DOI: 10.1002/ejoc.200700237

Ring Expansion Induced by DAST: Synthesis of Substituted 3-Fluoropiperidines from Prolinols and 3-Fluoroazepanes from 2-Hydroxymethylpiperidines

Ingrid Déchamps,^[a] Domingo Gomez Pardo,^[a] and Janine Cossy*^[a]

Keywords: Ring expansion / Rearrangement / Fluorine / Aziridinium / Nitrogen heterocycles

Optically active prolinols can be converted into optically active 3-fluoropiperidines by treatment with DAST. The reaction often produces 2-fluoromethylpyrrolidines as byproducts. The ring expansion was also applied to 2-hydroxypiper-

Introduction

The introduction of a fluorine atom in organic molecules strongly modifies their physical, chemical and biological properties.^[1] For the past few decades, a variety of fluorinating reagents and methodologies have been developed to fulfil the increasing demand for selective fluorination of organic compounds,^[2] among them, N,N-bis(2-methoxyethyl)aminosulfur trifluoride, (CH₃OCH₂CH₂)₂NSF₃ (Deoxofluor)^[3] and N.N-diethylaminosulfur trifluoride (DAST)^[4] have emerged as very useful reagents to convert simple alcohols into the corresponding monofluorinated product.^[5] The fluorination of optically active alcohols by using these reagents generally proceeds with inversion of configuration (S_N2 mechanism). Furthermore, these reagents are known to initiate rearrangements through anchimeric assistance of an electron-rich group (methoxy,^[6] amine,^[7] thioester,^[8] epoxide,^[9] azide,^[10] double bond,^[11] aromatic ring,^[12] ester,^[13] amide^[14]) present at a vicinal position of the reacting alcohol. These rearrangements can be explained in terms of neighbouring group participation as a result of the formation of a very good leaving group resulting from the reaction of an alcohol moiety with DAST or Deoxofluor. As part of our study of ring expansion of prolinols to piperidines,^[15] we would like to report here the rearrangement of optically active prolinols of type A into optically active piperidines of type B by using DAST.^[16] A nonrearranged product of type C can also be obtained. The ring expansion is supposed to proceed via an aziridinium intermediate of type E resulting from the intramolecular nucleophilic substitution of the nitrogen atom onto the

[a] Laboratoire de Chimie Organique associé au CNRS, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (E.S.P.C.I.) – ParisTech, C.N.R.S. 10, rue Vauquelin, 75231 Paris Cedex 05, France Fax: +33-0140-794-660 E-mail: janine.cossy@espci.fr.

InterScience

idines to produce 3-fluoroazepanes. The rearrangement proceeds via an aziridinium intermediate.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

newly formed good leaving group in $\mathbf{D}^{[7]}$ The selectivity of the rearrangement, **B** versus **C**, depends on the substitution on the pyrrolidine ring and the steric hindrance at the nitrogen atom (Scheme 1).

Scheme 1. Ring expansion.

Results and Discussion

Our study started with *N*-benzylprolinol (1).^[17] This compound was treated with DAST (1.4 equiv.) in THF at 0 °C for 1 h and then for 1 h at room temp. Under these conditions, prolinol 1 was transformed into an inseparable mixture of 3-fluoropiperidine 2 and 2-fluoromethylpyrrolidine 3 in a 57:43^[18] ratio in favour of the ring-expanded product 2 with a yield of 60% (Table 1, Entry 1).^[7g] To favour the formation of 3-fluoropiperidine 2, a number of different experimental procedures were examined, and the results are summarized in Table 1. Whatever the solvent used (THF, CH₂Cl₂, cyclohexane or acetone), the ratio 2/3 did not change (Table 1, Entries 1–4). It is worth noting that the use of cyclohexane or acetone led to the formation of byproducts, whereas the reaction was clean in THF and CH₂Cl₂. Modifications of the reaction mixture temperature

did not change the proportions of 2/3 and byproducts were also formed under these conditions (Table 1, Entries 5 and 6). It is worth noting that an experiment was carried out in the presence of Et₃N (3.0 equiv.) to prevent the eventual protonation of the prolinol during the ring-expansion process. However, no significant evolution of the ratio 2/3 was observed (Table 1, Entry 7).

Table 1. Influence of the experimental conditions on the ratio of 2/3.

[a] 3.0 equiv. of Et₃N were added.

To prove that an aziridinium intermediate of type **D** was involved in the formation of **2** and **3**, piperidin-3-ol **4**^[15g] was treated with DAST in THF. After 1 h at 0 °C and 1 h at room temp., compounds **2** and **3** were obtained with similar ratios (**2**/**3**, 57:43) and yields (55%) compared to those obtained when the reaction was performed on prolinol **1**. These results suggest that, in the presence of DAST, both substrates were converted into the same intermediate, aziridinium **E**', which was previously postulated in the literature (Scheme 2).^[7]

Scheme 2. Mechanism via an aziridinium intermediate.

The effect of the substituents on the prolinol ring was tested and after treatment with DAST (1.4 equiv., THF, 1 h at 0 °C then 1 h at room temp.), prolinol **5** substituted by a *tert*-butyldimethylsilyl ether at C-4 with a *cis* relative relationship, was converted into an inseparable mixture of 3-fluoropiperidine **6** and 2-fluoromethylpyrrolidine **7** in a 75:25 ratio and in 73% yield (Scheme 3).

Scheme 3. Rearrangement of prolinol 5.

As the presence of a silvl ether group seems to influence the selectivity of the rearrangement, the rearrangement of prolinols 8a-f,^[19] in which the hydroxy group at C-3 or C-4 is protected, was examined, and the results are reported in Table 2. At first, the substitution by a tert-butyldimethylsilvl ether at C-4 with a trans relative relationship (prolinol 8a^[15m]) was studied and, interestingly, the observed ratio 9a/10a increased to 80:20 in favour of the ring-expansion product. The fluorinated products could be separated and isolated in 53 and 8% yield, respectively (Table 2, Entry 1). It is worth noting that when replaced in the ring-expansion conditions (DAST, 1.4 equiv., 1 h at 0 °C then 1 h at room temp.), the isolated ring-expansion product 9a was not transformed into isomer 10a. This result shows that there is no equilibrium between the two fluoro products in the presence of DAST and that the reaction is controlled by kinetics under these conditions.^[15n] When the tert-butyldimethylsilyl ether group was substituted at C-3 with a trans relationship, as in prolinol **8b**,^[20] an equimolar inseparable mixture of 3-fluoropiperidine 9a and 2-fluoromethylpyrrolidine 10a was obtained with a global yield of 55% (Table 2, Entry 2). This result suggests that the presence of the C-3 substituent does not favour the formation of the ringexpansion product. To test the importance of the presence of a silvl ether group at C-4, prolinol 8c and 8d were treated with DAST. An important decrease in the selectivity was observed when a methoxy group is present at C-4, as prolinol 8c was converted into an inseparable mixture of 9c/10c with a ratio of 55:45 and with a 55% global yield (Table 2, Entry 3). The replacement of the methoxy group by a bulky trityloxy group at C-4 induced an important improvement in the selectivity, since a 75:25 ratio of 9d/10d was obtained and 9d and 10d could be isolated in 33 and 5% yield, respectively (Table 2, Entry 4). The presence of a silvl protecting group on the hydroxy at C-4 seems to lead to better selectivity in favour of the rearranged fluoropiperidines than the use of an alkyl ether group. As an increase in the steric hindrance induced by the protecting group seems to improve the selectivity in favour of the ring expansion, prolinols 8e^[15m] and 8f^[15m] possessing bulky silvl ether groups at C-4 were tested under the ring-expansion conditions. When triisopropylsilyloxyprolinol 8e was examined, an improved selectivity was obtained with a 89:11 ratio of 9e/10e in 75 and 9% yield, respectively (Table 2, Entry 5). The better result was obtained with a tert-butyldiphenylsilyl group at C-4, as a ratio of 91:9 for 9f/10f was obtained in favour of the fluoropiperidine (Table 2, Entry 6). It is worth noting that similar results were obtained with Deoxofluor.

R ²	R^{1} R^{1} N Bn 8a-f the	$\begin{array}{c} DAST \\ or \\ Deoxofluor \\ (1.4 equiv.) \\ \hline \\ \hline \\ THF \\ 1 h at 0 ^{\circ}C \\ en l h at room temp. \end{array}$	$\frac{\mathbf{R}^{1}}{\mathbf{F}} + \mathbf{R}^{2}$	$\sum_{\substack{N \\ I \\ Bn}}^{R^1} F$
Entry	Prolinol	Substituent	DAST	Deoxofluor
			Ratio 9/10 ,	Ratio 9/10 ,
			Yield [%]	Yield [%]
1	8a	$R^1 = H$	9a/10a:	9a/10a:
			80:20, 53/8	60:40, 58/14
2	Q L	$R^2 = OTBDMS$ $P^1 = OTBDMS$	0b/10b	
4	00	K = OIDDMS	50:50, 55 ^[a]	
		$R^2 = H$		
3	8c	$R^1 = H$	9c/10c :55:45,	
		D ² O14	55 ^[a]	
4	6.0	$R^2 = OMe$	01/101.	
4	80	$K_{\tau} = H$	90/100 : 75:25 22/5	
		$R^2 = OTr$	15.25, 5515	
5	8e	$R^1 = H$	9e/10e : 89:11,	
			75/9	
		$R^2 = OTIPS$		
6	8f	$R^1 = H$	9f/10f : 91:9,	9f/10f : 91:9,
		$\mathbf{R}^2 = \mathbf{OTRDPS}$	61/4	53/6
		K = 010013		

Table 2. Influence of substitution at C-3 and C-4 of the pyrrolidine ring.

[a] Combined yield.

If the rearrangement of prolinol 8f proceeds via the opening of aziridinium E'', a relative *trans* configuration between the tert-butyldiphenylsilyl ether at C-5 and the fluorine at C-3 should be obtained in 9f (Scheme 4). To confirm the configuration of the created centre, the relative relationship between the silyloxy group and the fluorine atom was established by analyzing the ¹H NMR spectra of piperidine 9f and by determining the value of the coupling constants between 3-H and the vicinal protons present at C-2 and C-4, and by determining the value of the coupling constants between 5-H and the vicinal protons present at C-4 and C-6. The equatorial position of the silyl group was confirmed by the signal of 5-H in the ¹H NMR spectra, a doublet of doublet of doublet of doublet (dddd) with two rather large coupling constants of 8.0 and 8.0 Hz (typical of Haxial-Haxial couplings) and two medium coupling constants of 4.0 and 4.0 Hz, which correspond to the H_{axial}-H_{equatorial} constants; in consequence 5-H is axial. The signal that corresponds to 3-H can be described as a "ddddd" with a large coupling constant of 47.7 Hz, which results from the coupling of 3-H with the fluorine atom and smaller coupling constants of 5.0, 5.0, 2.5, 2.5 Hz that are due to H_{equatorial}-H_{axial} and H_{equatorial}-H_{equatorial} couplings. This analysis allowed us to attribute the (R) configuration to the C-3 stereogenic centre. It is worth noting that in the case of piperidine 9a and 9e-f, the coupling constants for the 3-H proton are too small to be calculated. Moreover,

piperidines **9a** and **9e–f** were obtained as the only diastereomer; this result is in favour of an aziridinium intermediate hypothesis.

Scheme 4. Aziridinium intermediate and stereochemistry.

As it seems that the rearrangement of prolinols into 3fluoropiperidines is sensitive to steric hindrance, the variation of the N-alkyl substituent of the prolinol was examined. The results are reported in Table 3. The presence of the N-tert-butylmethyl group has little effect on the ring expansion, as an inseparable mixture of fluoropiperidine 12a and fluoropyrrolidine 13a was obtained in a ratio of 60:40, which is similar to the one observed with N-benzylprolinol 1 and in 54% yield (Table 3, Entry 1). In the case of a N-methyldiphenyl substituent, prolinol 11b was transformed into a mixture of 12b and 13b in a ratio of 76:24 in favour of the ring-expanded product 12b in 71% yield (Table 3, Entry 2). As an increase in the steric hindrance on the nitrogen atom seems to improve the selectivity of the reaction, N-tritylprolinol 11c^[22] was treated with DAST and N-trityl-3-fluoropiperidine 12c was obtained as the only observed product, which was isolated in 64% yield (Table 3, Entry 3).

Table 3. Influence of the substituent on the nitrogen.

