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a b s t r a c t

A novel fluorescein-rhodamine dyad probe has been synthesized and its chemosensory applications are
explored. Anion and cation specific responses of the probe permit ratiometric detection of Hg2þ and
fluoride ions, individually and collectively, with different fluorescence outputs. The presence of other
commonly coexistent ions does not affect the Hg2þ and fluoride ion detection ability of the probe. The
probe is highly sensitive to Hg2þ and fluoride ions and it can detect Hg2þ and fluoride ions even at ppb
level concentrations. The probe is non-toxic under the experimental conditions, cell permeable and
useful for the imaging of intracellular Hg2þ and fluoride ions.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Development of fluorescent probes for the selective detection of
toxic ions is a developing area of research [1e3]. Mercury is one of
the most toxic transition metal ions, and can easily pass through
biological membranes [4]. On the other hand, fluoride plays a vital
role in the treatment of osteoporosis and in the prevention of
dental caries [5e7]. However, exposure to excess levels of fluoride
can lead to dental or skeletal fluorosis, or cancer [8e10]. Hence,
design, synthesis and evaluation of fluorescent probes with high
sensitivity and selectivity toward Hg2þ and F� are highly desirable.
Desulfation followed by cyclization reaction of thiourea has been
widely exploited for the development of Hg2þ selective chemo-
dosimeters [11e19]. Fluoride ion selective cleavage of SieO linkage
has been extensively applied for designing fluoride selective che-
mosensors [20e26]. Chemosensors suitable for simultaneous
ision, CSIR-Central Leather
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detection of multiple analytes are of particular importance for
routine analysis in the field or contaminated site. Recently, exten-
sive interest has been devoted by researchers to develop multi-
analyte chemosensors [27e37]. However, only two systems are
available for individual detection of both Hg2þ and F� ions in
aqueous samples [29,30]. Considering the extreme toxicity of Hg2þ

and F� ions and non-availability of adequate chemosensors, it is
imperative to develop new fluorescent probes for individual and
collective detection of Hg2þ and F� ions in aqueous and biological
samples.

In continuation to our research in the development of fluores-
cent probes for selective detection of specific metal ions [38e44],
we report, herein, a two-fluorophore-embedded fluorescent probe
1, for simultaneous detection of Hg2þ and F� ions. Selective
complexation of Hg2þ with the thiourea moiety and F� promoted
cleavage of silyl ether bond, induce cation and anion specific ab-
sorption and fluorescence properties. Consequently, ratiometric
detection of Hg2þ and F� ions in aqueous samples were evaluated.
Selective detection of Hg2þ and F� ions was also examined in the
presence of other competing ions. Cytotoxicity of the probe was
assessed using MTT assay. To our knowledge, probe 1 is the first of
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its kind that can be used for the simultaneous and ratiometric
detection of both Hg2þ and F� ions in both aqueous and biological
systems.

2. Experimental section

2.1. General

Dry acetonitrile and double distilled water were used in all ex-
periments. All the materials for synthesis were purchased from
commercial suppliers and used without further purification. The
W138 (normal lung fibroblast) cells were obtained from American
Type Culture Collection (Manassas, VA). Dulbecco's Modified Eagle
Medium (DMEM), Dulbecco's Phosphate Buffered Saline (DPBS),
Hank's Balanced Salt Solution (HBSS), Fetal Bovine Serum (FBS) and
penicillin/streptomycin were purchased from SigmaeAldrich, USA.
The solutions of metal ions were prepared from their correspond-
ing chloride salts and anion solutions were prepared from their
corresponding Na or K salts. Absorption spectra were recorded on a
Cary 5000 UV-Vis-NIR spectrophotometer. All the absorption
measurements were conducted using double beam UVeVisible
spectrophotometer and the aqueous acetonitrile system (1:1 v/v
0.01 M Tris HCleCH3CN, pH 7.4) was used as blank to correct the
influence of common invariants. Fluorescence measurements were
performed on a Cary Eclipse fluorescence spectrophotometer
(Excitation wavelength 480 nm; excitation, emission slit widths
were 5 nm each). All pH measurements were made with a
Systronics mpH System Model 361. NMR spectra were recorded
using a Bruker 400 and Jeol 500 MHz NMR spectrometers. ESI-High
Resolution Mass Spectrum (HRMS) was recorded on QSTAR XL
Hybrid MS/MS mass spectrometer. All measurements were
carried out at room temperature. Stock solution of the probe was
prepared by dissolving 10.73 mg of 1 in 1:1 v/v 0.01 M Tris
HCleCH3CN (pH 7$4) and making up to the mark in a 10 mL
volumetric flask. Further dilutions were made to prepare 5 mM
solutions for the experiments. Stock solutions of metal ions and
anions (1 M) were prepared in de-ionised water.

