International Edition: DOI: 10.1002/anie.201507635 German Edition: DOI: 10.1002/ange.201507635

Syntheses and Structures of F₆XeNCCH₃ and F₆Xe(NCCH₃)₂

Kazuhiko Matsumoto, Jamie Haner, Hélène P. A. Mercier, and Gary J. Schrobilgen*

In memory of Henry Selig

Abstract: Acetonitrile and the potent oxidative fluorinating agent XeF_6 react at -40°C in Freon-114 to form the highly energetic, shock-sensitive compounds $F_6XeNCCH_3$ (1) and $F_6Xe(NCCH_3)_2$ ·CH₃CN (2·CH₃CN). Their low-temperature single-crystal X-ray structures show that the adducted XeF₆ molecules of these compounds are the most isolated XeF_6 moieties thus far encountered in the solid state and also provide the first examples of $Xe^{VI}-N$ bonds. The geometry of the XeF_6 moiety in **1** is nearly identical to the calculated distorted octahedral ($C_{3\nu}$) geometry of gas-phase XeF₆. The $C_{2\nu}$ geometry of the XeF_6 moiety in **2** resembles the transition state proposed to account for the fluxionality of gas-phase XeF_6 . The energy-minimized gas-phase geometries and vibrational frequencies were calculated for 1 and 2, and their respective binding energies with CH₃CN were determined. The Raman spectra of **1** and $2 \cdot CH_3 CN$ were assigned by comparison with their calculated vibrational frequencies and intensities.

he stereochemical activity of the valence electron lone pair (VELP) of XeF₆ has been a subject of considerable interest for over 50 years. The three possible gas-phase geometries of XeF₆ are an octahedral structure (**3**), where the Xe VELP is stereochemically inactive, a monocapped octahedral ($C_{3\nu}$) structure (**4**), and the $C_{2\nu}$ structure (**5**). Gaseous XeF₆ has been studied by electron diffraction,^[1-5] far-infrared,^[6] Raman,^[7,8] and photoelectron^[9,10] spectroscopy. It has been concluded that the gas-phase structure of monomeric XeF₆ has $C_{3\nu}$ symmetry (**4**), as predicted by the VSEPR model^[11] for an AX₆E molecule and by previous quantum-chemical calculations.^[12]

Explicitly correlated CCSD(T)-F12b calculations indicate that the lowest energy conformer of gaseous XeF_6 is 4 and

spin-free exact two-component theory in its one-electron variant (SFX2C-1e) indicate that both **3** and **4** are minima^[13] on the potential energy surface. Structure 5 is a transition state at both levels of theory. Although XeF₆ has been extensively studied by single-crystal X-ray diffraction, none of its seven known crystal modifications^[14] contain XeF₆ ($C_{3\nu}$) molecules that are well-isolated from one another. Five phases contain ionic oligomers, $(XeF_5+F^-)_n$ (n=4 or 6), and two of the modifications, formulated as $(XeF_5^+F^-)_3 \cdot XeF_6$, contain coordinated XeF₆ molecules with local symmetries that are close to $C_{2\nu}$. Similarly, the $[Xe_2F_{13}]^-$ anion in its $[\mathrm{NO}_2]^+$ salt may be formulated as a $[\mathrm{XeF}_7]^-$ anion that is fluorine-bridged to an XeF₆ ($C_{2\nu}$) molecule.^[15] Low-temperature solution ¹⁹F and ¹²⁹Xe NMR spectroscopy has shown that XeF_6 exists as a fluxional $(XeF_6)_4$ tetramer in which the four Xe and 24 F atoms are chemically equivalent on the ¹⁹F and ¹²⁹Xe NMR time scales and the ¹²⁹Xe-¹⁹F couplings are averaged.^[16,17] The gas-phase ¹⁹F and ¹²⁹Xe NMR spectra of XeF₆ display broad singlets.^[18] Prior to this work, no examples of Xe^{VI}-N bonds had been reported. A considerable number of Xe^{II}–N species in which Xe is bonded to sp-, sp²-, or sp³hybridized N atoms are known,^[19] whereas only three examples of Xe^{IV}–N bonds have been reported, [C₆F₅XeF₂][BF₄]· $(NCCH_3)_n$ $(n = 1 \text{ or } 2)^{[20]}$ and $F_2OXeNCCH_3^{[21]}$