	N R 11a-c	DAST (1.4 equiv.) 1 h at 0 °C d 1 h at room ten	$ \begin{array}{c} $	F a,b
Entry	Prolinol	R	Ratio 12/13	Yield of 12+13 [%]
1 2 3	11a ^[15g] 11b 11c	CH ₂ tBu CHPh ₂ CPh ₃	12a+13a : 60:40 12b+13b : 76:24 12c : 100:0	54 71 64

When *N*-alkyl-2-alkylprolinols **14a**–**e** were treated with DAST, the ring expansion was very selective as only *N*-alkyl-3-fluoro-3-alkylpiperidines were observed. The optically active *N*-tert-butylmethylprolinols **14a**– $\mathbf{c}^{[23]}$ were converted into the optically active 3-fluoropiperidines **15a**– \mathbf{c} , respectively (Table 4, Entries 1–3). It is worth noting that when treated with DAST in THF, prolinol **14a** was converted into fluoropiperidine **15a** in a rather low yield of 43% as a result of the volatility of fluoropiperidine **15a**. When the reaction was carried out in CH₂Cl₂ and the distillation of the solvent was carried out at room temp., the

yield was improved to 76% (Table 4, Entry 1). Similar results were obtained with fluoropiperidine 15b, which could be prepared in 89% yield by using CH₂Cl₂ as the reaction solvent (Table 4, Entry 2). The use of Deoxofluor was also investigated on these prolinols and compounds 15a-c were obtained with the same selectivity and in comparable yields (68–93%). The replacement of the *N*-tert-butylmethyl by an N-benzyl group did not affect the selectivity as the N-benzyl-3-fluoropiperidine 15d could be obtained in 30% yield as the unique product of the reaction, when prolinol 14d was treated with DAST (Table 4, Entry 4). After treatment of prolinol 14e^[15i] with DAST, the fluorinated N-methylpiperidine 15e was formed in 72% yield (Table 4, Entry 5). It is worth noting that in each case, the ¹H NMR spectra of the crude material did not show the presence of any elimination products. The enantiomeric purity of 3-fluoropiperidine 15c was determined by chiral HPLC. Piperidine 15c was formed with an enantiomeric excess of 99% when the ring expansion was realized with DAST and with an enantiomeric excess of 93%, when the rearrangement was achieved with Deoxofluor. We have to point out that we were not able to determine the absolute configuration of the stereogenic centres in compounds 15a-e despite our efforts to crystallize the ammonium salts issued from CSA or tartaric acid, or to functionalize 3-fluoropiperidine 15b to obtain single crystals for X-ray diffraction. The absolute configuration of the 3-fluoropiperidines was postulated according to our previous results on the rearrangement of amino alcohols in the presence of trifluoroacetic anhy-

Table 4. Influence of the substituent at C-2 of the pyrrolidine ring.

[a] Conditions: 1 h at 0 °C, then 1 h at room temp., THF. [b] Owing to the volatility of the fluorinated product, CH_2Cl_2 was preferred to THF. [c] The *ee* values were determined by comparison with the racemate on Chiral HPLC: OJ-H, hexane, 0.3 mL/min.

dride.^[24] However, the possibility of the participation of the neighbouring allyl or benzyl groups cannot be excluded in the case of 3-fluoropiperidines **15b–d**.^[25]

The selective attack of the fluorine anion at the C-2 position of substituted prolinols, which leads exclusively to 3fluoropiperidines, can be explained by an increase in the length of the C-2–N bond in the aziridinium intermediate; moreover, the presence of a quaternary centre at C-2 results in the stabilization of a partial positive charge at C-2 correlated with a weakened C-2–N bond. In consequence, the cleavage of the C-2–N bond induced by the nucleophilic attack of the fluoride at the more electrophilic carbon is favoured (Scheme 5). The selectivity of the rearrangement when the nitrogen atom is substituted by a bulky protecting group (Table 3, Entry 3), can also be explained in terms of lengthening of the C-2–N bond due to steric constraints.

$$\bigvee_{\substack{N\\ I\\ R\\ R}} R^{\prime} OH \xrightarrow{DAST} \left[\underbrace{\bigvee_{\substack{0 \in I\\ B \cap I\\ R}}^{2} R^{\prime}}_{I} \bigoplus_{F} \right] \rightarrow \underbrace{\bigvee_{\substack{N\\ I\\ R}}^{N}}_{I} F^{\prime}$$

Scheme 5. Selectivity of the ring expansion.

This ring expansion was also tested to synthesize substituted 3-fluoroazepanes from racemic 2-hydroxymethylpiperidines.^[26] The results are reported in Table 5. When *N*benzyl-2-hydroxymethylpiperidine **16a**^[27] was treated with DAST, a mixture of 3-fluoroazepane **17a** and 2-fluoromethylpiperidine **18a** was obtained in a ratio of 70:30 with 51 and 12% yield, respectively (Table 5, Entry 1). By analogy with the prolinols, the 2-hydroxymethylpiperidines substituted by an alkyl group at C-2 were investigated. 2-Alkyl-2-hydroxymethylpiperidines **16b–d** were transformed with high selectivity to 3-fluoroazepanes **17b**, **17c** and **17d**, which were isolated, respectively, in 63, 76 and 76% yield (Table 5, Entries 2–4).

Table 5. Ring expansion applied to 2-hydroxymethylpiperidines.

	ROH Bn then 1 16a-d	DAST (1.4 equiv.) 1 h at 0 °C h at room temp.	$ \begin{array}{c} $	R F n a
Entry	Starting Material	R	Ratio 17/18	Yield [%]
1 2 3 4	16a 16b 16c 16d	H Et Allyl Bn	70:30 100:0 100:0 100:0	17a/18a : 51/12 17b : 63 17c : 76 17d : 76

Conclusions

We have shown that DAST and Deoxofluor can induce a stereo- and enantioselective rearrangement of prolinols to 3-fluoropiperidines with modest-to-good yield. The presence of a bulky protecting group on the nitrogen atom was shown to improve the selectivity of the rearrangement to favour the formation of the piperidine. Selective ring expansions were also observed with C-2-alkyl-substituted prolinols and piperidine methanols to produce 3-alkyl-3-fluoropiperidines and 3-alkyl-3-fluoroazepanes.

Experimental Section

General Procedures: DAST and Deoxofluor are commercially available from Aldrich and were used as received. Solvents were distilled. Dry THF and Et₂O were obtained by distillation from sodium and benzophenone; CH2Cl2 was dried by distillation from CaH₂. TLC was performed on Merck 60F₂₅₄ silica gel plates and visualized either with a UV lamp (254 nm) or by using a solution of KMnO₄/K₂CO₃/NaOH in water followed by heating. Flash chromatography was performed with Merck Geduran Si60 silica gel (40-63 µm). Infrared (IR) spectra were recorded with a Bruker TENSOR 27 (IRFT). ¹H NMR spectra at 400 MHz and ¹³C NMR at 100 MHz were recorded with a Bruker AVANCE 400. ¹H NMR spectra at 300 MHz and ¹³C NMR at 75 MHz were recorded with a Bruker AC 300. ¹H NMR data are reported as follows: chemical shift in ppm from SiMe₄ as an internal standard, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of nonequivalent resonances) and integration. ¹³C NMR data are reported as follows: chemical shift in ppm from SiMe₄ with the solvent as an internal indicator (CDCl₃ δ 77.0 ppm), multiplicity with respect to proton (deduced from DEPT experiments, s = quaternary C, d = CH, t = CH_2 , q = CH_3). Mass spectra with electronic impact (EI) were recorded with a Hewlett-Packard tandem 5890A GC (12 m capillary column) - 5971 MS (70 eV). Mass spectra with chemical ionization (CI) and high resolution mass spectra (HRMS) were performed by the Centre de Spectrochimie Organique de l'Ecole Normale Supérieure Ulm (Paris). Optical rotations were measured with a Perkin-Elmer 343 polarimeter in a 10-cm cell.

General Procedure for the Synthesis of N-Benzyl-2-hydroxymethylpiperidines 16b-d: To a solution of N-benzylpiperidine-2-carboxylic acid methyl ester (4.3 mmol, 1.0 equiv.) in THF (20 mL), cooled to -78 °C, was added LDA (1 м, 4.7 mL, 4.7 mmol, 1.1 equiv.) dropwise, followed by, after 20 min, the alkyl halide. The mixture temperature was then allowed to rise slowly over 3 h till room temp., and the reaction was quenched by the addition of water (20 mL). The aqueous phase was extracted with AcOEt $(2 \times 40 \text{ mL})$. The organic phase was dried with Na₂SO₄, and the solvents were evaporated in vacuo. After purification by flash chromatography (cyclohexane/AcOEt, 90:10), the obtained alkylated piperidines in a solution of THF (10 mL) were added cautiously at 0 °C to a suspension of LiAlH₄ (2 equiv.) in THF (10 mL). After 2 h at room temp., the reaction mixture was cooled to 0 °C and quenched cautiously with a saturated solution of sodium potassium tartrate (10 mL). The aqueous phase was extracted with Et_2O (3 × 20 mL). The organic phase was dried with Na₂SO₄, and the solvents were evaporated in vacuo. After purification by flash chromatography (cyclohexane/ AcOEt, 90:10), piperidine methanols 16b-d were isolated as colourless oil.

(*N*-Benzyl-2-ethylpiperidin-2-yl)methanol (16b): Yield: 21% (global). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.76$ (dd, J = 7.7, 7.7 Hz, 3 H, CH₂CH₃), 1.22–1.40 (3 H), 1.42–1.55 (3 H), 1.61 (m, 1 H, 3-H, 4-H, 5-H and CH₂CH₃), 1.83 (dq, J = 13.8, 7.7 Hz, 1 H, CH₂CH₃), 2.26 (ddd, J = 11.8, 11.8, 3.0 Hz, 1 H, 6-H), 2.60 (m, 1 H, 6-H), 3.00 (d, J = 13.6 Hz, 1 H, CH₂Ph), 3.28 (d, J = 10.3 Hz,

1 H, CH₂OH), 3.44 (br. s, 1 H, OH), 3.60 (d, J = 10.3 Hz, 1 H, CH₂OH), 3.88 (d, J = 13.6 Hz, 1 H, CH₂Ph), 7.13–7.27 (5 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 8.2$ (q, CH₂CH₃), 19.0 (t), 20.3 (t), 25.9 (t), 29.0 (t, C-3, C-4, C-5 and CH₂CH₃), 46.1 (t, C-6), 52.7 (t, CH₂Ph), 59.5 (s, C-2), 65.1 (t, CH₂OH), 126.8 (d), 128.4 (d), 128.6 (d), 139.1 (s, C_{ar}) ppm. IR (film): $\tilde{v} = 3424$, 2932, 2863, 1494, 1451, 1414, 1363, 1311, 1242, 1122, 1065 cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 233 (1) [M]⁺⁻, 203 (16), 202 (100), 112 (3), 110 (3), 92 (7), 91 (82), 65 (5), 55 (4).

(N-Benzyl-2-allylpiperidin-2-yl)methanol (16c): Yield: 31% (global). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.24-1.60$ (5 H), 1.67 (m, 1 H, 3-H, 4-H and 5-H), 2.04 (dd, J = 13.7, 7.4 Hz, 1 H, $CH_2CH=CH_2$), 2.26 (ddd, J = 11.9, 11.9, 2.7 Hz, 1 H, 6-H), 2.56 (dd, J = 13.5, 7.8 Hz, 1 H, $CH_2CH=CH_2$), 2.62 (m, 1 H, 6-H), 3.02 (d, J =13.6 Hz, 1 H, CH_2Ph), 3.22 (d, J = 10.6 Hz, 1 H, CH_2OH), 3.67 (d, J = 10.6 Hz, 1 H, CH₂OH), 3.92 (d, J = 13.6 Hz, 1 H, CH₂Ph), 4.97-5.06 (2 H, CH=CH₂), 5.63 (dddd, J = 17.1, 9.7, 7.5, 7.5 Hz, 1 H, CH=CH₂), 7.13–7.26 (5 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 20.2$ (t), 25.9 (t), 30.1 (t), 31.7 (t, C-3, C-4, C-5 and CH₂CH=CH₂), 46.3 (t, C-6), 52.9 (t, CH₂Ph), 59.5 (s, C-2), 65.5 (t, CH₂OH), 117.9 (t, CH=CH₂), 126.9 (d), 128.4 (d), 128.5 (d, C_{Ar}), 133.8 (d, CH=CH₂), 139.5 (s, C_{ar}) ppm. IR (film): \tilde{v} = 3424, 2931, 2861, 2800, 1637, 1603, 1493, 1450, 1413, 1311, 1122, 1051 cm⁻¹. MS (EI, 70 eV): m/z (%) = 244 (1) [M - 1]⁺, 215 (9), 214 (53), 205 (10), 204 (69), 92 (8), 91 (100), 65 (6), 55 (3). HRMS: calcd. for C₁₇H₂₄O₂N [M + H]⁺ 246.1852; found 246.1852.

