
Accepted Manuscript

A bi-functional 3D PbII–organic framework for Knoevenagel
condensation reaction and highly selective luminescent sensing of
Cr2O72−

Miaochao Lin

PII: S1387-7003(19)30352-1
DOI: https://doi.org/10.1016/j.inoche.2019.04.042
Reference: INOCHE 7386

To appear in: Inorganic Chemistry Communications

Received date: 8 April 2019
Revised date: 27 April 2019
Accepted date: 27 April 2019

Please cite this article as: M. Lin, A bi-functional 3D PbII–organic framework for
Knoevenagel condensation reaction and highly selective luminescent sensing of Cr2O72−,
Inorganic Chemistry Communications, https://doi.org/10.1016/j.inoche.2019.04.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

https://doi.org/10.1016/j.inoche.2019.04.042
https://doi.org/10.1016/j.inoche.2019.04.042


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

1 
 

A bi-functional 3D Pb
II
–organic framework for Knoevenagel 

condensation reaction and highly selective luminescent 

sensing of Cr2O7
2–

 

Miaochao Lin,
a* 

a
 Department of Chemistry Chemical Engineering, Xinxiang University, Xinxiang 

453003,China. 

Corresponding Authors: Miaochao Lin 

E-mail address: linmcxxu@sina.com 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

2 
 

Abstract 

A novel 3D Pb
II
–organic framework {Pb(AIA)2}n (denoted as 1) can be successfully 

constructed by the assembly of 5-aminonicotinic acid (HAIA) and Pb
II
 cation under 

hydrothermal condition. The prepared 1 can be investigated and characterized by 

many technologies, including single-crystal X-ray diffraction, powder X-ray 

diffraction, luminescent spectrum, elemental analysis (C, H, and N), UV-Vis spectrum, 

as well as thermogravimetric analysis, respectively. The resultant 1 has lots of 

uncoordinated pyridine nitrogen atoms and –NH2 in the structure, which can be 

commonly considered as Lewis basic sites to catalysis Knoevenagel condensation 

reaction. Meanwhile, the as-synthesized 1 with the luminescent property can be 

considered as a luminescent sensor for selective sensing of Cr2O7
2–

 with excellent 

recyclability at least reusing four runs. 

Keywords: Pb
II
–organic framework; catalysis; luminescent sensor; recyclability; 

Cr2O7
2–

. 

Materials are the most important and hot topic in our world, because they always 

directly affect and change many research fields. Recently, metal–organic frameworks 

(namely MOFs)
[1-4]

 have been developed and explored rapidly as a novel class of 

inorganic-organic hybrid material by lots of material scientists and chemists, not only 

because of their interesting and various constructions,
[5-7]

 but also thanks to their 

extensive applications, including gas sorption/separation,
[8-10]

 luminescent sensor,
[11-13]

 

heterogeneous catalysis,
[14-16]

 biological enzyme or drug loading,
[17-19]

 and optical 

material.
[20,21]

 Meanwhile, designability and controllability of MOFs directly promote 

the booming development in all materials. Design and synthesis of novel MOFs with 

targeted functional properties is still very important and interesting in this field, 

attracting huge number of interests from many scientists. Actually, MOFs are crystal 

materials and constructed by the coordination between metal cations and organic 

linkers.
[22-24]

 Hence, MOFs can be fabricated by using different linkers, metal cations, 

and assemble conditions.
[25-27]

 Among all application areas, heterogeneous catalysis 
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and luminescent sensor both have been widely investigated for MOF materials due to 

their important practical meanings and potential applications. Luminescent MOFs 

with various luminescent sources have lots of superior properties for naked-eye 

visibility, fast response, high selectivity, and excellent recyclability.
[28-30]

 As we know, 

Cr2O7
2–

 is a widely used and strong oxidant with high toxic and corrosive in the 

laboratory and industry. The excess of Cr2O7
2–

 will significantly endanger human 

being’s health and ecological environment, for example gastrointestinal problem, 

ecological risk, cardiovascular failure, skin irritation, as well as respiratory 

infection.
[31,32]

 Hence, it is important to design and prepare useful sensor materials to 

detect Cr2O7
2–

 precisely for environmental conservation and health of human beings. 

