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ABSTRACT: A facile and site-selective C-H bond fluorination of phenols using removable 2-pyridyloxy group as an auxiliary was 

developed. Alternatively, late-stage C-H bond fluorination of bioactive 2-phenoxyl nicotinate derivatives and even more complicat-

ed Diflufenican were also feasible under the present strategy. 
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C-H bond fluorination has emerged as the most powerful 

protocol to access C-F bond formation since it obviates the use 

of pre-functionalized substrates.
1
 Nevertheless, despite the 

recent advances, only handful of directing groups, e.g. am-

ides
2a, 2b, 2c

, aryl-N-heterocycles
2d, 3b

 and oximes
3a

 assisted or-

tho-fluorination of aromatic C-H bonds have been developed 

and the substrates scope is still limited to 2-aryl N-heterocycls, 

aromatic carboxylic acids, benzylic amines and aryl ketones so 

far. More directing groups especially removable directing 

groups are highly desirable to be developed for the directed 

selective C-H bond fluorination of various synthetically rele-

vant substrates. 

Phenols are ubiquitous substructures found in various bioac-

tive nature products and materials.
4
 Moreover, as fundamental 

raw materials, phenols are widely occurred in organic synthe-

sis as well. As a commonly used cross-coupling partner, phe-

nols and  their derivatives, e.g. aryl -triflates, -pivalates and -

carbamates are widely involved in classic Ullman reactions, 

Suzuki  reactions, etc. and  other latest-developed coupling 

reactions.
5
 Moreover, phenols and their derivatives could also 

undergo ipso-deoxylation functionalization to furnish corre-

sponding arenes
6
 and aryl fluorides.

7
 Given the synthetic and 

economic potential of phenol derivatives, fluorination of phe-

nols is of great important in fluorine-containing building 

blocks construction for further formation of various pharma-

ceuticals, agrochemicals and materials. 

 

Figure 1. C-H bond fluorination of phenols and bioactive 2-

phenoxyl nicotinates. 

 

Up to date, phenols and several phenol derivatives, such as 

phenol esters and phenol carbamates, etc. have successfully 

been used as substrates for versatile C-H functionalizations.
8
 

Among them, 2-phenoxypyridines were employed as efficient  
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Table 1. Condition Screening for the C-H Bond Fluorina-

tion of 2-Phenoxyl Pyridine.
a  

 

Entry [Pd] Solvent T 

(oC) 

Yield of 

2a (%) 

Yield of 

2aa (%) 

1b Pd2(dba)3 CH3NO2 80 19 3 

2b Pd2(dba)3 EtOAc 80 84 6 

3b Pd2(dba)3 EtOAc 60 49 2 

4 Pd2(dba)3 EtOAc 80 84 5 

5 Pd2(dba)3 CH3CN 80 10 2 

6 Pd2(dba)3 Toulene 80 72 3 

7 Pd2(dba)3 DCE 80 13 1 

8 Pd2(dba)3 n-hexane 80 12 0 

9 Pd(OAc)2 EtOAc 80 80 3 

10 Pd(TFA)2 EtOAc 80 47 1 

11 PdCl2 EtOAc 80 47 trace 

12 Pd(PPh3)4 EtOAc 80 40 5 

13 Pd(dba)2 EtOAc 80 86 3 

14c Pd(dba)2 EtOAc 80 44 1 

15 -- EtOAc 80 0 0 

a Conditions: 1a (0.1 mmol), [Pd] (5 mol%), NFSI (1.5 equiv.), 

Solvent (1.0 mL), indicated temperature, under air, 2h, GC-MS 

yields (unless otherwise noted); b 12h; c Pd(dba)2 (1 mol%), NFSI 

(1.5 equiv.), under air, 6 h. 

 

phenols surrogates to undergo ortho-silylation, -arylation, -

borylation, -alkenylation and acylation.
9
 However, C-H bond 

fluorination of 2-phenoxypyridines has not been reported yet. 