(N-Benzyl-2-benzylpiperidin-2-yl)methanol (16d): Yield: 12% (global). ¹H NMR (400 MHz, CDCl₂): $\delta = 1.36-1.52$ (2 H), 1.58-1.74 (4 H, 3-H, 4-H and 5-H), 2.49 (ddd, J = 12.2, 12.2, 2.3 Hz, 1 H, 6-H), 2.70 (d, J = 13.2 Hz, 1 H, CH_2 Ph), 2.79 (m, 1 H, 6-H), 3.10 (d, J = 10.5 Hz, 1 H, CH₂OH), 3.18 (d, J = 13.2 Hz, 1 H, CH₂Ph), 3.22 (d, J = 13.5 Hz, 1 H, N-CH₂Ph), 3.90 (d, J = 10.5 Hz, 1 H, CH₂OH), 4.16 (d, J = 13.5 Hz, 1 H, N-CH₂Ph), 7.13–7.37 (10 H, H_{ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 20.6 (t), 25.9 (t), 29.1 (t, C-3, C-4, C-5), 32.9 (t, CH2Ph), 46.3 (t, C-6), 52.9 (t, N-CH₂Ph), 60.5 (s, C-2), 65.3 (t, CH₂OH), 126.3 (d), 127.0 (d), 128.2 (d), 128.5 (d), 128.6 (d), 130.1 (d), 137.7 (s), 139.4 (s, CAr) ppm. IR (film): $\tilde{v} = 3389$, 3028, 2931, 2853, 1492, 1448, 1305, 1127, 1037 cm⁻¹. MS (EI, 70 eV): m/z (%) = 277 (16), 264 (19) [M -CH₂OH]⁺, 263 (7), 205 (11), 204 (77), 186 (22), 92 (10), 91 (100), 65 (8). HRMS: calcd. for $C_{20}H_{26}ON \ [M + H]^+$ 296.2008; found 296.2008.

General Procedure for the Ring Expansion Induced by DAST: To a solution of prolinol (0.5 mmol) in THF or CH_2Cl_2 (5 mL), cooled to 0 °C, was added DAST (0.7 mmol, 1.4 equiv.) dropwise. After 1 h at 0 °C and 1 h at room temp., the reaction mixture was cooled to 0 °C and quenched with a saturated solution of NaHCO₃ (10 mL). The aqueous phase was extracted with AcOEt (2 × 20 mL). The organic phase was dried with Na₂SO₄, and the solvents were evaporated in vacuo.

(*R*)-*N*-Benzyl-3-fluoropiperidine (2)^{17gl} and (*S*)-*N*-Benzyl-2-fluoromethylpyrrolidine (3):^{17gl} Following the general procedure, prolinol $1^{[17]}$ {100 mg, 0.52 mmol, 1.0 equiv., $[a]_D^{20} = -57.4$ (c = 1.56, CHCl₃)} was treated with DAST (96 µL, 0.78 mmol, 1.4 equiv.) in THF (5 mL). After purification by flash chromatography on silica gel (cyclohexane/AcOEt, 95:5), fluoro compounds **2** and **3** (60 mg, 0.31 mmol, 60%) were obtained as an inseparable mixture. Data for a mixture of **2** + **3**: ¹H NMR (400 MHz, CDCl₃): $\delta = 1.46-1.98$ (4 H² and 4 H³, 4-H², 5-H², 3-H³, and 4-H³), 2.19–2.32 (1 H² and 1 H³, 5-H³ and 6-H²), 2.36 (ddd, J = 8.1, 7.0, 7.0 Hz, 1 H², 2-H), 2.49 (m, 1 H², 6-H), 2.78 (m, 1 H², 2-H), 2.88 (m, 1 H³, 2-H), 2.94 (m, 1 H³, 5-H), 3.48 (d, J = 13.1 Hz, 1 H³, CH₂-Ph), 3.54 (s, 2 H², *N*-CH₂-Ph), 4.03 (d, J = 13.1 Hz, 1 H³, CH₂-Ph), 4.20–4.40 (2 H³, $2'-H^3$, 4.60 (ddddd, $J = 48.1, 7.7, 7.7, 3.8, 3.8 \text{ Hz}, 1 \text{ H}^2, 3-\text{H}^2$), 7.20–7.27 (1 H² and 1 H³, H_{Ar}), 7.27–7.35 (4 H² and 4 H³, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.2 (dt, J = 8 Hz, C²-5), 23.1 (t, C³-4), 27.3 (dt, C³-3), 30.2 (dt, J = 19 Hz, C²-4), 52.9 (t, C³-5), 54.7 (t, C²-6), 57.6 (dt, J = 23 Hz, C²-2), 59.7 (t, CH_2^{-3} -Ph), 62.6 (dd, J = 20 Hz, C³-2), 62.9 (t, CH_2^2 -Ph), 86.1 (dt, J = 169 Hz, $C^{3}-2'$), 88.3 (dd, J = 170 Hz, $C^{2}-3$), 127.0 (d), 127.1 (d), 128.2 (d), 128.9 (d), 129.1 (d), 137.9 (s), 139.5 (s, C_{Ar}) ppm. IR (film): \tilde{v} = 3028, 2945, 2799, 1495, 1453, 1375, 1349, 1263, 1156, 1105, 1073, 1018, 988 cm⁻¹. Data for 2: MS (EI, 70 eV): m/z (%) = 193 (44) [M]^{+,} 192 (42), 172 (2), 160 (2), 146 (6), 132 (4), 117 (6), 116 (54), 102 (45), 92 (19), 91 (100), 89 (4), 73 (3), 65 (16), 55 (5), 51 (3). Data for 3: MS (EI, 70 eV): m/z (%) = 193 (13) [M]⁺⁻, 192 (9), 161 (9), 160 (65), 146 (2), 130 (2), 116 (14), 102 (10), 92 (11), 91 (100), 89 (3), 74 (3), 65 (13), 59 (2), 51 (3).

(3S,5R)-N-Benzyl-5-(tert-butyldimethylsilanyloxy)-3-fluoropiperidine (6) and (2R,4R)-N-Benzyl-4-(tert-butyldimethylsilanyloxy)-2fluoromethylpyrrolidine (7): Following the general procedure, prolinol 5^[21] {150 mg, 0.47 mmol, 1.0 equiv., $[a]_D^{20} = +42.3$ (c = 1.22, CHCl₃)} was treated with DAST (86 µL, 0.65 mmol, 1.4 equiv.) in THF (5 mL). After purification by flash chromatography on silica gel (cyclohexane/Et₂O, 98:2), fluoro compounds 6 and 7 were obtained as an inseparable mixture (100 mg, 0.31 mmol, 73%). Data for a mixture of 6+7: ¹H NMR (400 MHz, CDCl₃): $\delta = -0.03$ (3) H⁷, Si-Me), -0.01 (3 H⁷, Si-Me), 0.00 (3 H⁶, Si-Me), 0.02 (3 H⁶, Si-Me), 0.80–0.86 (9 H⁶ and 9 H⁷, tBu⁶ and tBu⁷), 1.10 (dd, J =14.8, 7.1 Hz, 1 H⁷, 3-H), 1.39 (m, 1 H⁶, 4-H), 1.60 (m, 1 H⁷, 3-H), 1.80-1.95 (2 H⁶, 4-H and 6-H), 2.15 (m, 1 H⁷, 5-H), 2.35 (m, 1 H⁶, 2-H), 2.48 (m, 1 H⁷, 5-H), 2.81-2.88 (1 H⁶ and 1 H⁷, 6-H⁶ and 2- H^{7}), 3.00 (m, 1 H^{7} , 4-H), 3.05 (m, 1 H^{6} , 2-H), 3.50 (d, J = 13.2 Hz, 1 H⁶, CH₂Ph), 3.53 (d, J = 13.5 Hz, 1 H⁷, CH₂Ph), 3.62 (d, J =13.2 Hz, 1 H⁶, CH_2Ph), 3.72 (m, 1 H⁶, 5-H), 4.01 (d, J = 13.6 Hz, 1 H⁷, CH₂Ph), 4.24–4.62 (1 H⁶ and 2 H⁷, 3-H⁶ and 2'-H⁷), 7.18– 7.34 (5 H⁶ and 5 H⁷, H_{Ar}) ppm. $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ = -4.8 (q, Si-Me⁷), -4.8 (q, Si-Me⁶), 18.1 (s, CMe₃⁶ and CMe₃⁷), 25.8 (q, CMe_3^6), 25.8 (q, CMe_3^7), 37.8 (dt, J = 5 Hz, C⁷-3), 41.1 $(dt, J = 18 \text{ Hz}, C^{6}-4), 56.6 (dt, J = 26 \text{ Hz}, C^{6}-2), 59.3 (t), 60.3 (t),$ 61.8 (dd, J = 61.8 Hz, C⁷-2), 62.1 (t), 62.3 (t), 66.3 (dd, J = 15 Hz, C⁶-5), 71.0 (d, C⁷-4), 86.6 (dt, J = 169 Hz, -C⁷-2'), 86.8 (dd, J =171 Hz, C⁶-3), 126.8 (d), 127.2 (d), 128.2 (d), 128.3 (d), 128.6 (d), 128.9 (d), 137.6 (s), 139.3 (s, C_{Ar}) ppm. IR (film): $\tilde{v} = 2954$, 2929, 2857, 1471, 1383, 1256, 1178, 1148, 1105, 1020 $\rm cm^{-1}.$ Data for 6:MS (EI, 70 eV): m/z (%) = 323 (2), 267 (7), 266 (35), 246 (5), 134 (11), 92 (9), 91 (100), 73 (9). Data for 7: m/z (%) = 323 (1), 291 (15), 290 (58), 266 (21), 158 (7), 92 (8), 91 (100), 74 (8), 73 (8).

(3R,5R)-N-Benzyl-5-(tert-butyldimethylsilanyloxy)-3-fluoropiperidine (9a) and (2S,4R)-N-Benzyl-4-(tert-butyldimethylsilanyloxy)-2fluoromethylpyrrolidine (10a): Following the general procedure, prolinol 8a^[15m] {500 mg, 1.56 mmol, 1.0 equiv., $[a]_{D}^{20} = -51.1$ (c = 1.14, CHCl₃) was treated with DAST (245 μ L, 2.18 mmol, 1.4 equiv.) in THF (15 mL). After purification by preparative TLC on silica gel (cyclohexane/AcOEt, 95:5), fluoropiperidine 9a (265 mg, 0.82 mmol, 53%) and fluoromethylpyrrolidine 10a (39 mg, 0.12 mmol, 8%) were isolated as a white solid and a yellow oil, respectively. Data for 9a: M.p. 43 °C. $[a]_{D}^{20} = -6.7$ (c = 0.135, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.01$ (s, 3 H, Si-Me), 0.03 (s, 3 H, Si-Me), 0.83 (s, 9 H, tBu), 1.51 (m, 1 H, 4-H), 1.99-2.29 (m, 3 H, 2-H, 4-H and 6-H), 2.79-2.92 (m, 2 H, 2-H and 6-H), 3.52 (d, J = 13.4 Hz, 1 H, CH_2 Ph), 3.64 (d, J = 13.4 Hz, 1 H, CH_2Ph), 4.06 (dddd, J = 9.5, 9.5, 4.5, 4.5 Hz, 1 H, 5-H), 4.80 (dm, $J = 47.2 \text{ Hz}, 1 \text{ H}, 3 \text{-H}), 7.15 \text{--} 7.40 (5 \text{ H}, \text{H}_{\text{Ar}}) \text{ ppm}.$ ¹³C NMR (100 MHz, CDCl₃): $\delta = -4.8$ (q, Si-Me), -4.8 (q, Si-Me), 18.1 (s, Si-CMe₃), 25.8 (q, Si-CMe₃), 38.8 (dt, J = 20.2 Hz, C-4), 56.1 (dt, J = 20.2 Hz, C-2), 60.2 (t, C-6), 62.3 (t, CH₂Ph), 65.1 (d, C-5), 87.9 (dd, J = 171.2 Hz, C-3), 127.1 (d), 128.2 (d), 129.0 (d), 137.5 (s) C_{Ar}) ppm. IR (neat): $\tilde{v} = 2921$, 1460, 1252, 1153, 1090 cm⁻¹. MS (EI, 70 eV): m/z (%) = 323 (2) [M]⁺⁺, 308 (3), 266 (31), 246 (4), 191 (4), 134 (11), 92 (9), 91 (100), 75 (4), 73 (10). HRMS: calcd. for $C_{18}H_{31}NFOSi [M + H]^+$ 324.2154; found 324.2151. Data for 10a: $[a]_{D}^{20} = -16.8 \ (c = 0.62, \text{ CHCl}_3).$ ¹H NMR (400 MHz, CDCl₃): $\delta =$ 0.00 (s, 6 H, SiMe), 0.85 (s, 9 H, tBu), 1.81-1.88 (2 H, 3-H), 2.30 (m, 1 H, 5-H), 3.06–3.20 (2 H, 2-H and 5 H), 3.52 (m, 1 H, CH₂Ph), 4.00 (m, 1 H, CH₂Ph), 4.21–4.38 (3 H, 4-H, 2'-H), 7.19–7.32 (5 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = -4.8$ (q, SiMe), 18.0 (s, CMe_3), 25.8 (q, CMe_3), 37.5 (dt, J = 4 Hz, C-3), 59.9 (t, CH_2Ph), 61.8 (dd, J = 19 Hz, C-2), 62.5 (t, C-5), 70.3 (d, C-4), 85.8 (dt, J = 169 Hz, C-2'), 127.0 (d), 128.3 (d), 128.8 (d), 139.3 (s, CAr) ppm. IR (film): $\tilde{v} = 2954, 2929, 2857, 1471, 1455, 1381, 1255, 1119, 1030,$ 1008, 913 cm⁻¹. MS (EI, 70 eV): m/z (%) = 308 (3), 292 (6), 291 $(24), 290 (100) [M - CH_2F]^+, 266 (8), 158 (11), 92 (6), 91 (86), 75$ (12), 74 (14), 56 (8). HRMS: calcd. for $C_{18}H_{31}NFOSi [M + H]^+$ 324.2154; found 324.2154.

