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Fractal Analysis of Zinc Electrodeposition 
Chao-Peng Chen* and Jacob Jorn6** 

Department of Chemical Engineering, University of Rochester, Rochester, New York 14627 

ABSTRACT 

A simple method is proposed for the determination of the fractal dimension during the electrodeposition of zinc by 
current integration. Under various experimental conditions, 0.01M ZnSO4, 2-12V, the patterns formed exhibit scale- 
invariance characteristics. The fractal dimension of the two-dimensional zinc deposits increases with the applied voltage 
(or applied current), while the morphology changes from highly branched random aggregate to the radial dense structure. 
A stochastic model based on the dielectric breakdown model (DBM) is proposed and the simulation analysis indicates that 
the relative resistivity between the zinc aggregate and the electrolytic solution can play an important role in the pattern 
transformation. A theoretical model based on the fractal theory is derived to estimate this ratio. 

Fractal geometry is an efficient tool for characterizing ir- 
regular patterns in very general terms (1). Electrodeposi- 
tion of zinc has been demonstrated as one of the real physi- 
cal systems which exhibits a structure similar to the 
theoretical diffusion-limited aggregation (DLA) model. 
The observed patterns fall into three classes of deposits: (a) 
fractals resembling DLA aggregates, (b) dendrites with 
stable tips, and (c) dense radial structures. The two-dimen- 
sional zinc deposits of class (a) bear a striking resemblance 
to computer-generated fractal patterns and their fractal di- 
mension is 1.7, remarkably close to the computer-simu- 
lated value of 1.71 (2). The DLA model has been proposed 
and discussed by Sander (2), Witten and Sander (3, 4), and 
Meakin (5). Electrodeposition of zinc fractals was pre- 
sented by several investigators (6-13) in which the applied 
potential and electrolyte concentration appear to exhibit a 
strong influence on the morphology of the zinc deposits. 
Diffusion to fractal surfaces, electrodeposition of fractals, 
and computer simulations of electrodeposition and den- 
dritic growth have been treated by Nyikos and Pajkossy 
(15-17), Voss and Tomkiewicz (18), and Hepel (19). Ka- 
handa and Tomkiewicz (20) examine the evolution of the 
growth pattern with and without supporting electrolyte. 
Garik et al. (21) discussed the roles of the Laplace and dif- 
fusidn fields in electrochemical deposition during the 
growth of the dense-branching morphology. 

The fractal (Hausdorff) dimension is usually determined 
by digitizing photographs and taking the best-fit slope of 
In (N) vs. In (r), where N(r) is the number  of pixels con- 
tained within a radius r (6-8). In the present study we pro- 
posed a simpler method which can be used to determine 
the fractal dimension in a more direct way. The diffusion- 
limited aggregation model (DLA) has been used to simu- 
late the electrodeposition process. According to this 
model, ions in the electrolyte undergo a random walk until  
they reach the cathode. This model does not consider the 
electric field between the electrodes, and furthermore, it 
cannot explain the circular envelope of the growing de- 
posits under  certain experimental conditions. Therefore, 
the role of the electric field in the electrodeposition pro- 
cess is still unclear. In  this paper, a stochastic model is em- 
ployed to simulate the deposition process, where the di- 
electric breakdown model (DBM) and consideration of the 
electrical resistance among the growing deposits are used 
to explain the morphology of the zinc deposits. Finally, a 
theoretical model is derived to estimate the relative resis- 
tivity between the deposit and the electrolytic solution. 

Experimental 
The electrodeposition of zinc and its morphology can be 

clearly demonstrated in a two-dimensional cell. The cell, 
as shown in Fig. 1, consisted of a zinc ring anode with di- 
ameter of 8.4 cm which was set into a petri dish. Aqueous 
0.01M ZnSO4 solution was confined into a uniform 0.2 mm 
film covered by a thin glass. Thin 0.5 mm diam zinc-pre- 
plated copper wire, or graphite, was centrally located as 
the cathode. It is to be noted that a copper ring is not suit- 
able as the anode because codeposition of copper and zinc 
was observed. A constant potential ranging from 2 to 12V 
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was applied between the anode and the cathode by using a 
power supply with a voltage regulator designed to com- 
pensate the ohmic drop of the shunt, and the correspond- 
ing current was measured within _+0.01 mA. In some ex- 
periments, constant currents ranging from 0.1 to 1.0 mA 
were applied while the potential was recorded. During ex- 
periments, the radius of the growing deposits was moni- 
tored under  an optical microscope and after deposition by 
using scanning electron microscopy (SEM). 