2.2. Synthesis of probe 1

The probe 1 was synthesized in a three-step pathway by
reacting rhodamine with hydrazine hydrate, and subsequently the
rhodamine hydrazide with fluorescein isothiocyanate (FITC) fol-
lowed by the protection of hydroxyl groups of fluorescein using
TBDMSi-Cl.

2.2.1. Synthesis of intermediate A
Rhodamine hydrazide was synthesized as per our previous re-

ported procedure [38].

2.2.2. Synthesis of intermediate B
To a solution of rhodamine hydrazide (0.46 g, 1.0 mmol) in DMF

(10 mL) fluorescein isothiocyanate (FITC, 0.39 g, 1.0 mmol) was
added, and the resultant mixture was stirred overnight at room
temperature. After the complete consumption of the starting ma-
terials as monitored through TLC, the reaction mixturewas purified
using silica gel (200e400 mesh, 40:60 ethyl acetateehexane as
eluent) column chromatography to obtain B as an orange-red solid
(0.45 g, 0.53 mmol, 53% yield).

1H NMR (400 MHz, CD3OD, d ppm): 1.042 (t, J ¼ 7.5 Hz, 12H,
NCH2CH3), 3.256 (m, 12H, NCH2CH3, 2 NH, COOH, OH), 6.274 (d,
J ¼ 7.6 Hz, 2H, Ar-H), 6.416e6.476 (m, 5H, Ar-H), 6.510 (s, 1H, Ar-H),
6.532 (s, 1H, Ar-H), 6.607 (d, J ¼ 2.3 Hz, 2H, Ar-H), 6.901 (d,
J ¼ 8.2 Hz, 1H, Ar-H), 7.207 (d, J ¼ 7.6 Hz, 1H, Ar-H), 7.309 (d,
J ¼ 8.2 Hz, 1H, Ar-H), 7.597e7.615 (m, 2H, Ar-H), 7.640e7.690 (m,
1H, Ar-H), 7.903e7.971 (m, 1H, Ar-H). 13C NMR (100 MHz, CD3OD,
d ppm): 11.59, 29.34, 30.30, 35.61, 44.03, 67.88, 97.23,102.18,104.43,
108.04, 110.07, 112.27, 112.37, 123.11, 123.48, 124.53, 127.10, 128.83,
129.91, 133.92, 140.32, 149.30, 149.97, 152.79, 154.58, 160.17, 163.50,
167.41, 169.50, 182.93.

2.2.3. Synthesis of rhodamine-fluorescein dyad probe 1
To a solution of B (0.30 g, 0.35 mmol) and imidazole (0.05 g,

0.72 mmol) in DCM (20 mL), tert-butyldimethylsilyl chloride
(TBDMSi-Cl, 0.12 g, 0.80 mmol) was added, and the resultant
mixture was stirred under nitrogen atmosphere for ~6 h and then
purified using preparative TLC (using pre-coated alumina plates
and hexane-ethyl acetate (80:20) mixture as eluent) to obtain 1 as
an orange-yellow solid (0.16 g, 0.15 mmol, 47% yield).

