Ring Transformation with Bridged 1,3-Dicarbonyl Heteroanalogues, III1): # 5-(ω-Aminoalkyl)-1,2,4-oxadiazoles by Ring-Transformations of 3-Methylthio-2-aza-3-propeniminium Salts Michael Pätzel and Jürgen Liebscher Fachbereich Chemie, Humboldt-Universität Berlin, Hessische Str. 1-2, D-1040 Berlin, Germany Received September 18, 1989 3-Methylthio-2-aza-3-propeniminium salts 5 react with hydroxylamine after ring transformation under formation of 5-(\omega-aminoalkyl)-1,2,4-oxadiazole hydroiodides 4-HI, which show a remarkable antitussive activity. Ringtransformationen an verbrückten 1,3-Dicarbonyl-heteroanalogen, 3. Mitt.: 5-(ω-Aminoalkyl)-1,2,4-oxadiazole durch Ringtransformation von 3-Methylthio-2-aza-3-propeniminiumsalzen 3-Methylthio-2-aza-3-propeniminiumsalze 5 reagieren mit Hydroxylamin nach einer Ringtransformation unter Bildung von 5-(ω-Aminoalkyl)-1,2,4-oxadiazol Hydroiodiden den 4-Hl. Diese zeigen eine auffällige antitussive Wirkung. EtO N $$\dot{R}_1$$ $2 (n=3)$ R NOH NOH \dot{R}_1 $2 (n=3)$ or \dot{R}_1 A number of ω -aminoalkylheteroaromatics, *i.e.* 3-(β -aminoethyl)-imidazole (histidine)²⁾, 5-(β -diethylaminoethyl)-3-phenyl-1,2,4-oxadiazole (oxolamine)³⁾, and 5-(ω -aryloxyalkyl)-isoxazoles⁴⁾ exhibit interesting pharmacological properties. Various synthetic routes have been followed to produce these specific compounds. 5-(ω -Aminopropyl)- and 5-(ω -aminopentyl)-1,2,4-oxadiazoles 4 (R = phenyl, benzyl, ethyl; R¹ = methyl; n = 1,3) were synthesized by reaction of amidoximes 1 as a N-C-N-O synthon with a lactam acetal 2 or a cyclic amide chloride 3 acting as C synthon⁵⁾. Analogously the application of lactim ethers leads to alkyl-1,2,4-oxadiazoles 4 with an unsubstituted amino group in ω-position⁵⁾. In this type of ring transformation the lactam ring is opened producing the aminoalkyl chain while the oxadiazole ring is formed. 964 Pätzel und Liebscher Table 1: 5-(ω-Aminoalkyl)-1,2,4-oxadiazol-hydroiodides 4-HI | Nr. | R | Ri | n | mp. (°C)
yield | ¹ H-NMR (DMSO) (δ in ppm) | MS
(rel.Int. in %) | |------------|------------------------|----|---|-------------------|--|---| | 4a-: | 4-MeO-Ph | Me | 1 | 158-160
78 | 2.2(m, 2H)CH ₂ ; 2.6(s, 3H)NMe;
3.1(m, 4H)2·CH ₂ ; 3.8(s, 3H)OMe;
7.0(d, J=9 Hz, 2H); 7.8(d, J=9 Hz, 2H);
8.3(br., 1H)NH | | | 4b | 4-Cl-Ph | Me | 1 | 180-181
65 | 2.4(m, 2H)CH ₂ ; 2.9(s, 3H)NMe;
3.5(m, 4H)2·CH ₂ ; 6.8(br., 1H)NH;
7.8(d, J=9 Hz, 2H); 8.1(d, J=9 Hz, 2H) | 252(M ⁺ , 10); 156(17);
137(23); 113(11);
98(11); 75(49); 44(100) | | 4c | -NH-Ph | Me | i | 180-182
68 | 2.4(m, 2H)CH ₂ ; 2.8(s, 3H)NMe;
3.4(m, 4H)2·CH ₂ ; 7.4(s, 5H)Ph;
8.7(s, 1H)NH; 10.1(s, 1H)NH | 232(M ⁺ , 10); 175(17); 133(14);
128(14); 98(16); 77(13);
58(25); 44(100) | | 4d | -NH ₂ | Me | 1 | 183-185
53 | 2.4(m, 2H)CH ₂ ; 3.0(s, 3H)NMe;
3.3(m, 4H)2·CH ₂ ; 6.5(s, 2H)NH ₂ | 156(M ⁺ , 1); 128(10);
99(12); 58(12); 44(100) | | 4e | thien-2-yl | Me | 1 | 204-205
64 | 2.1(q, J=7 Hz, 2H)CH ₂ ; 2.6(s, 3H)NMe;
3.0(t, J=7 Hz, 2H)CH ₂ ; 3.1(t, J=7 Hz, 2H)CH ₂ ;
7.2(t, J=4 Hz, 2H); 7.8(d, J=4 Hz, 1H);
