J. CHEM. SOC., CHEM. COMMUN., 1989

The Preparation and X-Ray Structure of Pt(Se₃N)Cl(PMe₂Ph)

Paul F. Kelly, Alexandra M. Z. Slawin, David J. Williams, and J. Derek Woollins*

Imperial College of Science, Technology, and Medicine, South Kensington, London SW7 2AY, U.K.

Reaction of Se_4N_4 with $[PtCl_2(PMe_2Ph)]_2$, in refluxing CHCl₃, results in Pt(Se₃N)Cl(PMe_2Ph), (1), the first example of a metal selenium–nitrogen complex, which contains the bidentate, selenium-bound Se_3N^- ligand; from X-ray crystallography (1) is square planar with a bidentate Se_3N^- ligand co-ordinated through two selenium atoms.

Tetrasulphur tetranitride, S_4N_4 , has long been recognised as an extremely versatile reagent for the preparation of sulphurnitrogen species, *via* reaction with both organic and inorganic compounds.¹ Reactions with transition metal species result in the formation of a number of different metalla sulphurnitrogen complexes, including complexes of $S_2N_2^{2-}$, $S_2N_2H^-$, S_3N^- , and $S_2N_3^{3-.2}$ In contrast, however, reports of reactions involving Se₄N₄ are rare, and there is only one example (recently reported) of a successful reaction with a transition metal complex;³ that between Se₄N₄ and WCl₆ which resulted in [WCl₄(NSeCl)]₂, the first example of a complex of NSeCl, analogous to the NSCl ligand which has been characterised in numerous systems.

In an attempt to expand the chemistry of Se_4N_4 we have

utilised the reactive dimeric species platinum $[PtCl_2(PMe_2Ph)]_2$, which we have recently shown to react with S_4N_4 to give a complex of $S_4N_4^{2-.4}$ Reaction of this dimer with Se₄N₄ in CHCl₃ at 90 °C results in a number of species and can be monitored by t.l.c. Two species, which can be detected as purple and green bands, gradually appear with time. After twelve hours at 90 °C t.l.c. reveals these two species are present in reasonable amounts and they can then be separated from the mixture by elution on a Bio-beads gel-permeation column. Both species elute together as a slow moving pale blue/purple band, and can then be separated from each other by p.t.l.c. on silica, the green species having a substantially higher R_F value (eluent CH₂Cl₂) than the purple.

Slow diffusion of hexane into a concentrated CH₂Cl₂

solution of the green species results in poorly formed, very dark crystals. X-Ray crystallography reveals[†] the compound to be $Pt(Se_3N)Cl(PMe_2Ph)$, (1), the first example of a metalla selenium–nitrogen complex. It is directly analogous to the sulphur–nitrogen species $Pt(S_3N)Cl(PMe_2Ph)$ which we have recently shown to be formed in the reaction of $PtCl_2(PMe_2Ph)_2$ with S_4N_4 at $160 \,^{\circ}C.^5$ In contrast Se_4N_4 is inert to the bis-phosphine complex, even at this high temperature.[‡] We have yet to characterise the purple species which is formed along with (1), although it would appear likely that it is also a selenium–nitrogen complex.

The crystal structure of (1) reveals that the platinum has slightly distorted square planar geometry with Pt, P, Cl, and Se(3) lying in the co-ordination plane with Se(1), N(1), and Se(2) all being ca. 0.1 Å out of this plane [N-Se(3)-Pt-P torsion angle $177(1)^{\circ}$]. There is a noticeable difference in the two Pt-Se distances with Pt-Se(1) (trans to PMe₂Ph) being longer [2.385(2) Å] than Pt-Se(3) [trans to Cl 2.302(3) Å]. Within the PtSe₃N ring the two Se-N and the Se-Se bond lengths are in the expected ranges. The P-Ph bond lies almost co-planar with the PtSe₃N ring [Se(3)-Pt-P-C(1)] torsion angle $(6.0(0.9)^\circ)$ with the planes of the rings almost perpendicular [Pt-P-C(1)-C(6) torsion angle 88.7(1.7)°]. The molecules pack with the PtSe₃N rings approximately co-planar with partial overlap of adjacent pairs (minimum non-bonded contact N-N' 3.35 Å), though there is no formation of continuous stacks. There is, however, a short in plane intermolecular Cl(1)-Se(1)' interaction of 3.49 Å which is