the highest energy conformer is 3.^[12] Calculations with the

A 1:1 complex between XeF₆ and CH₃CN was formed by their stoichiometric reaction in Freon-114 (1,2-dichlorotetrafluoroethane) at -40 °C [Eq. (1)]. The resulting adduct was soluble, giving a colorless solution. Removal of Freon-114 at -78 °C resulted in a white powder, which rapidly decreased in volume under dynamic vacuum at -78 °C, suggesting that 1 had formed a weak Freon-114 solvate. A 1:3 complex of XeF₆ and CH₃CN was prepared in a similar manner using a 1:3 ratio of XeF₆ and CH₃CN [Eq. (2)]; however, there was no evidence for the formation of a Freon-114 solvate.

$$\operatorname{XeF}_{6} + \operatorname{CH}_{3}\operatorname{CN} \xrightarrow{\operatorname{Freon-114}}_{-40^{\circ}\mathrm{C}} \operatorname{F}_{6}\operatorname{XeNCCH}_{3}$$
 (1)

$$\operatorname{XeF}_{6} + 3 \operatorname{CH}_{3} \operatorname{CN} \xrightarrow{\operatorname{Freon-114}} \operatorname{F}_{6} \operatorname{Xe}(\operatorname{NCCH}_{3})_{2} \cdot \operatorname{CH}_{3} \operatorname{CN}$$
(2)

Solid samples of **1** and **2**·CH₃CN proved to be kinetically stable at -78 °C, but detonated when mechanically shocked at this temperature. Both compounds slowly lost CH₃CN under dynamic vacuum at -40 to -20 °C. Attempts to prepare **2** using a 1:2 molar ratio of XeF₆/CH₃CN yielded a mixture of **1** and **2**·CH₃CN. The addition of one equivalent of CH₃CN to **2**·CH₃CN led to a mixture of CH₃CN and **2**·CH₃CN with no evidence for F₆Xe(NCCH₃)₃ formation.

 ^[*] Dr. K. Matsumoto, M. Sc. J. Haner, Dr. H. P. A. Mercier, Prof. G. J. Schrobilgen Department of Chemistry, McMaster University Hamilton, ON, L8S 4M1 (Canada) E-mail: schrobil@mcmaster.ca
Supporting information and ORCID(s) from the author(s) for this

article are available on the WWW under http://dx.doi.org/10.1002/ anie.201507635.

Little information on the solution structure of **1** could be garnered from its ¹⁹F and ¹²⁹Xe NMR spectra in SO₂ClF (see the Supporting Information for a full discussion).

Single crystals of **1** and $2 \cdot CH_3CN$ suitable for X-ray crystal-structure determination were grown by slowly cooling their respective SO₂ClF and CH₃CN/Freon-114 solutions. The crystal structures of the isolated adducts and their calculated structures are in excellent agreement (Figure 1 and Figure 2, Tables S1 and S2; see the Supporting Information for a full discussion of the calculated geometries).

Figure 1. X-ray crystal structure of $F_6XeNCCH_3$ (top). Ellipsoids are shown at the 50% probability level. The calculated geometry (PBE1PBE/aug-cc-pVTZ(-PP)) for $F_6XeNCCH_3$ (bottom) is also shown.