7.9(d, J=4 Hz, 1H) | 223(M ⁺⁺ , 1); 128(19);
58(19); 44(100) | | 4 f | 4-Me ₂ N-Ph | Et | 2 | 174-175
92 | 1.2(t, J=7 Hz, 3H)Me; 1.7(m, 4H)2·CH ₂ ;
2.9-3.1(m, 8H)CH ₂ , NMe ₂ ; 6.7(d, J=9 Hz, 2H);
7.7(d, J=9 Hz, 2H); 7.8(br., 1H)NH | 288(M ⁺ , 4); 203(10); 164(13);
16(23); 127(17); 98(25);
84(26); 71(43); 58(100) | | 4g | 4-Cl-Ph | Me | 3 | 157-158
87 | 1.5(m, 6H)3·CH ₂ ; 2.3(s, 3H)NMe;
2.9(m, 4H)2·CH ₂ ; 7.6(s, J=8 Hz, 2H);
7.9(d, J=8 Hz, 2H) | | ^{*} 13 C-NMR (DMSO) δ in ppm: 22.1; 22.9; 32.5; 47.2; 55.4; 114.5; 118.4; 128.5; 161.5; 167.1; 178.7 We became interested to synthesize 5-(ω -aminoalkyl)-1,2,4-oxadiazoles 4 in a wider scope by employing another type of ring transformation that avoids amidoximes 1. As we could show recently, readily available^{6,7)} 3-methylthio-2-aza-3-propeniminium salts 5 react as 1,3-bifunctional electrophiles with hydrazines in position 1 and 3 giving a ring transformation to ω -aminoalkyl-1,2,4-triazoles^{6,7)}. Consequently the application of hydroxylamine instead of hydrazines as bifunctional nucleophile should lead to ω -aminoalkyl-1,2,4-oxadiazoles 4. While hydroxylamine hydrochloride solution did not work, free hydroxylamine gives smooth reactions with 3-methylthio-2-aza-3-propeniminium salts 5. Products isolated in satisfactory to high yields are the 5-(ω -aminoalkyl)-1,2,4-oxadiazoles 4 which precipitate as hydroiodides 4·HI (Table 1)^{7,8)}. Intermediates such as condensation products 6 or spiro compounds 7, which can also be considered tautomers of 4, were not obtained. 5-(ω -Aminoalkyl)-1,2,4-oxadiazole hydroiodides 4·Hl have been unknown so far. Their structures can be proved by elemental analysis and in particular by spectroscopic methods (Table 1). ¹H-NMR-spectra exhibit the characteristic pattern of chemical shifts of the alkyl chain protons of ω -functionalized heteroaromatics^{1,6,7,9)}: δ N-CH₂-C > δ CH₂-oxadiazole > δ C-(CH₂)_n-C differ significantly from those found in spiro intermediates similar to 7, or in lactamimine derivatives^{1,6,7,9)} such as 6. In addition intensive peaks of 44 (CH₃NHCH₂⁺-onium cleavage), 58 (CH₃NH-CH₂-CH₂⁺) and M⁺-57 (*McLafferty* rearrangement) are found in the MS which are typical of ω -aminoalkyl heteroaromatic compounds^{1,6,7)}. Results of MS also rule out isomeric 3-(ω -aminoalkyl)-1,2,4-oxadiazole structures 8 since fragmentation is analogous to known 5-alkyl-3-aryl-1.2,4-oxadiazoles¹²), i.e. fragment peaks of RCN₂ are found, which are characteristic for 5-alkyl-3-aryl-1,2,4-oxadiazoles but do not fit to isomers 8¹²). Furthermore in analogy to 1,2-oxazole derivatives¹³) isomers 8 can be expected to give fragment peaks of RCO, which are missing in the mass spectra of the compounds obtained. $$\begin{array}{c} N \longrightarrow (CH_2)_{n+2}-NHR^1 \\ R \longrightarrow O, N \\ \underline{8} \end{array}$$ Scheme 3 Additional evidence for structure 4 is given by ¹³C-NMR-spectra. Chemical shifts of C-atoms 3 and 5 of the oxadiazole ring 4a·Hl are found at 167.7 and 178.7 ppm, respectively, which closely correspond to other