Journal of Organometallic Chemistry, 216 (1981) 177-184 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands # REACTIONS OF TELLURIUM(IV) COMPOUNDS WITH TRIMETHYL(DIALKYLAMINO)SILANES JACK M. MILLER and RAJ K. CHADHA Chemistry Department, Brock University, St. Catharines, Ontario, L2S 3A1 (Canada) (Received January 23rd, 1981) ## Summary RTeCl₃ (R = C_6H_5 , p-CH₃OC₆H₄ or p-C₆H₅OC₆H₄) reacts with Me₃SiNR'₂ (R'₂ = Et₂, C₄H₈) under dry nitrogen atmosphere to give R(R'₂N)TeCl₂ and Me₃-SiCl. The products readily decompose to give (R'₂NH₂)⁺(RTeCl₄)⁻. The products have been characterized by ¹H NMR, IR and mass spectra. R₂TeCl₂ does not react with Me₃SiNR'₂ even on refluxing for 6 h. Et₂NLi, however, reduces R₂TeCl₂ to R₂Te. ## Introduction Organotellurium compounds containing a tellurium—metal or tellurium—metalloid bond have been the subject of a number of studies [1–3], though very little work has been done on compounds containing a tellurium—nitrogen bond. Recently compounds with such a Te—N double bond have been reported. The imido derivatives of tellurium have been prepared by the reaction of R_2 TeO with $R'SO_2NH_2$ [4] and TeX_4 with $RSO_2N(SiMe_3)_2$ or $RC(O)N-(SiMe_3)_2$ [5]. The compounds of the type $(R_2N)_2\text{Te}X_2$ [6] and $R_2\text{NTe}F_5$ and $(R_2N)_2\text{Te}F_4$ [7] are also known. We now report our results for some organotellurium compounds containing a tellurium—nitrogen single bond. We have prepared several aryl(dialkylamino)tellurium compounds by the reaction of $RTeCl_3$ with silylated secondary amines. In addition to these reactions, we have also studied the reactions of $R_2\text{TeCl}_2$ and $TeCl_4$ with trimethyl(dialkylamino)-silanes. ### Results and discussion Aryltellurium trichlorides (RTeCl₃) react vigorously with trimethyl(dialkylamino)silanes in benzene solution in a dry nitrogen atmosphere according to 0022-328X/81/0000-0000/\$02.50, © 1981, Elsevier Sequoia S.A. the equation: RTeCl₃ + Me₃SiNR'₂ $$\xrightarrow{\text{benzene}}$$ Me₃SiCl + R(R'₂N)TeCl₂ R = p -MeOC₆H₄, Ph, p -PhOC₆H₄ (I--V) R'₂ = Et₂, C₄H₈ (see Table 1) The addition of petroleum ether $(30-60^{\circ}\text{C})$ to the reaction mixture results in the separation of species I-V, while on keeping the unseparated mixture as such for 4 or 5 days and then reducing the volume to half under vacuum yields VI-VIII. However, IX was obtained by the addition of petroleum ether prior to the recovery of IV. $$R(R_2'N)TeCl_2 \xrightarrow{solvent} (R_2'NH_2)(RTeCl_4)^-$$ main reaction (VI—IX) 2Me₃SiCl + H₂O → Me₃SiOSiMe₃ + 2HCl side reaction The disiloxane present in the reaction mixture has been detected mass spectrometrically. The yields of I—V or VI—IX are never more than 40%. The products I—V are highly sensitive to moisture and air. Since the conversion of $R(R_2'N)TeCl_2$ to $(R_2'NH_2)^+(RTeCl_4)^-$ requires two molecules of HCl, this can be formed either from the interaction of Me_3SiCl and moisture, or the interaction of $R(R_2'N)TeCl_2$ or unreacted $RTeCl_3$ with the solvent. The reaction was monitored by 1H NMR