The local symmetry of the XeF₆ moiety in 1 is approximately $C_{3\nu}$ (Figure S1), whereas its crystal site symmetry is C_{s} . The Xe–N distance (2.762(2) Å) is significantly longer than the Xe^{II}-N distances in [C₆F₅XeNCCH₃]⁺ (2.640(6)-2.610(11) Å),^[22] but similar to the Xe^{IV}-N bond lengths in $F_2OXeNCCH_3$ (2.808(5), 2.752(5) Å)^[21] and $[C_6F_5XeF_2]$ -[BF₄]·NCCH₃ (2.742(4) Å).^[20] The bond lengths are significantly shorter than the sum of the Xe and N van der Waals radii (3.71 Å),^[23] but notably longer than Xe^{II}-N bonds (2.02(1)-2.236(4) Å).^[19] The N1 atom of **1** is located on a pseudo- C_3 axis. The non-linear Xe1-N1-C1 angle $(160.31(17)^{\circ})$ is likely the result of crystal packing and the deformability of this angle. The F atoms of the XeF₆ moiety comprise two groups, where F1, F2, and F2A form the most open trigonal face proximate to N1 and opposite to the most closed face, F3, F3A, and F4. The Xe VELP presumably resides between the Xe-F1, Xe-F2, and Xe-F2 bonds of the more open face. Correspondingly, the F-Xe-F angles [F1-Xe1-F2 and F1-Xe1-F2A: 115.65(4)°; F2-Xe1-F2A: 105.92(6)°] proximate to N1 are considerably more open than those of the opposite triad [F3-Xe1-F4 and F3A-Xe1-F4: 79.93(4)°; F3-Xe1-F3A: 82.59(8)°]. The difference between the average F-Xe-F angles of the open and closed faces is 29.53(6)°. The Xe-F bonds of the open face are significantly longer [Xe1-F1: 1.9769(13) Å; Xe1-F2/F2A: 1.9451(8) Å] than

Figure 2. X-ray crystal structure of $F_6Xe(NCCH_3)_2\cdot CH_3CN$. The lattice CH₃CN molecule is not shown (top). Ellipsoids are shown at the 50% probability level. The calculated geometry (PBE1PBE/aug-cc-pVTZ(-PP)) for $F_6Xe(NCCH_3)_2$ (bottom) is also shown.

those of the closed face [Xe–F3/F3A: 1.8560(9) Å; Xe–F4: 1.8601(12) Å)]. At this time, it is not clear whether the $C_{3\nu}$ geometry of **1** is imposed by CH₃CN or the presence of a sterically active Xe VELP. In the latter scenario, the Xe and N VELPs would oppose one another. Calculations are currently underway to ascertain the location of the Xe VELP. The average Xe–F bond length of **1** (1.907(2) Å) is comparable to those of other neutral Xe^{VI} species [XeOF₄: 1.890(2) Å;^[24] XeO₂F₂: 1.899(3) Å^[25]].

Compound 2·CH₃CN contains lattice CH₃CN molecules that lie in channels along the *b* axis and are twofold disordered along the *a* axis with a 50:50 population ratio (Figure S2). The crystal site symmetry of the XeF₆ unit is C_s ; however, the isolated unit closely approximates $C_{2\nu}$ symmetry. The Xe–N bond lengths (2.785(2) Å) of **2** are very similar to that of **1**. The N and C atoms of both coordinated CH₃CN molecules are approximately located on the pseudo-mirror plane bisecting the F1-Xe1-F2 and F4-Xe1-F5 angles. The Xe–F bonds of F₆Xe(NCCH₃)₂ can be classified into three groups: two equatorial F atoms adjacent to the presumed location of the Xe VELP [Xe1–F1: 1.981(2) Å; Xe1–F2: 1.9876(13) Å], two axial F atoms [Xe1–F3 and Xe1–F3A: 1.8936(11) Å], and two equatorial F atoms opposite to the Xe VELP [Xe1–F4: 1.868(2) Å; Xe1–F5: 1.873(2) Å]. The geometry of the XeF₆ moiety may be viewed as a $C_{2\nu}$ -distorted AX₆E VSEPR arrangement (**5**) of the Xe VELP and six Xe–F bond pair domains, where the Xe VELP occupies a position between F1 and F2 in the equatorial Xe1–F1/F2–F4/F5 plane, causing the axial F3/F3A atoms to bend away from the equatorial VELP position towards F4/F5, resulting in an F3-Xe1-F3A angle of 156.90(7)°. When the Xe–N bonds (2.785(2) Å) are included in the description of the Xe coordination sphere, the F3/F3A, N1/N1A, and Xe1 atoms are seen to be coplanar within ±0.110 Å, with the Xe–N bonds avoiding the Xe VELP position.