(3S,4S)-N-Benzyl-4-(tert-butyldimethylsilanyloxy)-3-fluoropiperidine (9b) and (2S,3S)-N-Benzyl-3-(tert-butyldimethylsilanyloxy)-2fluoromethylpyrrolidine (10b): Following the general procedure, prolinol **8b**^[19] {24 mg, 0.07 mmol, 1.0 equiv., $[a]_{D}^{20} = -9.3$ (c = 1.22, CHCl₃) was treated with DAST (15 μ L, 0.10 mmol, 1.4 equiv.) in THF (5 mL). After purification by flash chromatography on silica gel (cyclohexane/AcOEt, 95:5), fluoro compounds 9b and 10b were obtained as an inseparable mixture (12 mg, 0.38 mmol, 55%). Data for a mixture of **9b** + **10b**: ¹H NMR (400 MHz, CDCl₃): $\delta = -0.01-$ 0.02 (6 H^{9b} and 6 H^{10b}, Si-Me^{9b} and Si-Me^{10b}), 0.81-0.84 (9 H^{9b} and 9 H^{10b}, tBu^{9b} and tBu^{10b}), 1.49–1.64 (1 H^{9b} and 1 H^{10b}, 5-H^{9b} and 4-H^{10b}), 1.76-1.88 (1 H^{9b} and 1 H^{10b}, 5-H^{9b} and 4-H^{10b}), 2.06 $(ddd, J = 10.8, 10.8, 3.0 \text{ Hz}, 1 \text{ H}^{9b}, 6\text{-H}), 2.16 (m, 1 \text{ H}^{9b}, 2\text{-H}), 2.54$ (m, 1 H^{10b}, 5-H), 2.69–2.58 (1 H^{9b} and 1 H^{10b}, 6-H^{9b} and 2-H^{10b}), 2.83 (m, 1 H^{10b}, 5-H), 2.91 (m, 1 H^{9b}, 2-H), 3.46 (d, J = 13.1 Hz, 1 H^{9b}, CH₂Ph), 3.49 (d, J = 13.1 Hz, 1 H^{9b}, CH₂Ph), 3.52 (d, J =13.1 Hz, 1 H^{10b}, CH₂Ph), 3.58 (m, 1 H^{9b}, 4-H), 3.93 (d, J = 13.1 Hz, 1 H^{10b}, CH₂Ph), 4.37–4.08 (1 H^{9b} and 3 H^{10b}, 3-H^{9b}, 3-H^{10b} and 2'-H^{10b}), 7.15–7.29 (5 H^{9b} and 5 H^{10b}, H_{Ar}) ppm. 13 C NMR (100 MHz, CDCl₃): δ = -4.8 (q), -4.7 (q), -4.7 (q), -4.6 (q, Si-Me^{9b} and Si-Me^{10b}), 18.0 (s), 18.1 (s, CMe₃^{9b} and CMe₃^{10b}), 25.8 (q, CMe_3^{9b} and CMe_3^{10b}), 32.0 (t, C^{9b} -5), 33.5 (t, C^{10b} -4), 50.3 (t, C^{9b}-6), 51.9 (t, C^{10b}-5), 54.8 (dt, J = 23 Hz, C^{9b}-2), 59.9 (t, CH_2^{10b} -Ph), 62.4 (t, CH_2^{9b} -Ph), 70.4 (d, C^{10b} -2), 72.0 (dd, J = 19 Hz, C^{9b} -4), 73.8 (d, C^{10b}-3), 83.4 (dt, J = 171 Hz, C^{10b}-2'), 91.9 (dd, J =171 Hz, C^{9b}-3), 127.0 (d), 127.1 (d), 127.9 (d), 128.3 (d), 128.9 (d), 129.0 (d), 138.0 (s), 139.3 (s, C_{Ar}) ppm. IR (film): $\tilde{v} = 3057, 2935$, 1596, 1490, 1448, 1375, 1213, 1185, 1070, 1035, 1004 cm⁻¹. Data for **9b**: MS (EI, 70 eV): m/z (%) = 323 (4) [M]⁺⁻, 302 (4), 290 (4), 267 (10), 266 (48), 232 (9), 172 (8), 147 (12), 92 (9), 91 (100), 77 (8), 75 (5). Data for **10b**: MS (EI, 70 eV): m/z (%) = 323 (3) [M]⁺⁻, 291 (14), 290 (58), 267 (7), 266 (30), 232 (7), 172 (6), 147 (9), 92 (9), 91 (100), 77 (8), 75 (8), 74 (13), 75 (6).

(3*R*,5*R*)-*N*-Benzyl-3-fluoro-5-methoxypiperidine (9c) and (2*S*,4*S*)-*N*-Benzyl-2-fluoromethyl-4-methoxypyrrolidine (10c): Following the general procedure, prolinol 8c {11 mg, 0.05 mmol, 1.0 equiv., $[a]_D^{20}$ = +33.5 (*c* = 1.34, CHCl₃)} was treated with DAST (9 µL, 0.07 mmol, 1.4 equiv.) in THF (3 mL). After purification by flash chromatography on silica gel (cyclohexane/AcOEt, 95:5), fluoro compounds 9c and 10c were obtained as an inseparable mixture (6 mg, 0.03 mmol, 55%). Data for a mixture of 9c + 10c: ¹H NMR (400 MHz, CDCl₃): δ = 1.57–1.70 (1 H^{9c} and 1 H^{10c}, 4-H^{9c} and 3-

 H^{10c}), 1.83 (dd, J = 10.3, 9.7 Hz, 1 H^{9c} , 6-H), 2.00 (ddd, J = 9.9, 9.9, 5.4 Hz, 1 H^{9c}, 4-H), 2.15 (m, 1 H^{10c}, 3-H), 2.30 (dd, J = 10.8, 5.2 Hz, 1 H^{10c}, 5-H), 2.43 (m, 1 H^{10c}, 5-H), 2.80-3.03 (1 H^{10c} and 3 H^{9c}, 2-H^{9c}, 6-H^{9c} and 2-H^{10c}), 3.17 (s, 3 H^{10c}, OMe), 3.22-3.31 (4 H^{9c}, 5-H^{9c} and OMe^{9c}), 3.41 (d, J = 13.3 Hz, 1 H^{10c}, CH₂Ph), 3.51 (d, J = 13.2 Hz, 1 H⁹c, CH₂Ph), 3.56 (d, J = 13.2 Hz, 1 H⁹c, CH₂Ph), 3.75 (m, 1 H^{10c}, 4-H), 4.00 (d, J = 13.3 Hz, 1 H^{10c}, CH_2Ph), 4.32 (ddd, J = 47.4, 9.4, 5.3 Hz, 1 H^{10c}, 2'-H), 4.38 (m, 1 H^{10c} , 2'-H), 4.51 (dm, J = 48.8 Hz, 1 H^{9c}, 3-H), 7.14–7.29 (5 H^{9c} and 5 H^{10c}, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 33.2 (t, C^{10c} -3), 36.0 (dt, J = 18 Hz, C^{9c} -4), 55.5 (q, OMe^{9c} and OMe^{10c}), 55.7 (t, C^{10c}-5 or C^{9c}-6), 55.8 (dt, J = 14 Hz, C^{9c}-2), 56.1 (t, C^{10c}-5 or C^{9c}-6), 58.1 (t, CH_2^{10c} -Ph), 60.8 (dd, J = 20 Hz, C^{10c}-2), 61.3 (t, CH_2^{9c} -Ph), 73.2 (dd, J = 13 Hz, C^{9c} -5), 78.3 (d, C^{10c} -4), 85.9 (dt, J = 169 Hz, C^{10c}-2'), 85.8 (dd, J = 172 Hz, C^{9c}-3), 126.0 (d), 126.3 (d), 127.2 (d), 127.3 (d), 127.9 (d), 128.0 (d), 136.5 (s), 137.6 (s) (C_{Ar}) ppm. IR (film): $\tilde{v} = 2944$, 2818, 1495, 1454, 1381, 1263, 1179, 1149, 1102, 1028 cm⁻¹. MS (EI, 70 eV): m/z (%) = 223 (5) $[M]^{+}$, 222 (4), 208 (4), 193 (6), 190 (13), 178 (6), 146 (7), 134 (8), 132 (7), 120 (9), 92 (10), 91 (100), 65 (10).

(3R,5R)-N-Benzyl-3-fluoro-5-trityloxypiperidine (9d) and (2S,4R)-N-Benzyl-4-trityloxy-2-fluoromethylpyrrolidine (10d): Following the general procedure, prolinol 8d {134 mg, 0.30 mmol, 1.0 equiv., $[a]_{D}^{20} = -14.4$ (c = 0.65, CHCl₃) was treated with DAST (56 µL, 0.42 mmol, 1.4 equiv.) in CH₂Cl₂ (10 mL). After purification by preparative TLC on silica gel (cyclohexane/AcOEt, 95:5), fluoropiperidine 9d (40 mg, 0.09 mmol, 33%) and fluoromethylpyrrolidine **10d** (9 mg, 0.02 mmol, 5%) were isolated. Data for **9d**: $[a]_{D}^{20} = +26.5$ $(c = 0.26, \text{CHCl}_3)$. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.34$ (m, 1 H, 4-H), 1.45 (m, 1 H, 4-H), 1.59 (m, 1 H, 6-H), 2.06 (m, 1 H, 6-H), 2.19 (ddd, J = 32.1, 12.5, 2.0 Hz, 1 H, 2-H), 2.66 (ddd, J = 11.5, 11.5, 4.0 Hz, 1 H, 2-H), 3.30 (s, 2 H, CH_2Ph), 3.89 (dddd, J = 8.0, 8.0, 4.0, 4.0 Hz, 1 H, 5-H), 4.66 (dm, J = 46.8 Hz, 1 H, 3-H), 7.09-7.24 (14 H, H_{Ar}), 7.34–7.41 (6 H, H_{Ar}) ppm. $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ = 36.8 (dt, J = 20 Hz, C-4), 56.3 (dt, J = 21 Hz, C-2), 58.2 (t), 62.2 (t, C-6 and CH₂Ph), 66.9 (d, C-5), 77.3 (s, CPh₃), 87.9 (dd, J = 175 Hz, C-3), 127.0 (d), 127.8 (d), 128.2 (d), 128.7 (d),128.8 (d), 129.0 (d), 137.6 (s), 144.9 (s) (C_{Ar}) ppm. IR (film): $\tilde{\nu}$ = 2921, 2852, 1597, 1491, 1448, 1151, 1059, 1029 cm⁻¹. MS (CI, CH₄): m/z (%) = 452 (100) [M + H]⁺, 432 (20), 271 (9), 244 (23), 244 (86), 210 (19), 208 (14), 192 (28), 167 (17), 127 (9). HRMS: calcd. for $C_{31}H_{31}NFO [M + H]^+$ 452.2390; found 452.2392. Data for 10d: $[a]_{D}^{20} = -40.7$ (c = 0.27, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.54–1.66 (2 H, 3-H), 2.14 (dd, J = 9.7, 6.9 Hz, 1 H, 5-H), 2.50 (dd, J = 9.7, 6.2 Hz, 1 H, 5-H), 2.96 (m, 1 H, 2-H), 3.38 $(d, J = 13.0 \text{ Hz}, 1 \text{ H}, CH_2\text{Ph}), 3.92 (d, J = 13.0 \text{ Hz}, 1 \text{ H}, CH_2\text{Ph}),$ 4.06–4.26 (3 H, 4-H and 2'-H), 7.15–7.30 (14 H, H_{Ar}), 7.40–7.48 (6 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 34.9 (dt, J = 5 Hz, C-3), 59.2 (t), 60.3 (t, C-5 and CH_2Ph), 61.3 (dd, J = 19 Hz, C-2), 71.9 (d, C-4), 85.6 (dt, J = 169 Hz, C-2'), 87.1 (s, CPh₃), 126.9 (d), 127.0 (d), 127.8 (d), 128.1 (d), 128.7 (d), 128.9 (d), 138.7 (s), 144.8 (s, C_{Ar}) ppm. IR (film): $\tilde{v} = 3059$, 3028, 2942, 2799, 1597, 1492, 1449, 1379, 1219, 1153, 1058, 1029 cm⁻¹. HRMS: calcd. for $C_{31}H_{31}NFO [M + H]^+ 452.2384$; found 452.2384.