Furthermore, Knoevenagel condensation reaction is a classical organic synthesis 

reaction, which is widely used in many industry fields and always applied to estimate 

the catalytic performance of catalysis.
[33,34]

 

In this work, we selected a rigid linker 5-aminonicotinic acid (denoted as HAIA), 

which can be successfully assembled with Pb
II
 cation to construct a novel 

three-dimensional (3D) framework {Pb(AIA)2}n (namely 1). The resultant crystals 

were generated finally by heating HAIA, Pb(OAc)2, and NaOH in MeCN at 120 °C 

for three days under hydrothermal synthesis.
[35]

 The achieved sample was studied by 

single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis 

of C, H, and N, thermogravimetric analysis (TGA), UV-Vis spectrum, and 

luminescent property. Due to the luminescent property and various Lewis basic sites 

(uncoordinated pyridine nitrogen atoms and –NH2) in the structure, the resultant MOF 

1 not only can be considered as Lewis basic catalyst for Knoevenagel condensation 

reaction with good catalytic effect and recyclability, but also as a luminescent sensor 

toward Cr2O7
2–

 with excellent selectivity and reusability. 

Single-crystal X-ray diffraction result obviously shows that MOF 1 crystallizes in 

the triclinic crystal system and P–1 space group.
[36]

 As depicted in Fig. 1a, the 

asymmetric unit of as-synthesized 1 contains one independent Pb
II
 cation and two 
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completely deprotonated AIA
–
 linkers. As shown in Figs. 1b and 1c, there are two 

different coordination modes of AIA
–
 linker in MOF 1. The linker in mode I is 

coordinated with three different Pb
II
 cations by 3-

1
: 2

: 1
; meanwhile the linker in 

mode II can be linked with three Pb
II
 cations as 3-

1
: 1

: 1
. The ration of mode I 

and mode II is 1 : 1 in the whole structure. More interestingly, the free pyridine ring 

exists in mode I, and uncoordinated –NH2 group retains in mode II, which both can be 

considered as functional sites for the potential applications. As seen in Fig. 1d, the 

coordination environment of Pb
II
 cation is seven-coordinated with five O-donors from 

one bidentale and three monodentale carboxylic groups from four different AIA
–
 

bridging linkers, one –NH2 group and one pyridine ring from two AIA
–
linkers (Pb–O 

= 2.4452 – 2.7737 Å and Pb–N = 2.6407 – 2.7135 Å). In addition, two neighboring 

Pb
II
 cations can be connected by each other through the carboxylic groups to construct 

a bi-nuclear Pb cluster in Fig. 1d. The Pb···Pb distance in this cluster is about 3.1735 

Å. Terminally, a novel 3D coordinated construction was successfully fabricated by the 

coordinated force between these organic linkers and Pb
II
 centers (Figs. 1e-1g). 
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Fig. 1. (a) The asymmetric unit of as-synthesized 1; (b and c) the coordination modes of bridging 

organic linkers; (d) the coordination environment of Pb
II
; and (e-g) viewing of the 3D construction 

of 1 (all hydrogen atoms are removed for clarity, and C, gray; N, blue; O, red; and Pb, green). 

As shown in Fig. 2a, PXRD profile of as-synthesized MOF 1 was carefully 

measured in air at room temperature. The data of experimental sample was consistent 

with those of the simulated pattern from its single-crystal data, which clearly 

illustrated that the prepared block samples are the same with the single-crystal 

structure and pure phase. On the other hand, TGA data of the as-synthesized 1 was 

measured in air from indoor temperature to 800 °C carefully. The results exhibited 

that the framework can keep well to 300 °C, and a significant weight loss from 350°C 

because of the organic linker decomposition (Fig. 2b). 

 

Fig. 2. (a) PXRD data of simulated (black) and as-synthesized 1 (red); and (b) the corresponding 

TGA data of fresh sample in air. 

Due to various Lewis basic sites (uncoordinated pyridine nitrogen atoms and –NH2) 

in MOF 1, the resultant sample can be investigated as an efficient basic catalyst. 

Knoevenagel condensation reaction was studied in detail as a research model (Table 

1).
[37-39]

 Prior this reaction, experimental MOF 1 was immersed into fresh toluene for 

12 hours and further dried in air. In this typical trial, substrate with different 

functional groups (1 mmol), malononitrile (1.1 mmol), and catalyst (MOF 1, 100 mg) 

with toluene (6 mL) were mixed together in a glass reactor. This mixture was directly 

heated at a constant temperature at 85 °C for 4 hours in an oil bath. The finally yields 
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can be easily made sure and calculated by the gas chromatography. All catalytic data 

of these Knoevenagel condensation reactions with different aldehyde substrates were 

summarized in Table 1. As seen in entry 1, the yield of the targeted product 

2-benzylidenemalononitrile product can reach up about 100%, which was further 

selected as a reaction model to study the corresponding kinetic catalytic effect at 