known 5-alkyl-3-aryl-1,2,4-oxadiazoles ¹²). It is worth mentioning that in the reaction of non-bridged *N*-acyl-thioamides with hydroxylamine an analogous orientation of reactands is found¹⁰. Pharmacological testing of compound 4a·HI revealed that its antitussive activity is similar to that of the commercial antitussivum Oxolamine[®]. Transformation of 3-methylthio-2-aza-3-propeniminium iodides 5 to 5- (ω) -1,2,4-oxadiazole hydroiodides 4·HI represents an efficient method to synthesize these compounds with a wider variability of substituents compared to the known route to the free bases 4^{5}). In particular 3-anilino substituted compounds 4·HI (R = anilino) become available. Pharmacological test: citric acid induced gough (guinea pig): ED₅₀ = 75.5 (40.3 - 129.8) mg/kg letal dose (mouse): LD₅₀ = 1000 mg/kg Furthermore these results once again demonstrate the wide scope of the ring transformation principle (see⁶⁾ and ref. cited there) transforming bridged 1,3-dicarbonyl heteroanalogues to ω -functionalized heteroaromatic compounds. ## **Experimental Part** #### Hydroxylamine solution 35 g (0.5 mol) of hydroxylamine hydrochloride are dissolved in about 200 ml of boiling methanol. A solution of 12.5 g (0.5 mol) sodium in 250 ml methanol is added. The resultant solution is filtered while still hot. Methanol is added to the filtrate up to a total volume of 500 ml. # $\textit{5-}(\omega\text{-}\textit{Aminoalkyl})\text{-}\textit{1,2,4-}oxadiazole\,\textit{Hydroiodides}\,\textbf{4}\cdot \textbf{HI}$ 0.01 mol of the 3-methylthio-2-aza-3-propeniminium iodide 5⁶), prepared from the corresponding semicyclic N-thioacylamidine¹¹) and CH₃I, are added to 15 ml of freshly prepared methanolic solution of hydroxylamine (see above). The mixture is refluxed for 30 min. Product 4-HI precipitates during cooling to room temp. It is filtered by suction and recrystallized from ethanol. ### References - Part II: J. Liebscher, M. Pätzel, and U. Bechstein, Synthesis 1989, 968. - P. Karlson: "Biochemie f ür Mediziner und Naturwissenschaftler", p. 340, Georg Thieme Verlag, Stuttgart 1974. - 3 A. Kleemann and J. Engel: "Pharmazeutische Wirkstoffe", Georg Thieme Verlag, Stuttgart 1982. - 4 G.D. Diana, R.C. Oglesby, V. Akullian, P.M. Carabateas, D. Cutcliffe, J.P. Mallamo, M.J. Otto, M.A. McKinley, E.G. Maliski, and S.J. Michalec, J. Med. Chem. 30, 384 (1987). - 5 A. Botta, Liebigs Ann. Chem. 1978, 306. - 6 J. Liebscher, M. Pätzel, and Y.F. Kelboro, Synthesis 1989, 672. - M. Pätzel, Thesis, Humboldt-Universität, Berlin 1989. - 8 M. Pätzel, U. Radics, and J. Liebscher, DDR-Patent 263987; C.A. 111, 153814 (1989). - G. Dannhardt, Y. Geyer, K.K. Mayer, and R. Obergrusberger, Arch. Pharm. (Weinheim) 321, 17 (1988). - 10 Y. Lin, J.J. Hlavka, P. Bitha, and S.A. Lang, J. Heterocycl. Chem. 20, 1693 (1983). - 11 J. Liebscher, M. Pätzel, and U. Bechstein, Z. Chem. 26, 289 (1986). - 12 S. Chiou and H.J. Shine, J. Heterocycl. Chem. 26, 1256 (1989). - 13 J.H. Bowie, R.K.M.L. Kallury, and R.G. Cooks, Austr. J. Chem. 22, 563 (1969). [Ph871]