† Crystal Data (1): C₈H₁₁ClNPPtSe₃, M = 619.6, monoclinic, a = 16.871(6), b = 8.996(5), c = 19.771(5) Å, $\beta = 106.83(3)^\circ$, U = 2872Å³, space group C2/c, Z = 8, $D_c = 2.87$ g cm⁻³, µ(Cu- K_{α}) = 301 cm⁻¹. Crystal dimensions 0.4 × 0.05 × 0.22 mm. Data were measured on a Nicolet R3m diffractometer with graphite monochromated Cu- K_{α} radiation using ω-scans. The structure was solved by direct methods and refined anisotropically using absorption corrected data to give R = 0.066, $R_w = 0.066$ for 1552 independent observed reflections [$|F_0| > 3\sigma(|F_0|)$, $\theta ≤ 58^\circ$]. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors Issue No. 1.

 \ddagger Safety Note: Se₄N₄ is an even more powerful explosive than S₄N₄; in consequence extra care should be taken during handling, and during any reaction performed at high temperatures. Similar precautions should also be taken with the initial product of SeCl₄ and ammonia, obtained during the preparation of Se₄N₄, which we have found to explode with friction or on contact with water.

Figure 1. The X-ray structure of Pt(Se₃N)Cl(PMe₂Ph), (1). Selected bond lengths and angles: Pt–Se(1) 2.385(2), Pt–Se(3) 2.302(3), Pt–Cl 2.349(6), Pt–P 2.262(5), Se(1)–Se(2) 2.281(4), Se(2)–N(1) 1.710(21), N(1)–Se(3) 1.806(21) Å; Se(1)–Pt–Se(3) 95.9(1), Se(1)–Pt–Cl 84.0(2), Se(3)–Pt–P 92.3(2), P–Pt–Cl 87.8(2), Pt–Se(1)–Se(2) 102.4(1), Se(1)–Se(2)–N 107.4(7), Se(2)–N–Se(3) 124.5(13), N–Se(3)–Pt 109.8(7)°.

significantly shorter than the sum of the Van de Waals radii (3.8 Å).

It has long been established that unco-ordinated sulphurnitrogen anions such as S_3N^- , S_4N^- , SN_2^{2-} , and, as we have recently proposed,⁶ $S_2N_2^{2-}$ exist, and this work suggests that there is potential for the discovery, and utilisation, of analogous selenium species.

We are grateful to Johnson Matthey for loans of K₂PtCl₄.

Received, 29th November 1988; Com. 8/04717K

References

- 1 'The Inorganic Heterocyclic Chemistry of Sulphur, Nitrogen, and Phosphorus,' H. G. Heal, Academic Press, 1980.
- 2 P. F. Kelly and J. D. Woollins, *Polyhedron*, 1986, 5, 607; P. F. Kelly and J. D. Woollins, *Transition Met. Chem.*, 1988, 13, 77.
- 3 J. Adel, A. El-Kholi, W. Willing, U. Muller, and K. Dehnicke, Chimia, 1988, 42, 70.
- 4 M. B. Hursthouse, P. F. Kelly, M. Motavelli, and J. D. Woollins, *Polyhedron*, in press.
- 5 J. M. Jolliffe, P. F. Kelly, and J. D. Woollins, J. Chem. Soc., Dalton Trans., submitted.
- 6 P. S. Belton, I. P. Parkin, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1988, 1479.