The Raman spectra of **1** and **2**·CH₃CN are shown in Figure 3. Selected experimental and calculated gas-phase (PBE1PBE/aug-cc-pVTZ(-PP)) frequencies and assignments

Figure 3. Raman spectra of a) 1 and b) $2 \cdot CH_3CN$ recorded at $-150^{\circ}C$ using 1064 nm excitation. Symbols denote FEP sample tube lines (*) and an instrumental artifact (†).

are listed in Table 1 and Table 2. Full lists, including the frequencies and assignments for coordinated CH_3CN , are provided in Tables S3 and S4, along with a detailed discussion. The frequency trends are well reproduced by the calculations. Factor-group analyses were performed to account for splittings that occur on some bands (Tables S5 and S6).

In both adducts, high-frequency shifts occur for v(CN), v(CC), and δ (NCC), which is in accordance with the weak Xe–N bonding interaction that is indicated by the crystal structures and quantum-chemical calculations. The Xe–F stretches (1: 478–624 cm⁻¹; 2·CH₃CN: 454–597 cm⁻¹) occur in ranges similar to those reported for gas-phase and matrix-isolated XeF₆,^[6-8] but are shifted to lower frequencies. Weak bands at 129 and 110 cm⁻¹ in the Raman spectra of **1** and

Table 1: Selected experimental and calculated Raman frequencies (cm⁻¹) and assignments for $F_eXeNCCH_{3}$.^[a]

0	8	-
Exp. ^[b]	Calculated ^[c]	Assignment
624.1(4) 609.1(100)	632.5(75)[184]	A ₁ , ν _s (XeF _{3b})
605.7 sh 599.5(13)	620.0(8)[211]	$E,\nu_{as}(XeF_{3a})+\nu_{as}(XeF_{3b})$
548.4(1) 540.2(11)	557.5(18)[78]	A ₁ , ν _s (XeF _{3a})
491.0(12) 477.5(9)	504.5(14)[110]	E, $\nu_{as}(XeF_{3a})\!-\!\nu_{as}(XeF_{3b})$
345.9(1)	335.3(1)[10] 334.2(1)[1]	$\begin{array}{l} A_1,\delta_s(XeF_{3b})\\ E,\delta_{as}(XeF_{3a})+\delta_{as}(XeF_{3b}) \end{array}$
273.5(1)	246.8(1)[<1]	E, $\rho_r(XeF_{3a}) + \rho_r(XeF_{3b})$
223.9(1)	205.9(2)[17]	$A_1, \delta_s(XeF_{3a})$
150.6(3) 147.2(<1)	149.2(<1)[1]	E, $[\delta_{as}(XeF_{3a}) - \delta_{as}(XeF_{3b})] + \delta(XeNC)$
129.4(1)	106.1(1)[9]	A ₁ , ν(XeN)

[a] See Table S3 for a full list of frequencies and assignments for all bands; abbreviations are given in the footnotes. [b] Values in parentheses denote relative Raman intensities. [c] PBE1PBE/aug-cc-pVTZ (-PP). Values in parentheses denote Raman intensities (Å amu⁻¹). Values in square brackets denote infrared intensities (km mol⁻¹).

2·CH₃CN, respectively, were assigned to v(XeN). The low frequencies of the coupled δ (XeNC) modes (147–205 cm⁻¹) are also consistent with weak Xe–N interactions and highly deformable Xe-N-C angles, and likely account for the non-linearity of this angle in the crystal structures of **1** and **2**·CH₃CN.