Zinc deposition is affected both by electric migration 
and diffusion, but  mass-transfer limitations were not 
significant due to the following reasons. The cell gap used 
in the experiments was very thin, on the order of 0.2 mm, 
and was sandwiched by two insulators, the top thin glass 
plate and the bottom acrylic cell body. The zinc deposit 
was found to grow preferentially in the radial direction 
and the moving boundary of the growing deposit was so 
fast that the deposition process was similar to the case of a 
stagnant electrode surface in a well-mixed electrolyte. Fur- 
thermore, the low electrolyte conductivity, 1.48 x 
10-3 f~-i cm-1, combined with the concentric configuration 
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Fig. 1. Schematic diagram of the electrodeposition system 
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Fig. 2. Current vs. time for zinc electrodeposition under various ap- 
plied potentials. 
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Fig. 4. Logarithmic plot of aggregate mass vs.  its radius under ap- 
plied potential of 9V. Df = 1.75. 

of the cell, made the electrodeposition of zinc to be ohmic- 
controlled. 

Results and Discussion 
Determination of zinc fractal dimension.--The fractal 

structure can be characterized by the equation 

M(r) ~ r Df [1] 

where M(r) is the mass of the aggregate within the radius r 
and Df is the so-called fractal dimension. Figures 2 and 3 
show typical current and growth curves, respectively, dur- 
ing zinc electrodeposition. Figure 2 can be integrated to 
obtain the mass-time curve by using Faraday's law. Then 
by logarithmically plotting the mass of the deposits vs. 
their radius, the fractal dimension can be obtained from 
the slope of the best-fit straight line, as shown, for exam- 
ple, in Fig. 4. The results show that the patterns formed ex- 
hibit scale-invariance characteristics under  the experi- 
mental  conditions. Similar results have been obtained by 
Brady and Bell (9) for copper electrodeposition in a three- 
dimensional system, Df = 2.43. In this region, the morphol- 
ogy of the aggregates has been classified as the DLA-type. 
Figure 5 shows the dependence of the fractal dimension on 
the applied potential, while the morphology of the elec- 
trodeposit changes from the highly branched random ag- 
gregate to the radial dense structures, as shown in Fig. 6. 
This method is valid only when the current efficiency is 
100%. No competitive reaction such as hydrogen evolution 
was observed under  the optical microscope during the 

zinc electrodeposition, and the current efficiency ap- 
proached 100%. Current efficiencies were determined by 
titration of the zinc deposits with dilute sulfuric acid and 
comparison to current-time data. Similar behavior was ob- 
tained under  gatvanostatic operation in which various con- 
stant currents, rather than potentials, were applied be- 
tween the growing aggregate and the ring anode. Figure 7 
shows the dependence of the obtained fractal dimensions 
on the applied current for the galvanostatic experiments. 
In  both modes of operation, the surface area of the grow- 
ing deposit increased significantly with time; thus, current 
densities cannot be calculated based on the initial area of 
the central electrode. 

In  electrolytic solutions, the diffusion length, X = ~ ,  
is very small, on the order of 0.1 cm; thus, if the deposition 
process is diffusion-limited, then the deposition should be 
limited to the electrolyte in the immediate surrounding of 
the aggregate. However, according to our analysis, the 
mass deposited is much larger than the original mass of 
zinc ions within the aggregate. Consequently, the electri- 
cal migration of the ions dominates the process, and the di- 
mension of the aggregate is larger than that of the DLA, es- 
pecially under  higher applied potentials. 

Computer simulation of zinc fractal . --A computer simu- 
lation using the dielectric breakdown model (14) is pro- 
posed to explain the morphological changes and the varia- 
tion of the fractal dimension during zinc electrodeposition. 