spectroscopy and with passage of time, only a trace of disiloxane was observed. Thus we can conclude that the conversion of $R(R_2'N)TeCl_2$ to $(R_2'NH_2)^+(RTeCl_4)^-$ is mainly due to the interaction of $R(R_2'N)TeCl_2$ or $RTeCl_3$ with the solvent. The formation of $R(R_2'N)$ TeCl₂ has been observed not only in benzene, but also in toluene or CH_2Cl_2 . However, an equimolar mixture of $RTeCl_3$ and Me_3 -SiNR'₂ in another aprotic solvent such as CCl_4 does not proceed with Si—N cleavage even at reflux temperature, but provides an addition product of 1:1 stoichiometry. This suggests that the solvent may play a significant role in this reaction. Similar observation was made by Vasishat and Goyal in case of reaction of $M_3SiNC_4H_8$ with $TiCl_4$ and $FeCl_3$ [8]. In the case of reaction with TeCl₄, it has not been possible to isolate R'_2N -TeCl₃, as such; instead $(R'_2NH_2)_2$ ⁺ $(TeCl_6)^2$ was always obtained, the yield being 40% when R'_2 = Et₂ and 15% when R'_2 = C₄H₈. $$TeCl_4 + Me_3SiNR'_2 \xrightarrow{benzene} Me_3SiCl + (R'_2N)TeCl_3$$ $$(R_2'N)$$ TeCl₃ $\xrightarrow{\text{solvent}}$ $(R_2'NH_2)_2^+$ $(\text{TeCl}_6)^2$ (X, XI) Another major reaction product is elemental tellurium, thus additionally accounting for the chlorine in the HCl required for the formation of X or XI. However, since some Me₆Si₂O has been detected in the reaction mixture, the Table 1 and $^1\mathrm{H}$ nmr spectra of the compounds 1–X1 | 2 | | | | | | | | | | | | | | |----------------------|---|----------|-------------------------|--------|---------|-------|---------|------------|----------|-------|-------|---------|------| | Tinos
Contraction | Componing | Analysis | Analysis Found (calcd.) | alcd.) | | Yield | M.p. | H NMR a | u | | | | | | | | Ö | Ħ | z | ದ | | (0,0) | H(1) | H(2) | -осн3 | H(A) | H(B) | HN | | _ | p-MeOC ₆ H ₄ (Et ₂ N)TeCl ₂ | 34.96 | 4.50 | 3.71 | 18.80 | 30 | 103 | 1.21 | 3 44 | 3.87 | 7.07 | 66.8 | | | | | (34.67) | (4.77) | (3.52) | (18,83) | | • | 1 | : | | 5 | 3,0 | | | H | $p ext{-}MeOC_6H_4(C_4H_8N)TeCl_2$ | 35,14 | 3.99 | 3.73 | 18,90 | 35 | 09 | 1.87 | 3.51 | 3.86 | 7.06 | 8 9 8 | | | į | | (32.09) | (3.72) | (3.44) | (19.04) | | | | t
) | | | 3 | | | Ħ | Ph(Et ₂ N)TeCl ₂ | 34,44 | 4.52 | 3.94 | 20,29 | 31 | 105 | 1,16 | 2.90 | | 7.38 | | | | i | | (34.52) | (4.31) | (4.03) | (20.43) | | | | | | | | | | ≥ | p-PhOC ₆ H ₄ (Et ₂ N)TeCl ₂ | 43.51 | 4.38 | 3,30 | 16,30 | 30 | 135-138 | 1.20 | 2.96 | | 7 98 | 8 47 | | | | | (43.68) | (4.32) | (3.18) | (16.15) | | 1 |)

 | ì | | 9 | 7.10 | | | > | p-PhOC ₆ H ₄ (C ₄ H ₈ N)TeCl ₂ | 43.84 | 4,04 | 3.28 | 16.62 | 40 | 166-168 | 1.85 | 2.1 | | 7 01 | 26 8 | | | | | (43.88) | (3.88) | (3.20) | (16.22) | | |)
! | | | 720 | 00.0 | | | Z, | $(Et_2NH_2)^{\dagger}(p\cdot MeOC_6H_4TeCl_4)^{-}$ | 29.24 | 4,49 | 3.00 | 31.23 | 25 | 9092 | 1.24 | 3.05 | 3 84 | 900 | 97 8 | 9 04 | | | | (29.29) | (4.22) | (3.11) | (31.51) | | | ! | 2 | 500 | 9 | 0 12 10 | 2 | | VII | $(C_4H_8NH_2)^{\dagger}(p\cdot MeOC_6H_4TeCl_4)^{-}$ | 29.71 | 3.75 | 3,25 | 31.30 | 23 | 170 | 1.83 | 3.09 | 3.81 | 7 0.4 | α