Binding energies for the Xe–N interactions in **1** and **2** were determined at the MP2/aug-cc-pVTZ(-PP) level of theory [Eqs. (3)–(5)]. The energy for free XeF₆ was approximated from structure **3** (Table S7) and used because it was not possible to optimize **4** at the MP2 level of theory.^[26] The energy differences between **3** and **4** are 0.79 (CCSD(T)/CBS)^[12] and 7.53 kJ mol⁻¹ (CCSD(T)-F12b).^[13]

$XeF_6 + CH_3CN \rightarrow F_6XeNCCH_3$	$-157.1 \text{ kJ mol}^{-1}$ (3))
--	----------------------------------	---

 $F_6 XeNCCH_3 + CH_3 CN \rightarrow F_6 Xe(NCCH_3)_2 \qquad -129.5 \text{ kJ mol}^{-1} \qquad (4)$

$$XeF_6 + 2 CH_3CN \rightarrow F_6Xe(NCCH_3)_2 - 286.7 kJ mol^{-1}$$
 (5)

In conclusion, the adducts **1** and **2**·CH₃CN have been synthesized and structurally characterized by X-ray crystallography and Raman and NMR spectroscopy. They represent the first examples of Xe^{VI} –N bonds, and their structures provide structural evidence that is consistent with the stereochemical activities of their Xe VELPs. Both adducts are well isolated from one another in their crystal lattices, based on the long intermolecular contacts observed among their structural units, and provide the only examples of

Table 2:	Selected	experimental	and	calculated	Raman	frequencies	(cm^{-1})	and
assignm	ients for l	F ₆ Xe(NCCH ₃)	[a]					

Exp. ^[b]	Calculated ^[c]	Assigment
596.6(100)	621.0(80)[161]	$A_1, \nu_s(XeF_{2c}) + \nu_s(XeF_{2b})_{small}$
581.1(sh)	604.9(6)[229]	$B_{1}\text{, }\nu_{as}(XeF_{2a}\text{)}+\nu_{as}(XeF_{2c}\text{)}$
572.5(23)	598.7(6)[313]	B_2 , v_{as} (XeF _{2b})
558.5(78)	565.6(28)[24]	$A_{1}, \nu_{s}(XeF_{2a}) + \nu_{s}(XeF_{2b}) - \nu_{s}(XeF_{2c})$
497.7(sh) 494.4(29)	509.1(16)[55]	$A_{1},\nu_{s}(XeF_{2a})\!-\!\nu_{s}(XeF_{2b})$
454.3(13)	487.1(8)[136]	$B_{1},\nu_{as}(XeF_{2a})\!-\!\nu_{as}(XeF_{2c})$
435.1(13)	407.2(1)[11]	$A_{1},\delta(XeF_{2c})+(XeF_{2a})_{small}$
360.8(3)	335.9(<1)[3] 334.7(<1)[2]	$ \begin{array}{l} B_{2}, \ \rho_r(XeF_{2b}) + \rho_w(XeF_{2c}) \\ B_{1}, \ \delta(F_aXeF_b) {-}\delta(F_aXeF_b) \end{array} $
303.4(2)	278.9(1)[0]	$A_{2^{\text{c}}},\rho_t(XeF_{2\text{c}})+\rho_t(XeF_{2\text{c}})$
293.3(<1)	260.3(<1)[17]	$A_{1},\delta(XeF_{2b})\!-\![\delta(XeF_{2a})]_{small}$
233.0(1)	201.6(<1)[10]	$\begin{array}{l} A_{1,\; \delta(XeF_{2a}) + \delta(XeF_{2b}) - } \\ [\rho(XeF_{2c}) + \delta(XeNC)_{A+B} \; ip]_{small} \end{array}$
176.2(<1) 165.1(2)	150.1(<1)[3] 149.5(<0.1)[0] 144.4(<0.1)[2]	$ \begin{array}{l} B_{2}, \ \rho_r(XeF_{2b}) + (\delta(XeNC)_{A,B})_{ip} \\ A_{2}, \ \rho_t(XeF_{2a}) + \rho_t(XeF_{2c}) + (\delta(XeNC)_{A,B})_{oop} \\ B_{1}, \ \rho_r(XeF_{2a}) + \rho_r(XeF_{2c}) + (\delta(XeNC)_{A,B})_{oop} \end{array} $
109.6(1)	83.4(1)[<1] 76.6(<1)[6]	$\begin{array}{l} B_{2}, \ \rho_w(XeF_{2a}) + (\delta(XeNC)_{A,B})_{ip} \\ A_1, \ \nu(XeN)_{A+B} \end{array}$