different reaction times (Fig. 3a). The obtained kinetic catalytic result obviously 

displayed that the organic reaction almost reacted completely within 4 hours. To 

investigate the necessary of catalyst 1, the reaction was stopped quickly after 

removing 1. In addition, it is found that the catalytic yield was only about 6% without 

catalyst 1 (entry 2). The above result evidently demonstrated that catalytic 1 plays a 

significantly important role for this reaction. Furthermore, several substituted 

aldehyde reactants were used to discuss and investigate the different performances in 

the presence of MOF 1. As illustrated in entries 3 and 4, these corresponding catalytic 

results shown that the excellent yields (>99%) were both founded for withdrawing 

groups (–F and –NO2). However, the yields of aldehyde with electron-donor groups 

decreased significantly. One –OMe group in entry 5 and two –OMe groups in entry 6 

both decreased to 87 and 74, respectively. Due to the no-porous structure, the low 

catalytic is not caused by the size diffusion or selectivity. 

Table 1. All results of Knoevenagel condensation reactions based on different 

aldehyde substrates. 

R H

O

+

CN

CN R

CN

CN 

Entry Substrate Product Yield (%) 

1 
H

O

 

CN

CN

 

>99 
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2 
H

O

 

CN

CN

 

6 

3 
H

O

F  

CN

CN

F  

>99 

4 
H

O

O2N  

CN

CN

O2N  

>99 

5 
H

O

O  

CN

CN

O  

87 

6 
H

O

O

O  

CN

CN

O

O  

74 

Notably, it is very important to easily recollect and regenerate for the 

heterogeneous catalysis. For these reactions, MOF 1 can be feasibly separated and 

collected by simply centrifuging at 8500 rmin
-1

 about 3 minutes, which can be further 

regenerated after washing with fresh toluene. As founded in Fig. 3b, catalytic yields of 

regenerated 1 after different runs were almost no any change in virtue of the stability 

of MOF 1. The PXRD profile of MOF 1 after recycling four times clearly illustrated 

that the whole network of MOF 1 can keep very well during the catalytic reaction in 

Fig. S1. 
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Fig. 3. (a) The kinetics analysis of Knovenagel condensation reaction; and (b) the reusability of 1. 

As depicted in Fig. 4a, luminescent spectra of free HAIA linker and fresh sample 1 

in solid state were both measured and collected at room temperature due to their 

sensor applications of Pb
II
-organic frameworks.

[40]
 The as-synthesized 1 has a broad 

emission band at 395 nm under excitation 332 nm, which is very similar with that of 

free linker (406 nm). It is obviously found that the maximum emission band of 

as-synthesized 1 exhibits slight blue-shift performance compared with that of free 

HAIA linker. According to the reported literatures, it may be mainly attributed to 

enhancing the rigidity of bridging linker after coordinating to Pb
II
 cation to decrease 

the energy loss.
[41]

 In virtue of MOF 1’s luminescence, we tried to investigate the 

luminescent detection capability of 1. As seen in Fig. 4b, the luminescent intensities 

of ground MOF 1 are significantly dependent on various solvent molecules. MOF 1 

exhibits good luminescent property and insolubility in DMF; meanwhile, the 

luminescent intensity can retain well even soaking in DMF for one day (Fig. 4c). 

Hence, all luminescent sensing trials were measured and collected in DMF at room 

temperature. More importantly, the recycled PXRD pattern of regenerated MOF 1 can 

preserve its whole structure in DMF for one day (Fig. 4d). 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

9 
 

 

Fig. 4. (a) Solid-state luminescent spectra of free linker and as-synthesized 1; (b) luminescent 

spectra of 1 in different solvents; (c) the emission intensity and (d) PXRD pattern of MOF 1 after 

soaking in DMF for one day. 

The ground crystals (1.0 mg L
–1

) were ultrasonically dispersed in fresh DMF with 

KX (X = F
–
, Cl

–
, Br

–
, ClO3

–
, BrO3

–
, IO3

–
, CrO4

2–
 and Cr2O7

2–
, 5.0 × 10

–4
 mol L

–1
), 

which were collected their corresponding luminescent spectra after two minutes. The 

results evidently exhibited that the luminescent intensities of ground MOF 1 were 

almost no changes in F
–
, Cl

–
, Br

–
, ClO3

–
, BrO3

–
, IO3

–
, and CrO4

2–
, while 1 happened 

obvious luminescent quenching performance in Cr2O7
2–

 solution (Fig. 5a). It 

obviously stated that MOF 1 is a greatly potential luminescence sensor to Cr2O7
2–

. 

