated binaph-
thyl species, 5,5�,6,6�,7,7�,8,8�-octahydro-1,1-bi-2-naph-
thyl exhibited higher activity and enantioselectivity
than those prepared from binaphthol in certain asym-
metric reactions due to the steric and electronic modu-
lation in the H8-binaphthyl backbone. Based on this

Scheme 1.

phenomenon and our previous observation of the effec-
tiveness of (S,S,S)-1 and (S,S)-2, it was of interest to
modify (S,S,S)-1 by replacing some or all S-binaphthol
units to S-H8-binaphthol. (S,S,S)-3 was obtained by
replacing the bridging S-BINOL group to S-H8-
BINOL group.14 This modified ligand gave only 65% ee
in the conjugate addition (entry 1 of Table 1). Replac-
ing the terminal parts of (S,S,S)-3 from S-binaphthol
to S-H8-binaphthol gave (S,S,S)-4, which gave higher
ee value (81%) than those from using (S,S,S)-1 or
(S,S,S)-3 in the conjugate addition of diethylzinc to 7.
Further ligand modification led to the more effective
ligand (S,S,S)-5 and (S,R,S)-6 which gave up to 98% ee
in the reaction. The results of the catalytic reactions are
summarized in Tables 1 and 2. When the absolute
configuration of the bridging BINOL was different
from the terminal H8-BINOL, the catalyst exhibited
significantly higher enantioselectivity in the reaction
(entries 3 versus 6 and 4 verus 5 in Table 1). Interest-
ingly the same configuration of 8a was obtained
whether 4, 5 or 6 was used, indicating the dominant
effect of the terminal moieties in the chiral ligand. In
the investigation of the factors governing the rate and
enantioselectivity of the reaction by using 5 and 6, a
profound solvent effect was observed. In toluene, ethyl
acetate, dichloromethane and diethyl ether, the reaction
proceeded smoothly with good yield and high enan-
tioselectivity (Table 1, entries 7, 9, 10 and 12). The
effect of catalyst concentration on the enantioselectivity
was examined and it was found that lower catalyst

Table 1. Enantioselective 1,4-addition of diethylzinc to 5,6-dihydro-2H-pyran-2-one

eec (%) (+, R)dYield (%)Solvent[Cu] (10−3M)LigandEntrya

(S,S,S)-3 4.001 Et2O 81 65
(S,S,S)-4 4.002 Et2O 78 81

4.00(S,S,S)-5 Et2O3 76 90
Et2O4.00(S,S,S)-54b 77 91

(S,R,S)-6 4.005b Et2O 70 97
(S,R,S)-6 4.006 Et2O 79 96
(S,R,S)-6 1.677 Et2O 81 97

98(S,R,S)-6 1.25 Et2O 828
97 949 1.67(S,R,S)-6 Toluene
82 9510 1.67(S,R,S)-6 EA

6113THF11 1.67(S,R,S)-6
64 9312 (S,R,S)-6 1.67 CH2Cl2

(S,R,S)-6 4413 1,4-Dioxane1.67 83

a All reactions were carried out at −30°C for 18 h; substrate:copper:ligand:Zt2Zn=100:1:2:150–200 (molar ratio); CuOTf was used as copper
source unless otherwise indicated.

b Cu(OTf)2 was used as copper source.
c The ee values of 8a was determined by GC with a Chiraldex A-AT column (30 m×0.25 mm).
d The absolute configuration was assigned by comparing the optical rotation value with the result in Ref. 13.
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Table 2. Enantioselective 1,4-addition of dimethylzinc to 5,6-dihydro-2H-pyran-2-one

eec,d (%)Solvent (mL) Time (h) Yield (%)Entrya Ligand [Cu] (10−3M)

(S,S,S)-3 5.00 Toulene 28 57 431
(S,S,S)-4 5.00 Toulene2 28 51 54

3 (S,S,S)-5 5.00 Toulene 28 66 69
4b (S,S,S)-5 5.00 Toulene 28 48 69

(S,R,S)-6 5.00 Toulene5 28 56 82
396b 28Toulene5.00 75(S,R,S)-6

Toulene1.66(S,R,S)-6 347 49 85
8 (S,R,S)-6 5.00 Et2O 34 25 68

(S,R,S)-6 5.00 EA9 34 10 63
(S,R,S)-6 5.00 CH2Cl210 34 60 72

a All reactions were carried out at 0°C with CuOTf as copper source except otherwise indicated; substrate:copper:ligand=100:1:2 (molar rate).
b Cu(OTf)2 was used as copper source.
c The ee values of 8b was determined by GC with a Chiraldex A-AT column (50 m×0.25 mm).
d The absolute configurations of all the products were found to be R by comparimg the corresponding optical rotation values with that of Ref.