1H NMR (500 MHz, CDCl3, d ppm): 0.212 (s, 12H, SieCH3), 0.974
(s, 18H, SieCeCH3), 1.164 (t, J ¼ 7.5 Hz, 12H, NCH2CH3), 3.370 (q,
J ¼ 7.0 Hz, 8H, NCH2CH3), 6.360 (dd, J ¼ 2.5 Hz, 2H, Ar-H),
6.450e6.540 (m, 6H, Ar-H), 6.560 (s, 1H, Ar-H), 6.581 (s, 1H, Ar-
H), 6.690 (d, J ¼ 2.5 Hz, 2H, Ar-H), 6.995 (d, J ¼ 7.5 Hz, 1H, Ar-H),
7.080 (s, 1H, Ar-H), 7.316 (d, J ¼ 7.5 Hz, 1H, Ar-H), 7.399 (s, 1H, Ar-
H), 7.609 (t, J ¼ 7.5 Hz, 1H, Ar-H), 7.685 (t, J ¼ 7.5 Hz, 1H, Ar-H),
7.743 (s, 1H, Ar-H), 7.839 (d, J ¼ 8.5 Hz, 1H, Ar-H), 8.024 (d,
J ¼ 7.5 Hz, 1H, Ar-H). 13C NMR (125 MHz, CDCl3, d ppm): e 4.41, e
4.40, 12.57, 18.21, 25.61, 29.70, 44.52, 67.37, 83.04, 98.39, 103.98,
107.62, 108.42, 111.96, 114.08, 116.58, 119.60, 123.71, 123.93, 124.86,
127.16, 127.56, 128.97, 129.18, 131.76, 134.47, 139.29, 139.54, 149.53,
150.05, 150.19, 152.25, 154.41, 157.57, 167.20, 168.46, 182.80. ESI-
HRMS: Calcd. for C61H71N5O7SSi2 1073.46127; m/z found
1074.46693 (M þ Hþ).

2.3. Sample preparation for cell culture

Freshly prepared stock solutions of each sample were used for
cell culture experiments. A stock solution (10 mM) of 1 was pre-
pared in sterile DMSO. Similarly, 10 mM stock solutions of Hg2þ and
F� salts were prepared in sterile Millipore water.

2.4. Cell culture experimentation

W138 and NIH 3T3 cells were maintained in DMEM complete
media, supplemented with 10% Fetal Bovine Serum (FBS) and 1%
penicillin/streptomycin at 37 �C in a humidified incubator equili-
brated with 5% CO2. Cells showing 70% confluencewere seeded into
96-well and 24-well plates for cytotoxicity and fluorescence mi-
croscopy studies, respectively.

2.5. MTT assay

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazo-
lium bromide) assay has been used to measure the activity of en-
zymes that reduce MTT to formazan dyes, giving rise to a purple
colour. Briefly, about 10,000 NIH 3T3 cells were seeded into each
well of a 96-well tissue culture plate containing complete DMEM
medium (100 mL) and incubated for 24 h at 37 �C in a humidified
incubator equilibrated with 5% CO2. Next day, the medium in each
well was replaced with fresh DMEMmedium (100 mL), and the cells
were incubated with different concentrations (0.1e10 mM) of probe
1 for 48 h. A 1.0 mL MTT stock solution (5 mg/mL) was diluted to
10 mL using complete DMEM medium, and 100 mL of the diluted
MTT solution was added to each well of 96-well plate after
replacing the old medium and allowed to incubate for 4 h. After
that, the medium in each well was replaced by 100 mL of 1:1 (v/v)
DMSO-methanol mixture for solubilizing the purple formazan
product. Then, the plate was kept on a shaker to homogenize the
solution. Finally, the microplate reader (ELx 800 MS) was used to



Scheme 1. Synthesis of fluorescein-rhodamine dyad 1.
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measure the absorbance at 570 nm of the solutions in each well of
the plate.
2.6. Fluorescence microscopy