[a] See Table S4 for a full list of frequencies and assignments for all bands; abbreviations are given in the footnotes. [b] Values in parentheses denote relative Raman intensities. [c] See the footnotes of Table 1.

a neutral ligand coordinated to XeF₆. The CH₃CN molecules weakly interact with Xe, thus the geometries of the XeF₆ units in **1** and **2** provide excellent approximations of the gas-phase geometries of **4** and **5**. The $C_{3\nu}$ geometry of ground-state XeF₆ (**4**) has been accurately calculated for the gas-phase molecule.^[12] Interestingly, the experimental geometrical parameters of the XeF₆ moiety in **1** are in very good agreement with those of **4**. Computational investigations on the nature of the Xe^{VI}–N bonding in **1** and **2** and the localization of the Xe valence electron lone pair are currently in progress in our laboratory and will be reported in due course.

Experimental Section

Caution! The adducts $F_6XeNCCH_3$ and $F_6Xe(NCCH_3)_2$ ·CH₃CN are highly energetic materials that may detonate when mechanically or thermally shocked (see the Supporting Information).

Synthesis of **1**: Xenon hexafluoride (0.1796 g, 0.7322 mmol) was condensed under static vacuum at -196 °C into a FEP reaction tube (outer diameter: 0.25 inch) equipped with a Kel-F valve. Freon-114 (ca. 0.2 mL) was condensed onto the XeF₆ at -196 °C. Direct contact between neat CH₃CN and XeF₆ was avoided by condensing a stoichiometric amount of CH₃CN (0.0298 g, 0.7259 mmol) onto the reactor walls above the frozen Freon-114 and XeF₆ layers at

-196 °C. The sample was warmed to -78 °C, and frozen CH₃CN was carefully leached off the walls of the reactor with Freon-114. In this way, CH₃CN was diluted in Freon-114 prior to coming into contact with XeF₆. Moreover, XeF₆ has a low solubility in Freon-114 at -78 °C. After most of the CH₃CN had dissolved, the sample was warmed to -40 °C and mixed for 10 min. Removal of Freon-114 by pumping at -78 °C resulted in a white powder corresponding to Freon-114 solvated F₆XeNCCH₃. Further pumping on the solvate at -78 °C resulted in removal of Freon-114, yielding a white powder corresponding to pure **1**.

Synthesis of $2 \cdot CH_3CN$: Using a procedure similar to that for 1, XeF₆ (0.1787 g, 0.7286 mmol) and CH₃CN (0.0896 g, 2.183 mmol) were combined. Removal of Freon-114 by pumping at -78 °C resulted in a white powder corresponding to pure $2 \cdot CH_3CN$.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for support in the form of a Discovery Grant (G.J.S.) and the Ontario Ministry of Training, Colleges, and Universities for graduate scholarships (J.H.).