(3*R*,5*R*)-*N*-Benzyl-3-fluoro-5-triisopropylsilanyloxypiperidine (9e) and (2*S*,4*R*)-*N*-Benzyl-4-triisopropylsilanyloxy-2-fluoromethylpyrrolidine (10e): Following the general procedure, prolinol 8e^[15m] {232 mg, 0.64 mmol, 1.0 equiv., $[a]_D^{20} = -26.4$ (c = 0.73, CHCl₃)} was treated with DAST (116 µL, 0.89 mmol, 1.4 equiv.) in CH₂Cl₂ (10 mL). After purification by preparative TLC on silica gel (cyclohexane/Et₂O, 90:10), fluoropiperidine 9e (175 mg, 0.48 mmol, 75%) and fluoromethylpyrrolidine 10e (21 mg, 0.06 mmol, 9%) were isolated. Data for 9e: $[a]_D^{20} = +16.5$ (c = 1.20, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95-1.09$ (21 H, CHMe₃ and CHMe₃), 1.53 (m, 1 H, 4-H), 2.02 (dd, J = 9.6, 9.6 Hz, 1 H, 6-H), 2.16–2.32 (2 H, 2-H and 4-H), 2.87–2.96 (2 H, 2-H and 6-H), 3.60 (s, 2 H, CH_2 Ph), 4.16 (dddd, J = 8.9, 8.9, 4.3, 4.3 Hz, 1 H, 5-H), 4.84 (dm, J = 47.5 Hz, 1 H, 3-H), 7.22–7.34 (5 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 12.2 (d, CHMe₃), 18.0 (q, CH-Me), 39.1 (dt, J = 20 Hz, C-4), 56.1 (dt, J = 20 Hz, C-2), 60.4 (t, C-6), 62.3 (t, CH_2Ph), 65.1 (d, C-5), 88.0 (dd, J = 170 Hz, C-3), 127.1 (d), 128.2 (d), 129.1 (d), 137.6 (s, C_{Ar}) ppm. IR (film): $\tilde{v} = 2942$, 2865, 2800, 1462, 1383, 1248, 1155, 1102, 1068, 975 cm⁻¹. MS (EI, 70 eV): m/z (%) = 365 (10) [M]⁺⁻, 322 (48), 192 (14), 172 (6), 134 (8), 120 (5), 92 (9), 91 (100). HRMS: calcd. for $C_{28}H_{35}NFOSi [M + H]^+$, 366.2623; found 366.2623. Data for **10e**: $[a]_D^{20} = -40.7$ (c = 0.27, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.01–1.04 (21 H, $CHMe_3$ and $CHMe_3$), 1.88–1.93 (2 H, 3-H), 2.38 (dd, J = 9.8, 5.5 Hz, 1 H, 5-H), 3.11-3.24 (2 H, 2-H and 5-H), 3.57 (d, J =13.2 Hz, 1 H, CH_2Ph), 4.03 (d, J = 13.2 Hz, 1 H, CH_2Ph), 4.24– 4.43 (3 H, 4-H, 2'-H), 7.21–7.34 (5 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 11.9 (d, CHMe₃), 17.8 (q, CHMe₃), 37.8 $(dt, J = 5 Hz, C-3), 59.8 (t, CH_2Ph), 61.7 (dd, J = 19 Hz, C-2),$ 62.8 (t, C-5), 70.4 (d, C-4), 85.7 (dt, J = 170 Hz, C-2'), 126.8 (d), 128.2 (d), 128.7 (d), 139.1 (s, C_{Ar}) ppm. IR (film): $\tilde{v} = 2942$, 2865, 1495, 1463, 1382, 1246, 1119, 1053, 1013 cm⁻¹. MS (EI, 70 eV): m/z (%) = 365 (3) [M]⁺⁺, 333 (6), 332 (25), 323 (8), 322 (27), 192 (9), 134 (6), 92 (8), 91 (100), 77 (5), 75 (6). HRMS: calcd. for C₁₃H₂₅NF [M + H]⁺ 366.2620; found 366.2620.

(3R,5R)-N-Benzyl-3-(*tert*-butyldiphenylsilanyloxy)-5-fluoropiperidine (9f) and (2S,4R)-N-Benzyl-4-(tert-butyldiphenylsilanyloxy)-2fluoromethylpyrrolidine (10f): Following the general procedure, prolinol **8f**^[15m] {129 mg, 0.29 mmol, 1.0 equiv., $[a]_D^{20} = -6.8$ (c = 0.81, CHCl₃) was treated with DAST (57 μ L, 0.41 mmol, 1.4 equiv.) in THF (10 mL). After purification by preparative TLC on silica gel (cyclohexane/AcOEt, 90:10), fluoropiperidine 9f (78 mg, 0.18 mmol, 61%) and fluoromethylpyrrolidine **10f** (6 mg, 0.013 mmol, 4%) were isolated. Data for 9f: $[a]_{D}^{20} = +37.6$ (c = 0.35, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.04$ (s, 9 H, tBu), 1.67 (m, 1 H, 4-H), 1.98 (m, 1 H, 4-H), 2.15 (m, 1 H, 6-H), 2.40 (ddd, J = 29.1, 12.1, 2.0 Hz, 1 H, 2-H), 2.58–2.74 (m, 2 H, 2-H and 6-H), 3.50 (s, 2 H, CH_2Ph), 4.13 (dddd, J = 8.0, 8.0, 4.0, 4.0 Hz, 1 H, 5-H), 4.83 (ddddd, J = 47.7, 5.0, 5.0, 2.5, 2.5 Hz, 1 H, 3-H), 7.21-7.43 (11 H, H_{Ar}), 7.65-7.58 (4 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.2 (s, CMe₃), 27.0 (q, CMe₃), 38.5 (dd, J = 20 Hz, C-4), 56.3 (dt, J = 21 Hz, C-2), 59.6 (t, C-6), 62.2 (t, *C*H₂Ph), 66.2 (dd, *J* = 3 Hz, C-5), 87.7 (dd, *J* = 170 Hz, C-3), 127.1 (d), 127.6 (d), 127.7 (d), 128.2 (d), 129.0 (d), 129.6 (d), 129.7 (d), 134.2 (s), 134.0 (s), 135.7 (d), 137.6 (s, C_{Ar}) ppm. IR (film): \tilde{v} = 3069, 2930, 2856, 2800, 1588, 1471, 1427, 1360, 1154, 1105, 1027 cm⁻¹. MS (EI, 70 eV): m/z (%) = 447 (1) [M]⁺⁺, 392 (7), 391 (27), 390 (82), 201 (8), 199 (10), 192 (7), 191 (6), 183 (9), 181 (6), 170 (5), 135 (7), 92 (8), 91 (100). HRMS: calcd. for C₂₈H₃₅NFOSi $[M + H]^+$ 448.2472; found 448.2473. Data for **10f**: $[a]_D^{20} = -3.2$ (c = 0.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.05 (s, 9 H, CMe_3), 1.68 (m, 1 H, 3-H), 1.92 (ddd, J = 12.8, 8.2, 4.4 Hz, 1 H, 3-H), 2.48 (dd, J = 10.0, 5.0 Hz, 1 H, 5-H), 3.03 (dd, J = 10.0, 5.5 Hz, 1 H, 5-H), 3.22 (m, 1 H, 2-H), 3.60 (d, J = 13.2 Hz, 1 H, CH_2Ph), 4.02 (d, J = 13.2 Hz, 1 H, CH_2Ph), 4.14–4.36 (3 H, 4-H, 2'-H), 7.20–7.44 (12 H, H_{Ar}), 7.57–7.65 (3 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.1 (s, CMe₃), 26.9 (q, CMe₃), 37.4 (dt, J = 5 Hz, C-3), 59.9 (t, CH₂Ph), 61.8 (dd, J = 19 Hz, C-2), 62.3 (t, C-5), 71.4 (d, C-4), 85.9 (dt, J = 169 Hz, C-2'), 127.0 (d), 127.6 (d), 128.2 (d), 128.8 (d), 129.7 (d), 134.0 (s), 133.9 (s), 135.7 (d, C_{Ar}) ppm. IR (film): $\tilde{v} = 3070, 2930, 2856, 1472, 1428, 1380, 1112,$ 1009 cm^{-1} . MS (EI, 70 eV): m/z (%) = 447 (1) [M]⁺⁺, 392 (5), 391

448.2470.

(20), 390 (67), 201 (11), 199 (14), 192 (6), 191 (5), 135 (7), 92 (8), 1.4 equi 91 (100). HRMS: calcd. for $C_{13}H_{25}NF$ [M + H]⁺ 448.2470; found ropiper

(R)-N-(2,2-Dimethylpropyl)-3-fluoropiperidine (12a) and (S)-N-(2,2-Dimethylpropyl)-2-fluoromethylpyrrolidine (13a): Following the general procedure, prolinol **11a** {55 mg, 0.32 mmol, 1.0 equiv., $[a]_{D}^{20}$ = -48.2 (c = 0.57, CHCl₃)} was treated with DAST (59 µL, 0.48 mmol, 1.4 equiv.) in THF (5 mL). After purification by flash chromatography on silica gel (cyclohexane/AcOEt, 95:5), fluoro compounds 12a and 13a were obtained as an inseparable mixture (30 mg, 0.17 mmol, 54%). Data for a mixture of **12a + 13a**: ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (s, 9 H^{12a}, CMe₃), 0.88 (s, 9 H^{13a}, CMe₃), 1.39–1.95 (4 H^{12a} and 4 H^{13a}, 4-H^{12a}, 5-H^{12a}, 3-H^{13a}, 4-H^{13a}), 2.06 (s, 2 H^{12a}, CH₂tBu), 2.26 (d, J = 13.5 Hz, 1 H^{13a}, CH₂tBu), 2.26–2.37 (1 H^{12a} and 1 H^{13a}), 2.43 (m, 1 H^{12a}, 2-H^{12a}, 6-H^{12a} and 5-H^{13a}), 2.47 (d, J = 13.5 Hz, 1 H^{13a}, CH₂tBu), 2.53 (m, 1 H^{12a}, CH₂tBu), 2.79 (m, 1 H^{13a}, 5-H), 2.88 (m, 1 H^{12a}, 2-H), 3.20 (m, 1 H^{13a}, 2-H), 4.18 (ddd, J = 47.9, 9.0, 6.2 Hz, 1 H^{13a}, 2'-H), 4.33 (ddd, J = 47.5, 9.0, 4.9 Hz, 1 H^{13a}, 2'-H), 4.56 (ddddd, J =48.8, 12.3, 4.1, 4.1, 4.1 Hz, 1 H^{12a}, 3-H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.4$ (dt, J = 8 Hz, C^{12a}-5), 24.1 (t, C^{13a}-4), 27.3 (dt, J = 6 Hz, C^{13a}-3), 27.6 (q, CMe₃^{12a}), 28.4 (q, CMe₃^{13a}), 30.1 (dt, J = 19 Hz, C^{12a} -4), 32.7 (s, CMe_3^{13a}), 33.2 (s, CMe_3^{12a}), 42.3 (t, C^{13a} -5), 55.6 (t, C^{12a}-6), 58.1 (t, $CH_2^{13a}tBu$), 60.6 (dt, J = 23 Hz, C^{12a}-2), 65.6 (dd, J = 20 Hz, C^{13a}-2), 69.7 (t, $CH_2^{12a}tBu$), 86.1 (dt, J =169 Hz, C^{13a}-2'), 88.8 (dd, J = 170 Hz, C^{12a}-3) ppm. IR (film): $\tilde{v} =$ 2951, 2927, 2856, 1465, 1360, 1261, 1206, 1152, 1104, 1027 cm⁻¹. Data for **12a**: MS (EI, 70 eV): m/z (%) = 173 (2) [M]⁺⁻, 158 (9), 117 (7), 116 (100), 96 (4), 73 (3), 55 (4). Data for 13a: MS (EI, 70 eV): m/z (%) = 173 (3) [M]⁺⁻, 158 (10), 117 (7), 116 (100), 110 (2), 102 (3), 96 (2), 70 (3), 55 (4).