To conduct live-cell imaging experiments, W138 cells were
seeded at 2 � 104 cells/mL/well in complete DMEM media in a 24-
well tissue culture plate and incubated for 24 h at 37 �C in a
humidified incubator equilibrated with 5% CO2. After 24 h, the
cells were incubated with probe 1 (5 mM) for another 4 h. The cells
were thoroughly washed six times with DPBS to remove the un-
bound probe 1 from the surface of cell membrane. After that, the
cells treated with probe 1 were separately incubated with F�

(50 mM) and Hg2þ (5 mM) for 15 min and again washed six times
with DPBS to remove the unbound materials. Finally, the fluo-
rescence images of W138 cells alone, cells treated with only probe
1, cells treated with probe 1 and F�, and cells treated with probe 1
and Hg2þ were observed under fluorescence microscope (Leica
Fig. 1. Anion (150 mM) induced variations in the (a) absorbance, and (b)
DM IRB microscope equipped with EBQ-100 UV-lamp) through
the green (Emission filter LP 515) and red (Emission filter LP 590)
channels, respectively.
3. Results and discussion

Probe 1 was synthesized in a three-step path way (Scheme 1).
Rhodamine hydrazide, prepared as described earlier [38] was
reacted with fluorescein isothiocyanate (FITC) and, subsequently,
the hydroxyl groups of fluorescein moiety were protected using
TBDMSi-Cl to obtain probe 1, whose formationwas confirmed using
NMR and ESI-HRMS analyses (Figs. S1eS5, Supporting data). The
non-fluorescent nature of probe 1 (5 mM) in aqueous acetonitrile
(1:1 v/v 0.01 M Tris HCleCH3CN, pH 7.4) was readily observed from
its quantum yield (F ¼ 0.005 and 0.008, from fluorescein and
rhodaminemoieties, respectively). The very lowF values suggested
that both fluorescein and rhodamine moieties of probe 1 were in
the spirocyclic form.
fluorescence spectra of 1 (5 mM); Excitation wavelength: 480 nm.



Fig. 2. Naked eye detection of F� using probe 1: The effect of the addition of various anions (150 mM) on the fluorescence emission of 1 (5 mM).
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We then investigated the effects of Hg2þ and F� ions as well as
other competing ions on the absorbance and fluorescence charac-
teristics of 1. Among the anions (150 mM) added, only fluoride ion
triggered a significant increment in the absorbance (ε¼ 148,400M�1

cm�1, Fig.1a) andfluorescence (F¼ 0.26, Fig.1b) profiles of 1. This F�

specific response of 1 could be attributed to the fluoride induced
cleavage of SieO linkage leading to the generation of 2 (Scheme S1,
Supporting data), whose formation was confirmed using ESI-MS
analysis (m/z ¼ 846, Fig. S6, Supporting data). Also, the fluoride se-
lective 'turned-on' green fluorescence emission (Fig. 2) from 1,
enabled naked eye detection of fluoride ions.

In a similar experiment with metal ions, probe 1 (5 mM)
remained passive to the addition of different metal ions (15 mM)
except Hg2þ, whose addition invoked an enhancement in the
absorbance (237,600 M�1 cm�1, Fig. 3a) and fluorescence (F ¼ 0.31,
Fig. 3b) profiles of the rhodamine moiety in 1, and thereby, enabled
the detection of Hg2þ with naked eye (Fig. 4). These observations
Fig. 3. Metal ion (15 mM) induced variations in the (a) absorbance, and (

Fig. 4. Naked eye detection of Hg2þ using probe 1: The effect of the addition
established the reaction based detection of Hg2þ ions, and could be
attributed to Hg2þ induced desulfation and cyclization reaction of
the thiourea moiety (Scheme S1, Supporting data) leading to the
formation of 3 (m/z ¼ 1041, Fig. S7, Supporting data).