Despite the C-H bond fluorination of 2- phenylpyridines that 

presented by Sanford group, less mono- / di-fluorination selec-

tivity was occurred with respect to the strong coordinating 

ability of the pyridinyl directing group.
2d

 We envisioned that 

the oxy-bridge in 2-phenoxypyridines might alter the electron-

ic nature of the N-donor ligand and pave the way for selective 

ortho-C-H bond mono-fluorination. Thus, in continuation of 

our previous C-H fluorination studies,
3
 we developed herein a 

palladium-catalyzed C-H fluorination via 6-membered cy-

clopalladation mode using a removable directing group (Fig-

ure 1, a).
10

 Notably, the present protocol could further be ap-

plied in the late-stage fluorination of bioactive 2-phenoxyl 

nicotinate derivatives (Figure 1, b). 

At the outset, we initialed our research by treating the pilot 

substrate 2-phenoxypyridine (1a) with 5 mol% Pd2(dba)3 and 

N- Fluorobenzenesulfonimide (NFSI) in various solvents at 

different temperatures (Table 1, entries 1-8).
 11

 Gratefully, with 

slightly modifying of solvents and reaction temperatures, 1a 

was selectively converted to 2a in EtOAc solvent at 80 
o
C in a 

short period of 2 hours (entry 4). Additionally, the mono-/di-

fluorination selectivity could slightly been enhanced with 5 

mol% Pd(dba)2 in lieu of Pd2(dba)3 (entries 9-13). Reducing 

Table 2. C-H Fluorination of 2-aryloxyl pyridine.
a
 

a Conditions: 1 (0.3 mmol), Pd(dba)2 (5 mol%), NFSI (1.5 equiv.), 

EtOAc (3.0 mL), indicated temperature, under air, 2-6 h, isolated 

yields (unless otherwise noted). b Pd(dba)2 (10 mol%), NFSI (2.0 

equiv.), KNO3 (30 mol%), 6h. 

 

the loading of catalyst to 1 mol% could also afford a moderate 

yield along with a longer reaction time (entry 14). However, 

omission of Pd catalyst led to a negative result (entry 15). 

Encouraged by our initial results, we sought to explore the 

scope and generality of our C-H fluorination protocol. Various 

decorated phenols masked by 2-pyridyl directing group were 

evaluated. In generally, both electron-donating and electron-

withdrawing functional groups were well tolerated by cau-

tiously adjusting the reaction temperatures (Table 2). Milder 

condition was required with respect to the electron-rich aryl 

rings in order to obviate the undesired di-fluorination. Howev-

er, more forcing conditions were beneficial for the fluorination 

of electron-deficient aryl rings. Furthermore, in case that some 

strong electron-withdrawing groups e.g. –CF3, -CN or –NO2 

were tethered to the substrates (2i, 2j, 2r), catalytic amount of 

a nitrate additive (30 mol%)
3a

 were required to drive the trans-

formations. Mono-fluorination underwent smoothly even 

when the bulky phenyl or bromo groups were substituted on 

the ortho position (2k, 2m). Intriguingly, fluorination was  
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Scheme 1. Control experiments. 

 

Scheme 2. Removal of the Directing Group. 

 

exclusively took place on the “inactive” ortho-C-H bond with 

the more “reactive” ortho-C-X (Cl, Br) bond remaining intact 

(2l, 2m).
12

 Steric effects adjacent to the reaction center had a 

remarkable influence on the reaction as evidenced by the in-

vestigation of the meta-functionalized substrates, as shown in 

Table 2, less congested C-H bonds at the para-position of the 

functionalities were highly selectively fluorinated (2o-2u).  

Notably, attempt to expand this chemistry to quinoline and a 

more complex estrone structure were also proved viable albeit 

with lower yields (2t, 2u). 