(R)-N-Benzhydryl-3-fluoropiperidine (12b) and (S)-N-Benzhydryl-2fluoromethylpyrrolidine (13b): Following the general procedure, prolinol **11b** {80 mg, 0.30 mmol, 1.0 equiv., $[a]_D^{20} = +28.9$ (c = 0.28, CHCl₃)} was treated with DAST (55 µL, 0.41 mmol, 1.4 equiv.) in CH₂Cl₂ (5 mL). After purification by flash chromatography on silica gel (cyclohexane/AcOEt, 95:5), fluoro compounds 12b and 13b were obtained as an inseparable mixture (57 mg, 0.21 mmol, 71%). Data for a mixture of 12b + 13b: ¹H NMR (400 MHz, CDCl₃): $\delta =$ 1.47-1.95 (4 H^{12b} and 4 H^{13b}, 4-H^{12b}, 5-H^{12b}, 3-H^{13b} and 4-H^{13b}), 2.16 (m, 1 H12b, 6-H), 2.26-2.41 (1 H12b and 1 H13b, 2-H12b and 5-H^{13b}), 2.45 (m, 1 H^{12b}, 6-H), 2.74 (m, 1 H^{12b}, 2-H), 2.92 (m, 1 H^{13b}, 5-H), 3.11 (m, 1 H^{13b}, 2-H), 3.98 (ddd, J = 47.3, 8.9, 4.7 Hz, 1 H^{13b}, 2'-H), 4.02 (ddd, J = 47.9, 8.9, 7.1 Hz, 1 H^{13b}, 2'-H), 4.34 (s, 1 H^{12b} , $CHPh_2$), 4.63 (ddddd, $J = 48.2, 7.7, 7.7, 3.8, 3.8 Hz, 1 H^{12b}$, 3-H), 4.74 (s, 1 H^{13b}, CHPh₂), 7.14–7.44 (10 H^{12b} and 10 H^{13b}, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.4 (dt, J = 7 Hz, C^{12b}-5), 23.6 (t, C^{13b}-4), 27.6 (t, C^{13b}-3), 30.5 (dt, J = 21 Hz, C^{12b}-4), 51.6 (t, C^{12b} -6), 53.0 (t, C^{13b} -5), 56.2 (dt, J = 24 Hz, C^{12b} -2), 60.1 $(dd, J = 24 \text{ Hz}, C^{13b}-2), 73.4 (d, CH^{13b}Ph_2), 75.7 (d, CH^{12b}Ph_2),$ 85.5 (dt, J = 169 Hz, $-C^{13b}-2'$), 88.7 (dd, J = 170 Hz, $C^{12b}-3$), 126.9 (d), 127.0 (d), 127.2 (d), 128.0 (d), 128.3 (d), 128.5 (d), 142.3 (s), 142.4 (s, C_{Ar}) ppm. IR (film): $\tilde{v} = 3060, 3025, 2944, 2801, 1598,$ 1491, 1451, 1336, 1304, 1263, 1187, 1154, 1106, 1074, 1015 cm⁻¹. Data for **12b**: MS (EI, 70 eV): m/z (%) = 269 (19) $[M]^{+}$, 193 (11), 192 (78), 168 (18), 167 (100), 166 (12), 165 (35), 152 (18), 102 (6), 91 (4). Data for 13b: MS (EI, 70 eV): m/z (%) = 269 (6) [M]⁺⁻, 236 (18), 193 (5), 192 (34), 168 (17), 167 (100), 166 (9), 165 (29), 152 (15), 91 (4).

(*R*)-*N*-**Trityl-3-fluoropiperidine (12c):** Following the general procedure, prolinol **11c** {1.11 g, 3.2 mmol, 1.0 equiv., $[a]_D^{20} = +40.0$ (*c* = 1.31, CHCl₃)} was treated with DAST (480 µL, 3.6 mmol,

1.4 equiv.) in THF (15 mL). After recrystallization (CH₂Cl₂), fluoropiperidine **12c** (706 mg, 2.0 mmol, 64%) was isolated as a white solid. M.p. 179 °C (CH₂Cl₂). $[a]_D^{20} = +7.6$ (c = 0.23, CHCl₃). ¹H NMR (400 MHz, [D₆]DMSO, 100 °C): $\delta = 1.49$ (m, 1 H), 1.66 (m, 1 H), 1.72–1.93 (2 H), 2.03 (m, 1 H, 4-H, 5-H and 6-H), 2.14–2.29 (2 H, 2-H and 6-H), 2.54 (m, 1 H, 2-H), 4.83 (dddd, J = 48.7, 7.1, 7.1, 3.5, 3.5 Hz, 1 H, 3-H), 7.18 (t, J = 7.3 Hz, 3 H, H_{Ar}), 7.30 (t, J = 7.7 Hz, 6 H, H_{Ar}), 7.43 (d, J = 7.9 Hz, 6 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, [D₆]DMSO, 100 °C): $\delta = 22.4$ (dt, J = 6 Hz, C-5), 29.0 (dt, J = 20 Hz, C-4), 48.7 (t, C-6), 53.2 (dt, J = 23 Hz, C-2), 77.3 (s, CPh₃), 87.9 (dd, J = 172 Hz, C-3), 126.5 (d), 128.0 (d), 129.3 (d), 142.7 (s) ppm. IR (neat): $\tilde{v} = 2932$, 1594, 1486, 1447, 1183, 1065, 1031, 1003, 971 cm⁻¹. HRMS: calcd. for C₂₄H₂₄NFNa [M + Na]⁺ 368.1785; found 368.1785.

(R)-N-(2,2-Dimethylpropyl)-3-ethyl-3-fluoropiperidine (15a): Following the general procedure, prolinol 14a {256 mg, 1.29 mmol, 1.0 equiv., $[a]_{D}^{20} = -31.7$ (c = 1.23, CHCl₃)} was treated with DAST (236 µL, 1.80 mmol, 1.4 equiv.) in CH₂Cl₂ (15 mL). After purification by flash chromatography (pentane/Et₂O, 95:5), fluoropiperidine 15a (196 mg, 0.975 mmol, 76%) was isolated as a colourless oil. $[a]_{D}^{20} = +12.6$ (c = 1.42, CHCl₃). ¹H NMR (400 MHz, CHCl₃): $\delta = 0.88$ (s, 9 H, CCH₃), 0.93 (t, J = 7.5 Hz, 3 H, CH₂CH₃), 1.65– 1.43 (3 H, 4-H and 5-H), 1.66–1.79 (3 H, 5-H, CH₂CH₃), 2.02 (d, J = 13.7 Hz, 1 H, CH_2tBu), 2.07 (d, J = 13.8 Hz, 1 H, CH_2tBu), 2.41–2.55 (4 H, 2-H and 6-H) ppm. ¹³C NMR (100 MHz, CHCl₃): δ = 7.0 (dq, J = 4 Hz, CH₂CH₃), 22.9 (t, C-5), 27.7 (q, CCH₃), 29.8 $(dt, J = 23.0 \text{ Hz}, CH_2CH_3), 32.7 (dt, J = 22.0 \text{ Hz}, C-4), 33.2 (s, C-4), C-4)$ *C*CH₃), 56.1 (t, C-6), 63.5 (dt, *J* = 24.0 Hz, C-2), 69.8 (t, *C*H₂*t*Bu), 94.8 (ds, J = 171.0 Hz, C-3) ppm. IR (film): $\tilde{v} = 2948$, 2865, 2792, 1463, 1359, 1126 cm⁻¹. MS (EI, 70 eV): m/z (%) = 201 (1) [M]⁺⁺, 186 (7), 145 (10), 144 (100), 124 (12), 116 (2), 102 (3), 55 (4). HRMS: calcd. for $C_{12}H_{25}NF [M + H]^+ 202.1971$; found 202.1957.

(S)-N-(2,2-Dimethylpropyl)-3-allyl-3-fluoropiperidine (15b): Following the general procedure, prolinol 14b {256 mg, 1.21 mmol, 1.0 equiv., $[a]_{D}^{20} = -7.9$ (c = 1.02, CHCl₃) was treated with DAST (220 µL, 1.70 mmol, 1.4 equiv.) in CH₂Cl₂ (10 mL). After purification by flash chromatography (pentane/Et₂O, 95:5), fluoropiperidine 15b (229 mg, 1.05 mmol, 89%) was isolated as a colourless oil. $[a]_{D}^{20} = +11.6 \ (c = 1.65, CHCl_3).$ ¹H NMR (400 MHz, CDCl₃): $\delta =$ 0.86 (9 H, CCH₃), 1.49 (m, 1 H, 5-H), 1.56-1.62 (2 H, 4-H), 1.71 (m, 1 H, 5-H), 2.03 (d, J = 14.8 Hz, 1 H, CH_2tBu), 2.07 (d, J =14.8 Hz, 1 H, CH₂tBu), 2.38–2.54 (6 H, 2-H, 6-H and $CH_2CH=CH_2$), 5.10 (m, 2 H, $CH_2CH=CH_2$), 5.86 (dddd, J = 17.1, 10.1, 7.0, 7.0 Hz, 1 H, CH₂CH=CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 22.7 (dt, J = 6 Hz, C-5), 27.8 (q, CCH₃), 33.9 (dt, J = 21 Hz, C-4), 33.2 (s, CCH₃), 41.7 (dt, J = 22 Hz, CH₂CH=CH₂), 56.0 (t, C-6), 63.7 (dt, J = 23 Hz, C-2), 69.8 (t, CH_2tBu), 94.1 (ds, J = 173 Hz, C-3), 118.3 (t, CH₂CH=*C*H₂), 132.7 (dd, J = 4 Hz, CH₂CH=CH₂) ppm. IR (film): \tilde{v} = 2950, 2865, 2787, 1643, 1466, 1360, 1115, 1023 cm⁻¹. MS (EI, 70 eV): m/z (%) = 213 (1) [M]⁺⁻, 198 (7), 157 (11), 156 (100), 136 (6), 115 (13), 114 (11), 76 (3). HRMS: calcd. for $C_{13}H_{25}NF [M + H]^+$ 214.1971; found 214.1960.

(*S*)-*N*-(2,2-Dimethylpropyl)-3-benzyl-3-fluoropiperidine (15c): Following the general procedure, prolinol 14c {25 mg, 0.10 mmol, 1.0 equiv., $[a]_D^{20} = -16.1$ (c = 0.99, CHCl₃)} was treated with DAST (18 µL, 0.13 mmol, 1.4 equiv.) in THF (5 mL). After purification by flash chromatography (cyclohexane/AcOEt, 90:10), fluoropiperidine 15c (22 mg, 0.084 mmol, 87%) was isolated as a colourless oil. $[a]_D^{20} = -4.3$ (c = 1.75, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.87$ (s, 9 H, CMe₃), 1.44–1.58 (3 H, 4-H and 5-H), 1.69 (m, 1 H, 5-H), 2.04 (d, J = 13.8 Hz, 1 H, CH₂tBu), 2.08 (d, J = 13.8 Hz, 1 H, CH₂tBu), 2.95 (dd, J =

FULL PAPER

19.8, 14.4 Hz, 1 H, CH_2Ph), 3.11 (dd, J = 30.6, 14.4 Hz, 1 H, CH_2Ph), 7.21–7.31 (5 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.8$ (dt, J = 7 Hz, C-5), 26.8 (q, CMe_3), 31.2 (dt, J = 28 Hz, C-4), 32.2 (s, CMe_3), 42.4 (dt, J = 28 Hz, CH_2Ph), 55.0 (t, C-6), 63.3 (dt, J = 31 Hz, C-2), 68.8 (t, CH_2tBu), 93.3 (ds, J = 232 Hz, C-3), 125.4 (d), 127.0 (d), 129.5 (d), 135.5 (s) (C_{Ar}) ppm. IR (film): $\tilde{v} = 2945$, 2862, 2785, 1605, 1454, 1358, 1112, 1020 cm⁻¹. MS (EI, 70 eV): m/z (%) = 263 (1) [M]⁺⁺, 248 (6), 207 (15), 206 (100), 186 (13), 115 (5), 96 (12), 91 (28). C₁₇H₂₆FN (263.19): C 77.52, H 9.95, N 5.32; found C 77.13, H 9.73, N 5.34.