To determine the detection limits of the probe [45], changes in
absorption and emission characteristics of 1 (5 mM) with different
amounts of F� and Hg2þ ions were measured. Addition of F� (5 mM)
provoked new peaks at ~500 and ~523 nm, respectively, in the
excitation and emission spectra of 1. The absorption and emission
intensities were increased with the amount of F� added, and
reached the maximum upon addition of 30 equivalents of F�

(Fig. S8, Supporting data). Under similar conditions, addition of
0.5 mM Hg2þ developed an excitation band with lmax at ~568 nm
and an emission band with lmax at ~592 nm. The intensity of these
bands increased gradually with the amount of Hg2þ added, and
attained the maximum on addition of 2.5 equivalents of Hg2þ

(Fig. S9, Supporting data). Thus, the absorption and emission
b) fluorescence spectra of 1 (5 mM); Excitation wavelength: 480 nm.

of various metal ions (15 mM) on the fluorescence emission of 1 (5 mM).



Fig. 5. Linear response curves of 1 at 523 nm depending on the F� (a) and at 592 nm
depending on the Hg2þ (b) concentration.

Fig. 6. Metal ion (15 mM) induced variations in the (a) absorbance, and (b) fluorescence sp
480 nm.
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characteristics of 1 presented in Figs S8eS9, Supporting data,
complement each other. The lower detection limit of the probe in
the case of F�and Hg2þ was calculated from fluorescence linear
response curves (Fig. 5) using the formula, Detection limit¼ K (SD)/
S, Where K ¼ 2 or 3, we take 3 in this case. ‘SD’ is the standard
deviation of the blank solution, ‘S’ is the slope of the calibration
curve. The standard deviation of blank in the case of F� and Hg2þ is
0.1274 and 0.1918, respectively. The calculated detection limits of
the probe are 5.17 � 10�8 M (~1.0 ppb) and 5.4 � 10�9 M (~1.1 ppb),
respectively for F� and Hg2þ in aqueous samples.

In order to confirm the non-interference of other metal ions and
anions, competition experiments were performed in the presence
of excess concentrations of other commonly coexisting ions
(Figs. S10a and S10b, Supporting data) and the results suggested
that 1 can detect F� and Hg2þ even in the presence of excess con-
centrations of other competitive metal ions. After establishing the
non-interference of other ions, it was imperative to explore the
effect of Hg2þ ions in the detection of F� ions, and vice versa. The
excitation and emission spectra of 1 with Hg2þ or/and F� ions, in
isolation and in combination were recorded. Addition of thirty
equivalents of F� ions (150 mM) to the non-fluorescent probe 1
(5 mM) showed the maximum level of absorption at ~500 nm and
fluorescence emission at ~523 nm (Fig. 6). When metal ions such as
Naþ, Kþ, Ca2þ, Mg2þ, Cr3þ, Cu2þ, Fe3þ, Co2þ, Mn2þ, Cd2þ, Zn2þ, Pb2þ

and Ni2þ were added (15 mM) to the above solution, neither the
absorption nor the fluorescence profile of the solutionwas affected.
However, addition of Hg2þ (15 mM) produced a new absorption
peak at ~568 nm, in addition to an increase in the intensity of ab-
sorption band at ~500 nm (Fig. 6a). While the appearance of the
new peak at ~568 nm could be attributed to the formation of 4 (m/
z ¼ 812, Fig. S11, Supporting data) with spirolactam ring opened
rhodamine moiety (Scheme S1, Supporting data), the increase in
intensity of absorption at ~500 nmwas ascribed to spectral overlap.
Under comparable conditions, the fluorescence emission at
~523 nm of 2 [obtained from 1 (5 mM) and 30 equivalents of F�] was
diminished to the basal level, and a new emission band centered at
~592 nm appeared (Fig. 6b) upon addition of Hg2þ (15 mM), pre-
sumably due to the intramolecular FRET from fluorescein moiety
(donor) to rhodamine moiety (acceptor) in 4. However, the
observed intensity of the emission band centered at ~592 nm, ob-
tained by the addition of only Hg2þ ions (15 mM) to probe 1 (5 mM),
was lower than that observed with the combined addition of F�

(150 mM) and Hg2þ (15 mM) to probe 1 (5 mM) (Fig. S12, Supporting
data). This difference in emission intensity could be explained by
the intramolecular FRET between the fluoresceine and rhodamine
ectra of 2 [obtained from 1 (5 mM) and 30 equivalents of F�]; Excitation wavelength:



Fig. 7. Anion (150 mM) induced variations in the (a) absorbance, and (b) fluorescence spectra of 3 [obtained from 1 (5 mM) and 3 equivalents of Hg2þ]; Excitation wavelength:
480 nm.