π | 105 | | | | (29.42) | (3.79) | (3.12) | (31.65) | | | 1 | | 1 | 5 | 3 | 7:20 | | VIII | $(Et_2NH_2)^{T}(PhTeCl_4)^{T}$ | 28.53 | 4,04 | 3,33 | 33.76 | 21 | 100-101 | 1.14 | 2.90 | | 7 48 | 8 59 | 1 00 | | ; | * | (28.54) | (4.27) | (3.36) | (33.36) | | | !
! | ì | | 2 | 40.0 | 7:30 | | × | $(\text{Et}_2\text{NH}_2)^{\dagger}(p\text{-PhOC}_6\text{H}_4\text{TeCl}_4)^{-}$ | 37.40 | 4.26 | 2.71 | 27.45 | 40 | 148-150 | 1.17 | 2.92 | | 7 04 | 8 43 | 00 6 | | i | , | (37.46) | (4.10) | (2.73) | (27.70) | | | ! | | | • | 0.50 | 60.4 | | × | $(\text{Et}_2\text{NH}_2)^{7}(\text{TeCl}_6)^{2}$ | 19.49 | 5.08 | 5,62 | 43.63 | 40 | 215-217 | 1.17 | 2.91 | | | | 09 8 | | į | - | (19.65) | (4.91) | (5.73) | (43.59) | | | | !
! | | | | 5 | | × | $(C_4H_8NH_2)^2_2(TeCl_6)^2$ | 19.71 | 4.32 | 5,80 | 43.76 | 15 | 200-202 | 1.84 | 3.10 | | | | 600 | | | | (19.81) | (4.13) | (5.78) | (43.95) | | | ! | į | | | | 20.0 | ^a Chemical shifts, in ppm from TMS, I—V in CDCl₃ and VI—XI in DMSO \mathcal{A}_6 ; H(1) = high field methyl or methylene, H(2) = low field methylene, H(A) = meta axomatic protons, J(1—2) ~ 7 Hz, J(A—B) = 9 Hz. possibility of the interaction with moisture cannot be ruled out. The reaction of R₂TeCl₂ with Me₃SiNR'₂ was not successful, even on refluxing the solution in benzene for 6 h. This is consistent with the fact that TeCl₄ and RTeCl₃ are electrophilic reagents, while R₂TeCl₂ is insensitive to nucleophilic attack [9]. Another possible reason for the failure of this reaction may be steric hinderance in R₂TeCl₂. Another reagent which produces metal—nitrogen bonds in inorganic compounds is N,N'-lithium diethylamide [10]. In the reaction of R_2TeCl_2 (R=Ph, $p\text{-MeOC}_6H_4$) with Et_2NLi , it was found that instead of forming a Te—N bond, this reagent reduces tellurium(IV) to tellurium(II). Thus R_2Te was obtained. However, it is also possible that Et_2NLi reacts with R_2TeCl_2 to give $R_2Te(NEt)_2$ which then decomposes to R_2Te and Et_2NNEt_2 . The yield of R_2Te from the dichloride was excellent, but the highly air- and moisture-sensitive Et_2NLi cannot be recommended as a routine reducing agent because more convenient reducing agents are available [1]. Compounds successfully prepared are listed in Table 1, along with their melting points, analytical and 1H NMR data. The compounds of type $R(R_2'N)$ -TeCl₂ are yellow needles and are recrystallisable from CH_2Cl_2 /petroleum ether (30–60°C). The compounds decompose slowly at room temperature during 2–3 weeks. Integration of peaks in 1H NMR spectra served to confirm the stoichiometry indicated by the analytical data. The aromatic signals in p-methoxy substituted products show four-line AB signals with J(A-B) of 9 Hz. No cross ring couplings of the AA'BB' variety are detected. The aromatic protons in the ortho position to Te appears at a lower field than meta protons [11]. Selenium compounds containing an R₂N—Se function exhibit an IR band at 540 cm⁻¹ which has been assigned to the Se—N stretching frequency [12]. The corresponding Te—N stretching frequency is, thus expected to be below 540 TABLE 2 IR SPECTRA (cm⁻¹) OF THE COMPOUNDS I—XI | I | II . | III | | IV | v | Assignment | |-------|---------|-------|----------------|-------|--------------|------------------------------------| | 468m | 468w | 473 | (sh) | 460w | 475s | Te-N str. | | | | 455s | | | | | | 280s | 291(sh) | 292 | !s | 203s | 280m
