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Abstract: l-Buten-3-yne (1) and [4-D]l-buten-3-yne (la) have been treated between 800 and 1000 *C 
under flash vacuum pyrolysis as well as under gas phase pyrolysis in nitrogen and the effluents 
thoroughly analyzed by C-C, GC/MS, Gc/FrIR, IH- and 2H-NMR spectro~mpy. Since no evidence for 
a D-shift in la from the acetylcnic to the olefinic position could be detected, the formation of 
cyclobutadiene as a highly reactive species from the intermediately generated vinyl vinylideno has to 
be excluded. 

At high temperatures, alkynes are known to undergo an acetylene-vinylidene rearrangement I in the course of 
which vinylidene species are formed via 1,2-R-shift reactions. I fR  stands for hydrogen or deuterium the driving 
force of this migration is proved to have a maximum, while alkyl substituents at the acetylenic C atoms hardly 
show such a reaction event. 2 
Recently we have demonstrated a 1,2-styryl migration if vinyl substituted alkynes are exposed to temperatures 
above 550 °C.3 Whenever alkylidene and alkenylidene carbenes are qualified to stabilize by intrarnolecular 1,x- 
C,H insertion, such cycloisomerizations compete with the back reaction to the parent alkynes. This is basically 
the case whenever the prerequisites for a 1,5- or a 1,6-C,H insertion ate given.2, 4 Not yet finally decided, 
however, is the question whether, at high temperatures, vinyl substituted vinylidenes are able to undergo 1,4- 
C,H insertion 2 forming cyclobutadiene as a highly reactive intermediate (see Scheme 1). If'this were the case 
[4-D] l-buten-3-yne ( la )  should isomerize by retro-insertion into its isomers l b  and lc  having the D atom in 
the olefinic part of  the molecule. In order to examine experimentally these important questions 5 we synthesized 
1 from 3-butyn-1-yi toluene-p-sulfonate as already reported in ref., 6 and l a  by decomposition of  the Grignard 
compound of  I with D20 , and used both as starting compounds for pyrolysis studies. 
When 1 is pyrolysed at 800 °C (0.3 s reaction time) in a tubular quartz reactor (for set up see ref. 7) in twenty- 
five-fold molar excess of nitrogen, its conversion degree amounts to 30 % and the products listed in table 1 are 
formed, obviously by radical processes. When 1 is exposed, however, to the same temperature or even at 
1000 °C under flash vacuum pyrolysis conditions (0.1 to 1.0 mbar), the degree of  conversion is reduced to 
values < 1% and synthesis reactions can be neglected. 
The 1-buten-3-yne fractions recovered from the analogous pyrolysis runs of la ,  were thoroughly analyzed by 
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Table Composition of  the aroduct of  the pyrolysis of  1 in nitro ..n at 800 °C 

product j S product I S product S 
ethyne 0.5 styrene a 36.0 1-methylene-lH-indene tr. 
butadiyne b 0.5 1,5-dihydropentalene a 4.0 naphthalene 3.0 
benzene a 0.5 5 compounds (C8H8) 2.0 9-me~hylenefluorene tr. 
toluene tr. indene 0.5 phenanthrene tr. 
i ethynylbenzene b ,1.0 4-phenyl-l-buten-3-yne tr. 

conditions: reaction time: 0.3 s, conversion degree: 30 %, data given in selectivity units (S), S = moles formed per 100 moles of 
1 converted. 
a) already described in ref. 8, b) already described in ref. 9 

GC/MS and demonstrate that the D-depletion only took place to an extent below one percent, and that 
dideuterated 1 could not be detected. The FTIR spectra of  the 1-buten-3-yne fraction recovered from FVP runs 
of  l a  do not show the characteristic stretch vibrations of  olefinic C-D bonds. This statement is thought to be 
certain because olefinic as well as acetylenic C-H and C-D stretch vibrations are clearly separated in the FT1R 
spectra (see table 2). These findings are also supported by the 1H- and 2H-NMR data (for coupling constants 
see notel°): the corresponding data of  l a  before and after the pyrolysis runs in question do not show any 
significant change and, because of  that, the formation of  cyclobutadiene (2a) as a reaction intermediate by 1,4- 
C,H insertion o f  the precedingly formed vinylidene (see scheme 1) has to be considered as an unimportant 
pathway under conditions where 1,5- and 1,6-C,H insertions are well proved. 

Table 2 C-H- and C-D- stretch vibrations in the FTIR spectra of  1-buten-3-),ne 

vibration wave number [cm "1] vibration wave number [cm -1] 

acetyl. C-H 3319 acetyl. C-D 2590 
olefin. C-H 3100 olefin. C-D 2330 
olefin. C-H 3039 olefin. C-D 2285 
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