Fig. 8. Absorption (a) and emission (b) profiles of probe 1 (5 mM) in 1:1 v/v 0.01 M Tris HCleCH3CN, pH 7.4 in response to the addition of fluoride (150 mM) and Hg2þ (15 mM) ions,
individually and collectively. Excitation wavelength: 480 nm.
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moieties. Similarly, addition of only F� (150 mM) to the solution of 3
[obtained from 1 (5 mM) and 3 equivalents of Hg2þ] selectively
developed an absorption band at ~500 nm (Fig. 7a), and enhanced
the emission intensity at ~592 nm (Fig. 7b). These observations
could be attributed to the F� selective cleavage of SieO linkage
leading to the opening of fluorescein spirocyclic ring, and subse-
quently, the FRET form fluorescein moiety to rhodamine moiety.
Thus, the absorption and fluorescence profiles displayed by probe 1
Fig. 9. Ratiometric titration: Fluoride (0e150 mM) induced variations in the absorption (a) an
v 0.01 M Tris HCleCH3CN, pH 7.4. Excitation wavelength was 480 nm. Inset to a: plot of I5
to the addition of F� and Hg2þ ions appear to permit the selective
detection of F� and Hg2þ in isolation and in combination. The effect
of collective addition of F� and Hg2þ to 1 (Fig. 8) also corroborated
the above mentioned observations (Figs. 1e4 and 6,7).

Careful analysis of Figs. 6e8, revealed the possibility of ratio-
metric detection of F� in absorption mode and that of Hg2þ in
fluorescence mode. For the ratiometric detection of F� in absorp-
tion mode, compound 3 (Scheme S1, Supporting data) was first
d emission spectra (b) of 3 (obtained from 1 (5 mM) and 3 equivalents of Hg2þ) in 1:1 v/
00/I568 versus [F�].



Fig. 10. Ratiometric titration: Hg2þ (0e15 mM) induced variations in the absorption (a) and emission spectra (b) of 2 (obtained from 5 mM of 1 and 30 equivalents of F�) in 1:1 v/v
0.01 M Tris HCleCH3CN, pH 7.4. Excitation wavelength: 480 nm. Inset to b: plot of the ratio of the emission intensity at 592 nm and 523 nm vs concentration of Hg2þ.

Fig. 11. Fluorescence microscopic images of W138 normal lung fibroblast cells: Row 1 (a1ec1): untreated cells, Row 2 (a2ec2): cells treated with 1 (5 mM) alone; Row 3 (a3ec3):
cells treated with 1 (5 mM) and F� (50 mM); Row 4 (a4ec4): cells treated with 1 (5 mM) and Hg2þ (5 mM); Column 1 (a1ea4), bright field images; Column 2 (b1eb4), fluorescence
images obtained using green filter; Column 3 (c1ec4), fluorescence images obtained using red filter. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

N.R. Chereddy et al. / Dyes and Pigments 112 (2015) 201e209 207
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obtained by reacting probe 1 (5 mM) with Hg2þ ions (15 mM). The
UVevisible spectrum of this solution showed an absorption band at
~568 nm. Progressive addition of serial concentrations of F� ions
produced a new absorption band at ~500 nm with a gradual in-
crease in its intensity, as seen in Fig. 9a. The ratio of absorption
intensities I500/I568 for a given concentration of F� ions permitted
the ratiometric detection. The calculated detection limit was
1.8 � 10�7 M (~3.24 ppb) (Fig. S13a, Supporting data). For the
ratiometric detection of Hg2þ in fluorescence mode, compound 2
(Scheme S1, Supporting data) was obtained by reacting probe 1
(5 mM) with F� ions (150 mM), and its fluorescence spectrum was
recorded. Addition of Hg2þ resulted in a new emission band at
~592 nm (Fig. 10b) whose intensity was proportional to the amount
of Hg2þ added. Addition of increasing amounts of Hg2þ also
resulted in progressive reduction in the intensity of emission at
~523 nm, and thereby, allowed the ratiometric detection of Hg2þ