Like the real system, a point cathode with zero potential, 
= 0, was set at the center of the circular anode, $ = 1, as 
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Fig. 3. Growth of zinc aggregate: radius vs.  time under various ap- 
plied potentials. 
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Fig. 5. Fractal dimension vs. applied potential for zinc electrodeposi- 
tion from 0.01M ZnS04 solution under potentiostatic condition. 
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where K~,j is the electrical conductivity between points i 
and j. In this model, the nearest neighbors of the aggregate 
were considered as potential candidates for the next depo- 
sition. According to Ohm's law, the current density or the 
deposition rate can be related to the potential gradient be- 
tween the candidate and the aggregate 

i = -~Vr [4] 

and a probability function for the electrodeposition can be 
defined as 

~bi, j - -  (~i',j' 
P(i, j ---> i', j ') - [5] 

((I)i,J - -  s j, ) 
i 'd '  

Given a probability distribution, a new deposit point is 
then randomly chosen from the pool of candidates. The 
candidate with higher probability will be preferentially de- 
posited and after each deposition step, the shape of the ag- 
gregate is changed and so is the potential distribution. The 
new profile can be found by using Eq. [3] and an iteration 
method until the potentials of every point in the system 
are converged. Since it is believed that the conductivity of 
the metal aggregate is not so high as that of the metal, a rel- 
ative resistivity between the deposit and the electrolyte is 
defined 

~d 
6 - [6]  

Pe 

Figure 9 shows simulation results under various relative 
resistivities. In the case of Fig. 9a, where ~ is zero, all the 
deposit points have high conductivity (i.e., r = 0), and the 
evolved pattern shows a highly branched structure. But in 
Fig. 9b, where 13 = 0.2, the electric resistance among the 
deposit points was considered and the pattern exhibits the 
disk-type structure. The finite resistance of the deposit 
seems to play an important role in stabilizing the shape of 
the growing deposit. 

Relative resistivity between the deposits and the electro- 
lytes.--According to the experimental  observations, the 
deposits exhibited a dark black color rather than the nor- 
mally metallic color, suggesting that the deposit is a pow- 
der. If  the contact between the powder particles is loose, 
then the lower magnitude of the resistance introduced is 
quite possible. Figure 10 microscopically reveals a signifi- 
cant difference in the morphologies of dendrites and pow- 
der deposits. In order to estimate the resistivity of the 
growing deposit, we initially view the pattern as a disk of 
uniform effective resistivity Pd and also assume the whole 

Fig. 6. The morphology of zinc electrodeposited from O.01M ZnS04 
solution under various applied voltages: (a) V = 2V; (b) V = 8V. 

shown in Fig. 8. The space was discretized into square lat- 
tices, so that each point has four neighbors and any two 
points are connected to each other by a resistor with con- 
ductivity Ki or resistivity Pi. The deposition process was as- 
sumed to be "primary." Thus the potential profile can be 
obtained by solving the Laplace equation 

V2r = 0 [2] 

The assumption of potential theory without mass-transfer 
effects has been extensively used and justified by several 
investigators (7, 8, 12), both from the measurements of the 
I-V characteristics and the response to a small-amplitude 
ripple imposed on the dc current. Finite difference method 
can be employed to calculate the potential distribution be- 
tween the electrodes. Thus, the Laplace equation now can 
be written as 
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Fig. 7. Fractal dimension vs .  applied current for zinc electrodeposi- 
tion from O.01M ZnS04 solution under galvanostatic condition. 
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Fig. 8. The stochastic model for the electrodeposition process 

process to be "ohmic," as previously assumed by Grier 
et al. (12). The electrolytic cell consists of two concentric 
cylindrical electrodes separated by an electrolyte. Initially 
a t t  = 0 

V~ppl = IoPe In (r_~] [7] 
2r \ t o~  

a n d a t t  > 0 

It [ In ( r ~ / + p e l n  ( r i l l  [8] 
Yapp I = ~ L  Pd \ r o /  \ r s / I  

where Vappl is the applied voltage, Io the initial current 
measured when the power supply just  turned on, and I t the 
current at time greater than zero. L is the thickness of the 
electrolyte (i.e., the spacing between plates), rl the radius 
of the circular anode, ro the radius of the cathode, and r s is 
the radius of the growing deposit. Since the experiment 
was controlled under  potentiostatic conditions, these two 
equations are equal, from which 