(S)-N-Benzyl-3-benzyl-3-fluoropiperidine (15d): Following the general procedure, prolinol 14d {43 mg, 0.15 mmol, 1.0 equiv., $[a]_{\rm D}^{20}$ = +3.6 (c = 0.70, CHCl₃)} was treated with DAST (26 µL, 0.18 mmol, 1.4 equiv.) in THF (5 mL). After purification by flash chromatography (cyclohexane/AcOEt, 90:10), fluoropiperidine 15d (13 mg, 0.045 mmol, 30%) was isolated as a colourless oil. $[a]_{D}^{20} = -3.9$ (c = 0.41, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = 1.51–1.80 (4 H, 4-H and 5-H), 2.36–2.47 (m, 4 H, 2-H and 6-H), 2.95 (dd, J = 24.8, 14.2 Hz, 1 H, CH_2Ph), 3.02 (dd, J = 24.6, 14.2 Hz, 1 H, CH_2Ph), 3.48 (d, J = 13.2 Hz, 1 H, N-CH₂Ph), 3.54 (d, J = 13.2 Hz, 1 H, N-CH₂Ph), 7.16–7.20 (2 H, H_{Ar}), 7.21–7.29 (4 H, H_{Ar}), 7.30–7.33 (4 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.3 (dt, J = 7 Hz, C-5), 32.4 (dt, J = 22 Hz, C-4), 42.4 (dt, J = 23 Hz, CH_2Ph), 51.4 (t, C-6), 59.5 (dt, J = 23 Hz, C-2), 61.8 (t, N-CH₂Ph), 93.0 (ds, J = 174 Hz, C-3), 125.5 (d), 126.0 (d), 127.1 (d), 127.2 (d), 128.1 (d), 129.5 (d), 135.3 (s), 137.0 (s, C_{Ar}) ppm. IR (film): $\tilde{v} = 3029$, 2943, 2802, 1495, 1354, 1346, 1301, 1116, 1079, 1029 cm⁻¹. MS (EI, 70 eV): m/z (%) = 283 (36) [M]⁺⁺, 282 (24), 263 (42), 206 (12), 192 (15), 191 (12), 186 (11), 172 (38), 115 (10), 92 (10), 91 (100), 65 (10). HRMS: calcd. for $C_{13}H_{25}NF [M + H]^+ 284.1815$; found 284.1815.

(3R,5R)-N-Methyl-5-(tert-butyldiphenylsilanyloxy)-3-ethyl-3-fluoropiperidine (15e): Following the general procedure, prolinol 14e^[15m] {50 mg, 0.13 mmol, 1.0 equiv., $[a]_D^{20} = +2.4$ (c = 1.36, CHCl₃)} was treated with DAST (23 µL, 0.19 mmol, 1.4 equiv.) in THF (5 mL). After purification by flash chromatography (cyclohexane/AcOEt, 80:20), fluoropiperidine 15e (36 mg, 0.09 mmol, 72%) was isolated as a yellow oil. $[a]_{D}^{20} = +6.6 (c = 0.35, CHCl_3)$. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.89$ (t, J = 7.5 Hz, 3 H, CH₂CH₃), 1.06 (s, 9 H, CMe₃), 1.51-1.63 (3 H, 4-H and CH₂CH₃), 1.78-2.00 (2 H, 2-H and 6-H), 2.07 (m, 1 H, 4-H), 2.22 (s, 3 H, N-Me), 2.75 (m, 1 H, 2-H), 2.87 (m, 1 H, 6-H), 4.12 (dddd, J = 10.1, 10.1, 5.0, 5.1 Hz, 1 H, 5-H), 7.33–7.42 (m, 6 H, H_{Ar}), 7.63–7.67 (m, 4 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 7.1 (q, CH₂CH₃), 19.2 (s, *C*Me₃), 27.0 (q, *CMe*₃), 31.4 (dt, J = 23 Hz, *CH*₂CH₃), 41.4 (dt, J= 22 Hz, C-4), 45.8 (q, *N-Me*), 61.7 (dt, J = 21 Hz, C-2), 62.3 (t, C-6), 66.4 (d, C-5), 95.1 (ds, *J* = 172 Hz, C-3), 127.6 (d), 129.7 (d), 134.1 (s), 135.7 (d, C_{Ar}) ppm. IR (film): $\tilde{v} = 2930, 2856, 2786, 1460,$ 1427, 1384, 1252, 1180, 1106, 1083, 1048 cm⁻¹. MS (EI, 70 eV): m/z (%) = 399 (2) [M]⁺⁺, 379 (12), 343 (28), 342 (100), 322 (15), 201 (11), 199 (13), 183 (18), 144 (18), 124 (30), 122 (23), 94 (11), 58 (12). HRMS: calcd. for $C_{31}H_{31}NFO [M + H]^+$ 400.2467; found 400.2467.

N-Benzyl-3-fluoroazepane (17a) and *N*-Benzyl-2-fluoromethylpiperidine (18a): Following the general procedure, piperidine methanol $16a^{[27]}$ (120 mg, 0.58 mmol, 1.0 equiv.) was treated with DAST (107 µL, 0.82 mmol, 1.4 equiv.) in CH₂Cl₂ (10 mL). After purification by preparative TLC on silica gel (cyclohexane/AcOEt, 90:10), fluoroazepane 17a (61 mg, 0.29 mmol, 51%) and fluoromethylpyrrolidine 18a (15 mg, 0.07 mmol, 12%) were isolated as yellow oils. Data for 17a: ¹H NMR (400 MHz, CDCl₃): $\delta = 1.43$ (m, 1 H), 1.50–1.70 (3 H, 5-H and 6-H), 1.71–2.10 (2 H, 4-H), 2.57 (2 H), 2.70–2.95 (2 H, 2-H and 7-H), 3.60 (d, J = 13.6 Hz, 1 H, CH₂Ph), $3.66 (d, J = 13.6 Hz, 1 H, CH_2Ph), 4.61 (dm, J = 47.9 Hz, 1 H, 3-$ H), 7.13–7.30 (5 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 20.6 (dt, J = 9 Hz, C-5), 29.3 (t, C-6), 33.5 (dt, J = 21 Hz, C-4), 56.4 (t, C-7), 59.5 (dt, J = 27 Hz, C-2), 63.1 (t, CH₂Ph), 92.6 (dd, *J* = 181 Hz, C-3), 127.0 (d), 128.2 (d), 128.7 (d), 132.7 (s, C_{Ar}) ppm. IR (film): $\tilde{v} = 3026, 2928, 2860, 1494, 1452, 1353, 1066, 1025 \text{ cm}^{-1}$. MS (EI, 70 eV): m/z (%) = 207 (30) [M]⁺⁻, 206 (14), 174 (45), 160 (16), 146 (6), 130 (17), 116 (28), 92 (11), 91 (100), 84 (6), 65 (12). HRMS: calcd. for $C_{13}H_{25}NF [M + H]^+$ 208.1496; found 208.1496. Data for **18a**: ¹H NMR (400 MHz, CDCl₃): $\delta = 1.27-1.57$ (4 H), 1.65–1.74 (2 H, 3-H, 4-H and 5-H), 2.04 (ddd, J = 11.6, 10.3, 3.2 Hz, 1 H, 6 -H), 2.61 (m, 1 H, 2 -H), 2.77 (ddd, J = 11.5, 4.2,4.2 Hz, 1 H, 6-H), 3.34 (d, J = 13.7 Hz, 1 H, CH₂Ph), 4.08 (d, J = 13.7 Hz, 1 H, CH_2Ph), 4.48 (ddd, J = 48.3, 9.9, 3.5 Hz, 1 H, 2'-H), 4.61 (ddd, J = 47.4, 9.9, 5.5 Hz, 1 H, 2'-H), 7.20–7.38 (5 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 20.8 (t), 23.5 (t, C-4, C-5), 28.3 (dt, J = 8 Hz, C-3), 52.0 (t, C-6), 59.9 (t, CH_2Ph), 60.0 (dd, J = 18 Hz, C-2), 86.4 (dt, J = 169 Hz, C-2'), 126.8 (d), 128.2 (d), 128.9 (d), 139.4 (s, C_{Ar}) ppm. IR (film): $\tilde{v} = 3028, 2934$, 2857, 2797, 1494, 1452, 1372, 1339, 1131, 1116, 1082, 1055, 1015 cm⁻¹. MS (EI, 70 eV): m/z (%) = 207 (4) [M]⁺⁺, 175 (15), 174 (100), 130 (3), 92 (7), 91 (85), 65 (7), 55 (3). HRMS: calcd. for C₁₃H₂₅NF [M + H]⁺ 208.1496; found 208.1496.

N-Benzyl-3-ethyl-3-fluoroazepane (17b): Following the general procedure, piperidinol 16b (111 mg, 0.48 mmol, 1.0 equiv.) was treated with DAST (87 µL, 0.67 mmol, 1.4 equiv.) in CH₂Cl₂ (6 mL). After purification by flash chromatography on silica gel (pentane/Et₂O, 90:10), fluoroazepane 17b (70 mg, 0.30 mmol, 63%) was isolated as a colourless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.70$ (m, 3 H, CH₂CH₃), 1.34–1.92 (8 H, 4-H, 5-H, 6-H and CH₂CH₃), 2.45 (m, 1 H, 7-H), 2.58 (m, 1 H, 7-H), 2.67–2.73 (2 H, 2-H), 3.57 (d, J =13.5 Hz, 1 H, CH_2Ph), 3.62 (d, J = 13.5 Hz, 1 H, CH_2Ph), 7.13– 7.19 (1 H, H_Ar), 7.16–7.28 (4 H, H_Ar) ppm. $^{13}\mathrm{C}$ NMR (100 MHz, $CDCl_3$): $\delta = 7.1$ (dq, J = 5 Hz, CH_2CH_3), 21.6 (dt, J = 5 Hz, C-5), 30.9 (t, C-6), 31.0 (dt, J = 23 Hz), 37.5 (dt, J = 24 Hz, C-4 and CH_2CH_3), 57.8 (t, C-7), 63.6 (dt, J = 30 Hz, C-2), 64.0 (t, CH_2Ph), 99.8 (ds, J = 168 Hz, C-3), 126.9 (d), 128.1 (d), 128.9 (d), 139.9 (s) ppm. IR (film): $\tilde{v} = 2926$, 1494, 1452, 1351, 1111, 968, 910 cm⁻¹. MS (EI, 70 eV): m/z (%) = 235 (40) [M]⁺⁺, 215 (16), 200 (17), 186 (10), 174 (11), 160 (47), 158 (11), 146 (13), 144 (15), 134 (25), 120 (19), 92 (11), 91 (100), 65 (11). HRMS: calcd. for C₁₃H₂₅NF [M + H]⁺ 236.1809; found 236.1809.

N-Benzyl-3-allyl-3-fluoroazepane (17c): Following the general procedure, piperidinol 16c (110 mg, 0.45 mmol, 1.0 equiv.) was treated with DAST (83 µL, 0.63 mmol, 1.4 equiv.) in CH₂Cl₂ (6 mL). After purification by flash chromatography on silica gel (pentane/Et₂O, 90:10), fluoroazepane 17c (85 mg, 0.34 mmol, 76%) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.35-1.52$ (2 H), 1.56–1.92 (4 H, 4-H, 5-H, 6-H), 2.26 (ddd, J = 21.5, 7.2, 6.5 Hz, 2 H, CH₂CH=CH₂), 2.45 (ddd, J = 12.5, 8.2, 4.4 Hz, 1 H, 7-H), 2.60 (m, 1 H, 7-H), 2.73 (d, J = 15.7 Hz, 2 H, 2-H), 3.67 (s, 2 H, CH_2Ph), 4.99 (m, 1 H, $CH_2CH=CH_2$), 5.06 (m, 1 H, CH₂CH=CH₂), 5.77 (dddd, J = 17.2, 10.1, 7.2, 7.2 Hz, 1 H, CH₂CH=CH₂), 7.21–7.35 (5 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.5 (dt, J = 4 Hz, C-5), 30.8 (t, C-6), 38.1 (dt, J = 23 Hz, CH₂CH=CH₂), 43.9 (dt, J = 23 Hz, C-4), 57.6 (t, C-7), 63.7 (dt, J = 28 Hz, C-2), 63.8 (t, CH₂Ph), 98.3 (ds, J = 170 Hz, C-3)118.3 (t, CH₂CH=*C*H₂), 127.0 (d), 128.2 (d), 128.8 (d, C_{Ar}), 133.0 (dd, J = 5 Hz, CH₂CH=CH₂), 139.8 (s, C_{Ar}) ppm. IR (film): $\tilde{v} =$ 2928, 1641, 1494, 1452, 1351, 1268, 1106, 993 cm⁻¹. MS (EI, 70 eV): m/z (%) = 247 (12) [M]⁺⁻, 246 (10), 227 (21), 170 (11), 160 (15), 158 (18), 146 (10), 134 (13), 120 (14), 92 (11), 91 (100), 65 (12). HRMS: calcd. for $C_{13}H_{25}NF [M + H]$)⁺ 248.1809; found 248.1809.