5.

concentration gave better product ee’s (Table 1, entries
6–8). The highest enantioselectivity obtained was 98%.

The effect of copper source for the catalyst was rela-
tively insignificant (Table 1, entries 3 versus 4 and 5
versus 6).

The 1,4-conjugate addition of dimethylzinc to 5,6-dihy-
dro-2H-pyran-2-one (7) was also investigated. Table 2
summarized the results obtained under various reaction
conditions. Ligand 6 always exhibited better enantiose-
lectivity than those obtained by using ligands 3, 4 or 5
under otherwise identical conditions. The enantioselec-
tivity of the reaction was found to be strongly affected
by the solvent used. Among the four different solvents
(toluene, diethyl ether, ethyl acetate and dichloro-
methane) used, toluene gave the best product ee.

In summary, new chiral diphosphite ligands derived
from H8-binaphthol were found to be effective in the
enantioselective copper-catalyzed 1,4-addition of
diethylzinc and dimethylzinc to 5,6-dihydro-2H-pyran-
2-one, giving rise to enantiomeric excesses of up to 98%
and 85%, respectively. To the best of our knowledge,
these are the best ee values achieved for these reactions
to date.
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Rossa, L.; Vögtle, F. Top. Curr. Chem. 1983, 113, 1–83;
(d) Paterson, I.; Mansuri, M. M. Tetrahedron 1985, 41,
3569–3624; (e) Boeckmann, R. K., Jr.; Goldstein, S. W.
In The Total Synthesis of Natural Products ; Simon, J. A.,
Ed.; Wiley: New York, 1988; Vol. 7; p. 1.
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by using H8-BINOL to replace the appropriate BINOL
units. [[(S)-1,1�-bi-2-naphthol]bi[(S)-2,2�-dihydroxy-5,5�,6,
6�,7,7�,8,8�-octahydro-1,1�-binaphthyl]bisphosphite] (5): 1H
NMR (CD2Cl2): � 8.08 (d, J=8.5 Hz, 2H), 7.98 (d,
J=8.5 Hz, 2H), 7.56 (d, J=9.0 Hz, 2H), 7.44 (t, J=7.0
Hz, 2H), 7.32–7.20 (m, 6H), 7.01 (d, J=8.5 Hz, 2H), 6.84
(d, J=8.0 Hz, 2H), 6.03 (d, J=7.5 Hz, 2H), 2.82–2.60
(m, 8H), 2.57–2.53 (m, 4H), 2.16–2.07 (m, 4H), 1.80–1.66
(m, 12H), 1.49–1.42 (m, 4H); 13C NMR (CD2Cl2) �

145.9, 145.5, 138.5, 137.6, 135.1, 134.2, 134.1, 131.0,
130.1, 129.3, 129.1, 128.3, 128.2, 127.6, 127.0, 125.9,
125.2, 122.6, 120.0, 118.9, 118.7, 29.1, 27.7, 22.7, 22.5
ppm; 31P NMR (CD2Cl2) � 138.39 ppm; [� ]D

20=+98.0
(c=1.0, toluene); HRMS calcd for C60H52O6P2: 930.3239,
found: 930.3161. [[(R)-1,1�-bi-2-naphthol]bi[(S)-2,2�-dihy-
droxy-5,5�,6,6�,7,7�,8,8�-octahydro-1,1�-binaphthyl]bisphos-
phite] (6): mp 167°C; 1H NMR (CD2Cl2): � 8.05 (d,
J=9.0 Hz, 2H), 8.00 (d, J=8.0 Hz, 2H), 7.49–7.47 (m,
4H), 7.29 (td, J=7.3, 1.5 Hz, 2H), 7.20–7.18 (m, 2H),
6.95 (d, J=8.0 Hz, 2H), 6.73 (d, J=7.0 Hz, 2H), 6.42 (d,
J=8.0 Hz, 2H), 5.3 (d, J=8.5 Hz, 2H), 2.71–2.47 (m,
12H), 2.09–2.04 (m, 4H), 1.69–1.61 (m, 12H), 1.45–1.41
(m, 4H); 13C NMR (CD2Cl2): � 148.4, 145.8, 138.54,
138.1, 137.1, 135.2, 134.2, 134.0, 131.2, 130.3, 129.3,
129.1, 128.8, 128.2, 127.5, 127.1, 126.1, 125.3, 123.1,
121.4, 118.8, 118.5, 29.1, 29.1, 27.8, 27.7, 22.7, 22.7, 22.5,
22.5 ppm; [� ]D

20=+87.9 (c=1.0, toluene); HRMS calcd
for C60H52P2O6: 930.3239, found: 930.3306.
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