Io (1 ~) In rl rl 

- -  - [ 9 ]  

It in (r~o) 

By plotting Io/It vs. In (r~/rs), ~ values can be obtained, ei- 
ther from the slope or from the intercept of the best-fit 
straight line. However, this model does not consider the 
electrolyte inside the aggregate. If this factor is taken into 
account, then some modifications should be made. This is 
a problem of conduction in heterogeneous medium and 
we may assume the apparent resistivity of the disk-type 
pattern to be of the form 

1 f ( 1  - f )  
- + - -  [ 1 0 ]  

Papp Pd Pe 

where f is the volumetric fraction of the deposit inside the 
circular envelope and is a function of radius of the growing 
deposit, f can be determined from the fractal theory be- 
cause the deposit shows scale-invariance characteristics 
(13). 
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I 

Co) 
Fig. 9. Computer simulation of zinc fractals under various relative re- 

sistivities: (o) ~ = O; (b) 13 = 0.2. 

For two-dimensional fractal deposits, the mass within a 
radius r can be expressed as 

M(rs) - rs Df [1] 

Since the density is defined as p = M/rs d, it is given by 

p(r,) - rs Dr-d [11] 

where d is the Euclidean dimension. Accordingly, the 
solid fraction of the deposit becomes 

p(r.) 
f ( r , )  - [12] 

p(ro) 

where ro is the initial radius of the cathode. Substi tuting 
Eq. [11] into Eq. [12] gives 

f(v~) = (r--L/Dr-d [13] 

\ t o /  

Under a potentiostatic condition, the voltage drop be- 
tween the two electrodes is kept constant at any time, thus 

(r~ dr  F1 dr  

Io 
[14] 

I t  rl d r  

i P e - -  
o T 
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Fig. 10. The microstructures of zinc electrodeposits: (a) zinc crystals; 
and (b) zinc powder. 

Substi tution of Eq. [10] and [13] into Eq. [14] gives 

fl ,/to d(r/ro) 

= [(1 - ~)/~](rJro) D~d§ + (rJro) [15] 

An explicit form of the solution cannot be obtained for 
this case and a numerical method, such as Simpson's inte- 
gration rule and trial-and-error method, is necessary to 
solve this equation. 

Our previous experimental results were taken to test the 
validity of this model and the results are shown in Fig. 11. 
The obtained ~ values vary with the applied potential. This 
can be explained by the fact that the depletion of the elec- 
trolytic solution and the dispersity of the powdery de- 
posits vary with the applied potential. The relative resistiv- 
ities in Fig. 11 are significantly lower than the value 

= 0.132 reported by Grier et al. (12) for radial zinc de- 
posits. Their value seems unrealistically high because the 
resistivity of the electrolyte is still much higher than that 
of the zinc deposit, even in its powdery form. 

The simulation results qualitatively agree with the ex- 
perimental data. For ~ = 0, the resistivity of the deposit is 
zero and a branched deposit is obtained. Similar pattern 
was experimentally obtained under high concentration 
and under  low potential when the deposit showed metallic 
luster, see Fig. 6a. Disk-like pattern is obtained for ~ > 0 
when the resistivity of the deposit is significant with re- 
spect to that of the solution, see Fig. 6b. Experimentally, 
such patterns were obtained when the deposits were pow- 
dery and lacked metallic luster. The open a n d  highly 

Q) 
r'n 

0.015 

0.010 

0.005 

0 . 0 0 0  I I I T 

2 4 6 8 10 

Applied Volfage (volf) 

Fig. 11. Relative resistivity vs. applied potential for zinc electrodep- 
osition from O.01M ZnS04 solution. 

branched pattern can be explained by the Faraday screen- 
ing effect. The potential gradient inside the aggregate is 
smaller than that near the outside region, thus the proba- 
bility is higher there and electrodeposition is preferred 
near the tips of the branches. 
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