The titration experiments were implemented to quantitatively appraise the detection 

capability of MOF 1 toward Cr2O7
2–

 in detail. As illustrated in Fig. 5b, the intensity of 

MOF 1 obviously reduced with the increasing Cr2O7
2–

 concentration. As we know, the 

detectability of sensors can be quantitatively calculated by the quenching constant 

(namely Ksv) from Stern-Volmer equation: (I0/I) = Ksv[M] + 1. [M] is the molar 
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concentration of targeted analyte; meanwhile I0 and I are on behalf of luminescent 

intensities of MOF 1 without and with analytes, respectively. As displayed in Fig. 5c, 

the calculated Ksv value is about 1.14 × 10
4
 M

–1
, which can be calculated by the value 

of I0/I – 1 and the concentration of Cr2O7
2–

 in the low concentration range below 3.7 × 

10
–5

 mol L
–1

 with a good linear relationship R
2
 = 0.9945. Meanwhile, the calculated 

detection limit can be calculated from 3δ/Slope (δ：standard error) and the detection 

limit of Cr2O7
2–

 is 1.03 × 10
–5

 mol L
–1

. Fig. 5d obviously shown that the luminescent 

spectra of ground 1 can keep the original intensity in most of anions (F
–
, Cl

–
, Br

–
, 

ClO3
–
, BrO3

–
, IO3

–
, and CrO4

2–
), while the emission intensity could quench quickly 

once adding Cr2O7
2–

 in the above mixed solution. The experiments directly illustrated 

that as-synthesized MOF 1 has the excellent selectivity for Cr2O7
2–

. 

 

Fig. 5. (a) Luminescent spectra of 1 in different negative anions; (b) luminescent intensities of 

MOF 1 at different concentrations of Cr2O7
2–

; (c) Stern-Volmer plots and (d) selective experiments 

of 1 for Cr2O7
2–

 in mixed negative anions. 

Furthermore, the reusability of MOF 1 can be estimated by using recycle 

experiments. Reused sample can be directly regenerated and recollected by 
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centrifugation and washing with DMF several times. As illustrated in Fig. 6a, the 

regenerated crystals keep their luminescent detection capability even reusing four runs. 

The response rates of MOF 1 to Cr2O7
2–

 can be monitored at different time intervals. 

It is easily founded that ground 1 can fastly achieve the minimum intensity and 

preserve for a long time, illustrating that the quenching performance is not caused by 

guest capture (Fig. 6b). From UV-Vis absorption spectra of these chosen negative 

anions, it shown that only Cr2O7
2–

 anion has an obviously overlap with the excitation 

spectrum of MOF 1 (Fig. 6c). Hence, the quenching mechanism may be possibly 

ascribed to the excitation energy competitive between MOF 1 and Cr2O7
2–

.
[42,43]

 In 

addition, the PXRD result of sample 1 after continuously using four runs proved that 

the entire network can be kept well for the sensor process (Fig. 6d). Furthermore, the 

FT-IR spectra of reused samples after four times are consisting with the fresh sample 

to prove the structural stability (Fig. S2). 

 

Fig. 6. (a) Reusability of 1 for Cr2O7
2–

 (5.0 × 10
–4

 mol L
–1

); (b) luminescent response rates of 1 

toward Cr2O7
2–

 at different time intervals; (c) UV-Vis spectra for the selected anions; and (d) the 
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PXRD profile of 1 after reusing four runs. 

In conclusion, a 3D Pb
II
–organic framework can be successfully constructed based 

on HAIA linker under hydrothermal condition, which has lots of uncoordinated 

pyridine nitrogen atoms and –NH2 in the structure to use as a Lewis basic catalyst to 

catalysis Knoevenagel condensation reaction. Meanwhile, as-synthesized 1 can be 

considered as a luminescent sensor for Cr2O7
2–

 with excellent selectivity. In addition, 

as-synthesized 1 has outstanding reusability at least four runs. 
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Graphical Abstract-Pictogram 

 

 

This work presents a bi-functional 3D Pb
II
–organic framework for Knoevenagel 

condensation reaction and highly selective luminescent sensing of Cr2O7
2–

. In 

addition, the resultant sample has excellent recyclability. 
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Highlights 

 

1. A bi-functional 3D Pb
II
-based MOF is successfully constructed. 

2. It is an excellent catalysis for Knoevenagel condensation reaction. 

3. It exhibits outstandingly selective luminescent sensing toward Cr2O7
2-

. 
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