255m | Te—Cl sym. str.
Te—Cl asy. str. | | 255m | 261w | 250 |)s | 259s | | | | 269w | 270w | 275 | is | 278s | 267w | Te—C(phenyl) str. | | 248s | 249w | | | 253m | 247s | or t,t'(phenyl) | | VI | VII | vni | IX | X a | ХI | Assignment | | 2545w | 2560m | 2520w | 2410m | 2475m | 2418w | N-H str. | | 2418w | 2418m | 2420w | 2380m | 2430m | 2380w | | | 2335w | 2345m | | | | | | | | | | | 249w | 247w | Te-Cl str. | | | | | | 228w | 230w | ν_3 | | 277s | 275s | 279w | 270m | | | $\nu_2(A_1)$ | | 266m | | 267m | 260m | | | | | 254s | 255(sh) | | 258(sh) | | | $\nu_7(E)$ | | 248s | 2425 | 247w | J - () | | | • | ^a Raman Spectrum shows bands at 340m, 286m and 249m for v_1 and v_2 . cm⁻¹. Careful examination of the IR spectra of the compounds of the type R(R'₂N)TeCl₂ and comparison with the IR spectra of R₂TeCl₂ and R'₂NH indicated that the absorption peaks in the region 460—475 cm⁻¹ (Table 2) would seem a reasonable choice for Te—N stretching frequency. The appearance of Te—Cl stretching frequencies in the region where R₂TeCl₂ absorbs [13] suggests the structure of R(R'₂N)TeCl₂ must be similar to R₂TeCl₂. Thus the chlorine atoms occupy axial positions in a pseudotrigonal bipyramid. The ionic products VI—XI exhibit association between alkyl ammonium cation and anion. $(Et_4N)_2^+(TeCl_6)^2^-$ showed bands at 280 and 243 (for ν_1 and ν_2 , respectively, Raman active) and 228 (for ν_3 , IR active) cm⁻¹ [14], whereas $(Et_2NH_2)_2^+(TeCl_6)^2^-$ (X) shows three bands in the Raman spectrum and 2 bands in the IR spectrum (Table 2). The IR spectra of VI—IX also shows three or four bands, instead of two, for the IR active Te—Cl symmetric and asymmetric CI The $$N(C_2H_5)_2$$ CI Thermal decomposition $$\begin{bmatrix} (CH_3O \longrightarrow Te) \\ Te \end{bmatrix}^+ .$$ Fig. 1. Partial fragmentation scheme for I. stretches [15]. This is consistent with a lower symmetry, probably due to hydrogen bonding to the chlorine. Further evidence for the hydrogen bonding comes from the ¹H NMR spectra of the compounds. A linear relationship has been found between the chemical shift of the NH proton signal, (relative to the CH₂ signal), and temperature. An increase of temperature from -40 to 50°C, e.g., in VI, causes the NH proton signal to shift toward the CH₂ signal, i.e. to higher field, by approximately 1.6 ppm. It was further observed that dilution of the compounds by the solvent had an effect similar to raising the temperature. Tellurium is a polyisotopic element, with mass varying between 130-120, and in the mass spectra of tellurium compounds the various fragments containing tellurium atoms are very easily recognisable because of their typical isotopic cluster [16]. In