N-Benzyl-3-benzyl-3-fluoroazepane (17d): Following the general procedure, piperidinol 16d (47 mg, 0.16 mmol, 1.0 equiv.) was treated with DAST (29 µL, 0.22 mmol, 1.4 equiv.) in THF (4 mL). After purification by flash chromatography on silica gel (cyclohexane/AcOEt, 95:5), fluoroazepane 17d (32 mg, 0.30 mmol, 76%) was isolated as a yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.35$ – 1.53 (2 H), 1.56-1.67 (2 H), 1.70 (m, 1 H), 1.76 (m, 1 H, 4-H, 5-H and 6-H), 2.43 (ddd, J = 12.5, 8.3, 4.5 Hz, 1 H, 7-H), 2.62 (m, 1 H, 7-H), 2.67–2.88 (4 H, 2-H and CH₂Ph), 3.58 (s, 2 H, N-CH₂Ph), 7.04–7.29 (10 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.4 (dt, J = 5 Hz, C-5), 30.8 (t, C-6), 30.9 (dt, J = 23 Hz, C-4), 45.2 $(dt, J = 21 Hz, CH_2Ph)$, 57.7 (t, C-7), 63.9 (t, N-CH_2Ph), 64.0 (dt, J = 30 Hz, C-2), 99.2 (ds, J = 171 Hz, C-3), 126.4 (d), 127.0 (d), 128.0 (d), 128.2 (d), 128.9 (d), 130.7 (d), 136.7 (s), 139.8 (s, C_{Ar}) ppm. IR (film): $\tilde{v} = 3027, 2926, 1603, 1495, 1453, 1263, 1107, 1077,$ 1009 cm⁻¹. MS (EI, 70 eV): m/z (%) = 297 (7) [M]⁺⁺, 278 (9), 277 (41), 186 (48), 160 (11), 129 (8), 120 (16), 115 (11), 92 (9), 91 (100), 65 (10). HRMS: calcd. for C₁₃H₂₅NF [M + H]⁺ 298.1965; found 298.1965.

Acknowledgments

Johnson & Johnson is greatly acknowledged for financial support (Focus Giving Grant to J. C.)

- [1] a) N. C. Craig, A. Chen, K. H. Suh, S. Klee, G. C. Mellau, B. P. Winnewisser, M. Winnewisser, J. Am. Chem. Soc. 1997, 119, 4789-4790; b) C. R. S. Briggs, M. J. Allen, D. O'Hagan, D. J. Tozer, A. M. Z. Slawin, A. E. Goeta, J. A. K. Howard, Org. Biomol. Chem. 2004, 2, 732-740; c) H.-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander, M. Stahl, ChemBioChem 2004, 5, 637-643; d) M. Shimizu, T. Hiyama, Angew. Chem. Int. Ed. 2005, 44, 214-231 and references herein; e) M. Schuler, D. O'Hagan, A. M. Z. Slawin, Chem. Commun. 2005, 4324-4326; f) J. P. Bégué, D. Bonnet-Delpont, Actual. Chim. 2006, 301-302, 83-87.
- [2] P. T. Nyffeler, S. G. Durón, M. D. Burkart, S. P. Vincent, C.-H. Wong, Angew. Chem. Int. Ed. 2005, 44, 192-212.
- [3] a) G. S. Lal, G. P. Pez, R. J. Pesaresi, F. M. Prozonic, H. Cheng, J. Org. Chem. 1999, 64, 7048–7054; b) J.-A. Ma, D. Cahard, Chem. Rev. 2004, 104, 6119-6119; c) N. Yoneda, J. Fluorine Chem. 2004, 125, 7-17; d) R. P. Singh, J. M. Shreeve, Acc. Chem. Res. 2004, 37, 31-44; e) M. Shimizu, T. Hiyama, Angew. Chem. Int. Ed. 2005, 44, 214-231; f) X. Bi, Synlett 2006, 2515-2516.
- W. J. Middleton, J. Org. Chem. 1975, 40, 574-578.
- [5] For a review on the uses of DAST and Deoxofluor, see: R. P. Singh, J. M. Shreeve, Synthesis 2002, 2561-2578.
- a) K. C. Nicolaou, T. Ladduwahetty, J. L. Randall, A. Chucho-[6] lowski, J. Am. Chem. Soc. 1986, 108, 2466-2467; b) P. Borrachero-Moya, F. Cabrera-Escribano, M. Gómez-Guillén, F. Madrid-Diaz, Tetrahedron Lett. 1997, 38, 1231-1234; c) K. Dax, M. Albert, J. Ortner, B. J. Paul, Carbohydr. Res. 2000, 327, 47-86; d) P. Borrachero, F. Cabrera-Escribano, A. T. Carmona, M. Gómez-Guillén, Tetrahedron: Asymmetry 2000, 11, 2927-2946.
- [7] a) L. Somekh, A. Shanzer, J. Am. Chem. Soc. 1982, 104, 5836-5837; b) D. Gani, P. B. Hitchcock, D. W. Young, J. Chem. Soc. Perkin Trans. 1 1985, 1363-1372; c) T. Rosen, D. T. W. Chu, I. M. Lico, P. B. Fernandes, K. Marsh, L. Shen, V. G. Cepa, A. G. Pernet, J. Med. Chem. 1988, 31, 1598-1611; d) R. H. Furneaux, G. J. Gainsford, J. M. Mason, P. C. Tyler, Tetrahedron 1995, 51, 12611-12630; e) G. V. De Lucca, J. Org. Chem. 1998, 63, 4755-4766; f) D. F. Hook, F. Gessier, C. Noti, P. Kast, D. Seebach, ChemBioChem 2004, 5, 691-706; g) C. Ye, J. M. Shreeve, J. Fluorine Chem. 2004, 125, 1869-1872; h) P. E. Floreancing, S. E. Swalley, J. W. Trauger, P. B. Derwan, J. Am. Chem. Soc. 2000, 122, 6342–6350.

- Y.-H. Lim, Tetrahedron Lett. 1998, 39, 5201-5204; b) A.T. Carmona, P. Borrachero, F. Cabrera-Escribano, J. Diánez, D. Estrada, A. López-Castro, R. Ojeda, M. Gómez-Guillén, S. Pérez-Garrido, Tetrahedron: Asymmetry 1999, 10, 1751-1764.
- [9] a) J. Filmon, D. Grée, R. Grée, J. Fluorine Chem. 2001, 107, 271-273; b) P. Lakshmipathi, D. Grée, R. Grée, Org. Lett. 2002, 4, 451-454.
- [10] a) S. Castillon, A. Dessinges, R. Faghih, G. Lucaks, A. Olesker, T. T. Thang, J. Org. Chem. 1985, 50, 4913-4917; b) Y. Vera-Ayoso, P. Borrachero, F. Cabrera-Escribano, A. T. Carmona, M. Gómez-Guillén, Tetrahedron: Asymmetry 2004, 15, 429-444.
- [11] a) S. Rozen, Y. Faust, H. Ben-Yakov, Tetrahedron Lett. 1979, 20, 1823-1826; b) C. Burnell-Curty, R. Faghih, T. Pagano, R. F. Henry, P. A. Lartey, J. Org. Chem. 1996, 61, 5153-5154; c) A. Boukerb, D. Grée, M. Laabassi, R. Grée, J. Fluorine Chem. 1998, 88, 23-27; d) S. Canova, V. Bellosta, S. Mignani, A. Bigot, J. Cossy, Org. Lett. 2006, 8, 2091-2094.
- [12] a) S. E. Boiadjiev, D. A. Lightner, J. Org. Chem. 1997, 62, 399-404; b) D. J. Hallett, U. Gerhard, S. C. Goodacre, L. Hitzel, T. J. Sparey, S. Thomas, M. Rowley, J. Org. Chem. 2000, 65, 4984–4993; c) G. L. Grunewald, T. M. Caldwell, Q. Li, K. R. Criscione, J. Med. Chem. 2001, 44, 2849-2856; d) G. Giannini, M. Marzi, G. P. Moretti, S. Penco, M. O. Tiniti, S. Pesci, F. Lazzaro, F. De Angelis, Eur. J. Org. Chem. 2004, 2411-2420.
- [13] a) S. S. Yang, T. R. Beattie, J. Org. Chem. 1981, 46, 1718-1720; b) C. S. V. Houge-Frydrych, I. L. Pinto, Tetrahedron Lett. 1989, 30, 3349-3350; c) G. Burrell, J. M. Evans, G. E. Jones, G. Stemp, Tetrahedron Lett. 1990, 31, 3649-3652; d) S.-J. Shiuey, I. Kulesha, E. G. Baggiolini, M. R. Uskoković, J. Org. Chem. **1990**, *55*, 243–247.
- [14] a) P. Lafargue, P. Guenot, J. P. Lellouche, Synlett 1995, 171-172; b) A. J. Phillips, Y. Uto, P. Wipf, M. J. Reno, D. R. Williams, Org. Lett. 2000, 2, 1165-1168; c) T. Nishio, Y. Kurokawa, Y. Narasaki, T. Tokunaga, Heterocycles 2006, 67, 247-254.
- [15] a) J. Cossy, C. Dumas, P. Michel, D. Gomez Pardo, Tetrahedron Lett. 1995, 36, 549-552; b) J. Cossy, C. Dumas, D. Gomez Pardo, Synlett 1997, 905-906; c) J. Cossy, C. Dumas, D. Gomez Pardo, Bioorg. Med. Chem. Lett. 1997, 7, 1343-1344; d) J. Wilken, M. Kossenjans, W. Saak, D. Haase, S. Pohl, J. Martens, Liebigs Ann. Recl. 1997, 573-579; e) N. Langlois, O. Calvez, Synth. Commun. 1998, 28, 4471-4477; f) P. W. Davis, S. A. Osgood, N. Hébert, K. G. Sprankle, E. E. Swayze, Biotechnol. Bioeng. 1999, 61, 143-154; g) J. Cossy, C. Dumas, D. Gomez Pardo, Eur. J. Org. Chem. 1999, 1693-1699; h) P. Michel, A. Rassat, J. Org. Chem. 2000, 65, 2572-2573; i) J. Cossy, O. Mirguet, D. Gomez Pardo, Synlett 2001, 1575-1577; j) A. Brandi, S. Cicchi, V. Paschetta, D. Gomez Pardo, J. Cossy, Tetrahedron Lett. 2002, 43, 9357-9359; k) A. Deyine, J.-M. Delcroix, N. Langlois, Heterocycles 2004, 64, 207-214; 1) I. Déchamps, D. Gomez Pardo, P. Karoyan, J. Cossy, Synlett 2005, 1170–1172; m) R. Roudeau, D. Gomez Pardo, J. Cossy, Tetrahedron 2006, 62, 2388-2394; n) M. Mena, J. Bonjoch, D. Gomez Pardo, J. Cossy, J. Org. Chem. 2006, 71, 5930-5935; o) I. Déchamps, D. Gomez Pardo, J. Cossy, Arkivoc 2007, 38-45.
- [16] I. Déchamps, D. Gomez Pardo, J. Cossy, Synlett 2007, 263-267.
- [17] a) S. Itsuno, K. Ito, A. Hirao, S. Nakahama, J. Chem. Soc. Perkin Trans. 1 1984, 2887-2893; b) V. I. Tararov, R. Kadyrov, T. H. Riermeier, A. Boerner, Synthesis 2002, 375-380.
- [18] The ratios were calculated after examination of the ¹H NMR spectra of the crude material.
- [19] These prolinols were prepared by using classical esterification, benzylation, protection and reduction steps. For example of preparation, see ref.^[15m]
- [20] C. Herdeis, H. P. Hubmann, H. Lotter, Tetrahedron: Asymmetry 1994, 5, 119–522.

FULL PAPER

- [21] C. Heindl, H. Hübner, P. Gmeiner, *Tetrahedron: Asymmetry* 2003, 14, 3153–3172.
- [22] J. Bejjani, F. Chemla, M. Audouin, J. Org. Chem. 2003, 68, 9747–9752.
- [23] Prolinols 14a-c were prepared by using Seebach's methods, followed by classical reduction by LiAlH₄: D. Seebach, M. Boes, R. Naef, W. B. Schweizer, J. Am. Chem. Soc. 1983, 105, 5390–5398.
- [24] T.-X. Métro, J. Appenzeller, D. Gomez Pardo, J. Cossy, Org. Lett. 2006, 8, 3509–3512.
- [25] Benzyl and allyl neighbouring groups are reported to participate in DAST reactions in the absence of an internal nucleo-

phile, for examples, see: a) D. Haigh, L. J. Jefcott, K. Magge, H. McNab, *J. Chem. Soc. Perkin Trans.* 1 1996, 2895–2900; b) C. Burnell-Curty, R. Faghih, T. Pagano, R. F. Henry, P. A. Lartey, *J. Org. Chem.* 1996, *61*, 5153–5154.

- [26] Considering the difficulty of preparing optically active 2-hydroxymethylpiperidines, the ring expansion was tested on the racemic starting material.
- [27] B. Weber, J. Schwerdtfeger, R. Fröhlich, A. Göhrt, D. Hoppe, Synthesis 1999, 1915.

Received: March 15, 2007 Published Online: July 30, 2007