ions (Inset to Fig. 10b). The calculated detection limit was
4.8 � 10�9 M (~1 ppb) (Fig. S13b, Supporting data).

To explore the potential of the probe 1 in the imaging of live
cells, its cytotoxicity to NIH 3T3 cells was estimated using MTT
assay. The observed cell viability (Fig. S14, Supporting data) sug-
gested that the non-lethal concentration range of 1 was up to
10 mM. The effect of pH on the fluorescence emission pattern of 1
was evaluated using acid-base titration experiments [38e44]. The
fluorescence profile of 1 remains unchanged in the pH range from
pH 5.0 to 10 (Fig. S15, Supporting data). The results indicated that
the probe is stable over a broad pH range, and confirmed that the
observed changes in the fluorescence or absorbance profiles of 1
upon addition of analytes (F� and Hg2þ) are solely due to the
interaction between the probe and the analyte(s). The non-
cytotoxic nature of 1, stability at physiological pH 7.4 and non-
interference of other cations and anions in the simultaneous
detection of Hg2þ and F�, paved the way for the detection of these
toxic ions present in contaminated live cells. The imaging of live
cells exposed to F� and Hg2þ was carried out using only 5 mM
concentration of 1 (Fig. 11). The bright field and fluorescence
microscopic images of the cells alone (row 1), cells loaded with 1
alone (row 2), cells loaded with 1 and then treated with F� (row 3),
and cells loaded with 1 and then treated with Hg2þ (row 4) are
shown in Fig. 11.

The fluorescence images obtained using the green channel
(column 2) and the red channel (column 3) showed that the cells
alone and cells loaded with 1 (5 mM) were non-fluorescent. How-
ever, incubation with F� ions (50 mM) for 15 min at 37 �C enabled
the probe loaded cells to emit an intense green fluorescence in the
green channel (column 2, row 3), presumably from the in situ
generated fluorophore 2. The absence of red fluorescence in the red
channel (column 3, row 3) indicated that the rhodamine moiety in
2 (Scheme S1, Supporting data) existed in the ring-closed spi-
rolactam form. Under identical conditions, cells loaded with 1 and
incubatedwith Hg2þ (5 mM) for 15min at 37 �C displayed an intense
red fluorescence (column 3, row 4) apparently from the spirolactam
ring-open form of rhodamine moiety in 3 (Scheme S1, Supporting
data). These results clearly demonstrated the suitability of probe
1 for the detection of intracellular F� and Hg2þ ions.

4. Conclusion

In conclusion, based on two fluorophore embedded approach,
we have developed a new fluorescein-rhodamine conjugate 1
useful for the simultaneous detection of both F� and Hg2þ ions
selectively even in the presence of competitive ions. The versatility
of the probe 1 to transform into 2, 3 and 4 with respect to the
presence of F� and Hg2þ in isolation and in combination permits
both linear and ratiometric detection of these ions at ppb levels.
Fluoride and Hg2þ specific optical and fluorescence responses of 1
preclude interference by other competitive ions, and thereby,
overcome the main drawback encountered by other multi-analyte
probes reported in the literature. Further, the probe 1 is cell
membrane permeable, stable at physiological pH and non-lethal
under the experimental conditions, and hence, could be used for
the detection and imaging of W138 normal lung fibroblast cells
contaminated with F� and Hg2þ ions. We hope that the two fluo-
rophore embedded approach demonstrated in this communication
will help augment the design and development of new multi-
analyte probes.
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