The 2-pyridyl directing group was essential to the reaction 

profile as evidenced by the parallel tests of 2-phenoxy benzene 

and 3-phenoxy pyridine, which did not give the target fluori-

nated product (Scheme 1). In addition, the 2-pyridyl group can 

readily be removed to deliver the 2-fluorinated phenols using 

the previous reported method (Scheme 2).
9
 Very recently, a 

Rh-catalyzed C-O bond cleavage borylation of pyridyl ethers 

extended the further application of our fluorination strategy.
13 

Though the readily removable 2-pyridyloxy directing group 

could sever as a practical auxiliary for the C-H fluorination of 

phenols, the 2-phenoxy pyridine substructures are also widely 

found in various agrochemicals.
14

 Among them, 2-phenoxy 

nicotinate derivatives are frequently appeared in pesticide 

industry, selective and late-stage fluorination of these bioac-

tive structures are of great important for the modification of 

their lipophilicity, bioavailability and metabolic stability.
15 

Substituted methyl 2-phenoxy nicotinates, which can facile-

ly be prepared via the coupling of 2-chloronicotinate and phe-

nols, were employed to evaluate the application prospect of 

the present fluorination protocol. To our delight, diverse func-

tionalized methyl 2-phenoxy nicotinates were mono-

fluorinated in good yields under the indicated conditions (Ta-

ble 3, 5a-5g). Notably, C-H bond fluorination of other nico-

tinates including cyclohexyl, phenyl nicotinates and N, N-

diethyl nicotinamide also proceeded smoothly in good yields 

(5h-5j). It seemed that the carboxylate tethered at the C-3 po-

sition did not hamper the C-H bond activation directed by 

pyridine group, which provided an efficient route for the new 

pesticides discovery via the late-stage replacement of inert C-

H bonds of these bioactive 2-phenoxy nicotinate analogues.
16 

 

Table 3. C-H Bond Fluorination of 2-Phenoxyl Nicotinic 

Acid Derivatives.
a 

a Conditions: 4 (0.3 mmol), Pd(dba)2 (5 mol%), NFSI (1.5 equiv.), 

EtOAc (3.0 mL), indicated temperature, under air, 2 h, isolated 

yields (unless otherwise noted). b Pd(dba)2 (10 mol%), NFSI (2.0 

equiv.), KNO3 (30 mol%), 6h. 
 

Encouraged by the remarkable compatibility of nicotinate 

directing group with the present fluorination protocol, we then 

turned our attention to more challenging late-stage fluorination 

of diflufenican, a widely used commercial-available herbicide 

in winter wheat and bar ley.
17

 The great problem needed to be 

overcome in this case is the site-selective C-Ha bond fluorina-

tion in the presence of multiple potentially reactive C-H bonds.  

For instance, C-Hb bond could be cleaved directed by the same 

nicotinate group in competition with C-Ha bond. C-Hc and C-

Hd bonds are also reactive enough to be fluorinated assisted by 

the amide directing group. Pleasingly, mono-fluorinated prod-

uct was exclusively yielded from the 2-pyridyloxy-directed 

activation at the less sterically hindered C-Ha bond (Scheme 3). 

Late-stage fluorination of C-H bonds without touching the 

other functional groups is the most efficient way to introduce 

fluorine into complicated molecules and enrich the strategies 

of building the highly important fluorine-contained struc-

tures.
18 

 

 

Scheme 3. Regio-selective Late-Stage C-H bond Fluorina-

tion of Diflufenican. 

 

In conclusion, we have developed a facile and site-selective 

C-H bond fluorination of phenols using 2-pyridyloxy group as 

an auxiliary. The methodology has a broad substrate scope 

with high functional group tolerance. Furthermore, late-stage 
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C-H bond fluorination of bioactive 2-phenoxyl nicotinate de-

rivatives such as diflufenican were also implemented success-

fully under the present conditions. Attempt to apply this late-

stage diversification to more useful and bioactive compounds 

with complex structures are still ongoing in our lab. 
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