Keywords: fluorine chemistry · noble-gas chemistry · Raman spectroscopy · xenon fluorides · X-ray crystallography

How to cite: Angew. Chem. Int. Ed. 2015, 54, 14169–14173 Angew. Chem. 2015, 127, 14375–14379

- L. S. Bartell, R. M. Gavin, Jr., H. B. Thompson, C. L. Chernick, J. Chem. Phys. 1965, 43, 2547–2548.
- [2] R. M. Gavin, Jr., L. S. Bartell, J. Chem. Phys. 1968, 48, 2460-2464.
- [3] L. S. Bartell, R. M. Gavin, Jr., J. Chem. Phys. 1968, 48, 2466– 2483.
- [4] K. Hedberg, S. H. Peterson, R. R. Ryan, B. Weinstock, J. Am. Chem. Soc. 1967, 89, 6466-6469.
- [5] W. Harshberger, R. K. Bofn, S. H. Bauer, J. Am. Chem. Soc. 1967, 89, 6466-6469.
- [6] H. Kim, H. H. Claassen, E. Pearson, *Inorg. Chem.* 1968, 7, 616–617.
- [7] E. L. Gasner, H. H. Claassen, Inorg. Chem. 1967, 6, 1937-1938.
- [8] H. H. Claassen, G. L. Goodman, H. Kim, J. Chem. Phys. 1972, 56, 5042-5053.
- [9] J. N. Cutler, G. M. Bancroft, J. D. Bozek, K. H. Tan, G. J. Schrobilgen, J. Am. Chem. Soc. 1991, 113, 9125–9131.
- [10] J. S. Tse, D. J. Bristow, G. M. Bancroft, G. J. Schrobilgen, *Inorg. Chem.* **1983**, 22, 2673–2677.
- [11] R. J. Gillespie, I. Hargittai, *The VSEPR Model of Molecular Geometry*, Allyn and Bacon, Boston, MA, **1991**.
- [12] K. A. Peterson, D. A. Dixon, H. Stoll, J. Phys. Chem. A 2012, 116, 9777-9782, and references therein.
- [13] L. Cheng, J. Gauss, J. F. Stanton, J. Chem. Phys. 2015, 142, 1-7.
- [14] S. Hoyer, T. Emmler, K. Seppelt, J. Fluorine Chem. 2006, 127, 1415–1422.
- [15] A. Ellern, A. R. Mahjoub, K. Seppelt, Angew. Chem. Int. Ed. Engl. 1996, 35, 1123–1124; Angew. Chem. 1996, 108, 1198–1200.
- [16] G. J. Schrobilgen, J. H. Holloway, P. Granger, C. Brevard, *Inorg. Chem.* **1978**, *17*, 980–987.
- [17] K. Seppelt, N. Bartlett, Z. Anorg. Allg. Chem. 1977, 436, 122-126, and references therein.
- [18] M. Gerken, P. Hazendonk, J. Nieboer, G. J. Schrobilgen, J. Fluorine Chem. 2004, 125, 1163–1168.
- [19] G. L. Smith, G. J. Schrobilgen, *Inorg. Chem.* 2009, 48, 7714– 7728, and references therein.

- [20] K. Koppe, J. Haner, H. P. A. Mercier, H.-J. Frohn, G. J. Schrobilgen, *Inorg. Chem.* 2014, 53, 11640–11661.
- [21] D. S. Brock, V. Bilir, H. P. A. Mercier, G. J. Schrobilgen, J. Am. Chem. Soc. 2007, 129, 3598-3611.
- [22] K. Koppe, H.-J. Frohn, H. P. A. Mercier, G. J. Schrobilgen, *Inorg. Chem.* 2008, 47, 3205–3217.
- [23] A. Bondi, J. Phys. Chem. 1964, 68, 441-451.
- [24] B. E. Pointner, R. J. Suontamo, G. J. Schrobilgen, *Inorg. Chem.* 2006, 45, 1517–1534.
- [25] G. J. Schrobilgen, N. LeBlond, D. A. Dixon, *Inorg. Chem.* 2000, 39, 2473–2487.
- [26] M. Kaupp, C. van Wüllen, R. Franke, F. Schmitz, W. Kutzelnigg, J. Am. Chem. Soc. 1996, 118, 11939–11950.

Received: August 14, 2015 Published online: September 21, 2015