the mass spectra of I-V, the principal fragments formed are $RTeCl_{2}^{+}, RTeCl^{+}, R_{2}Te^{+}, RTe^{+}, RTe^{+}, R_{2}^{+}, R_{2}^{+}, TeCl^{+}, RCl^{+}, RCl^{+}, R_{2}^{\prime}NH^{+}, R_{2}^{\prime}N^{+}, R_{2}^{\prime}N^{+},$ $C_4H_{10}^+$, $C_3H_7^{+*}$, $C_2H_6^+$ and $C_3H_3^{+*}$. The parent or molecular ion was clearly shown by only I. Two other compounds, II and III show only a trace of molecular ion. The formation of (p-MeOC₆H₄)₂Te⁺ may be the result of facile thermal decomposition of the compound within the inlet of ion source of the mass spectrometer. This ion is one of the few for which adequate metastable ion data can be obtained, consequently, a partial metastable ion-supported fragmentation scheme for I is proposed in Fig. 1. The detection of RCl⁺ species (in I—IX) suggests the transfer of a chiorine atom from the tellurium to the hydrocarbon part of the molecule. The ionic products VI-IX and X and XI show RTeCl₂⁺ and TeCl₃⁺, respectively, as the highest mass cluster detected other than Te₂⁺. ## Experimental The reactions were carried out in flame dried glassware under P_2O_5 -dried nitrogen gas. All other manipulations were done in a dry box occasionally flushed with nitrogen gas. The solvents were distilled and sodium dried. Me₃-SiCl, Et₂NH and C₄H₈NH were purchased from Alfa Inorganics and were used after drying and distillation. TeCl₄ was used as such. Me₃SiNR'₂ [17,18] and organotellurium compounds [1,19] were prepared by literature methods. The IR spectra (4000—200 cm⁻¹) were recorded on a Perkin-Elmer 225 grating spectrophotometer using KBr and polyethylene windows. Mass spectra were recorded on AEI-MS/30 double beam spectrometer at 70 ev using PFK as a reference and a direct probe inlet. The Fortran program BMASROS was used to calculate theoretical isotope clusters of tellurium- and chlorine-containing fragments. ¹H NMR spectra were recorded on a Bruker WP-60 multinuclear magnetic resonance, with an internal deuterium lock. Raman spectra were obtained with a Jarrell Ash-based instrument built at Brock University. Microanalyses were performed by Guelph Chemical Laboratories Ltd. General procedure for reactions of RTeCl₃ and Me₃SiNR'₂ A 200 ml round bottom flask was set up with a magnetic stirrer, reflux condenser and addition funnel, flushed with nitrogen, and flame dried. RTeCl₃ (~7—10 mmol) and 50 ml of anhydrous benzene were placed in the flask and $Me_3SiNR'_2$ (~7-10 mmol) was added dropwise from the addition funnel. After stirring for 3 h, the contents were filtered in a Schlenk-type apparatus unit to remove any insoluble impurity present. Products were obtained from this filtrate A in the following ways: Preparation of I, II and III. To the filtrate A, 50 ml petroleum ether (30–60°C) were added. A slurry formed slowly and after being allowed to settle for 2–3 h, a clear solution was decanted. More petroleum ether (30–60°C) was added to the clear solution, which, on standing overnight, deposited yellow needle-like crystals, which were separated and dried in vacuum. Recrystallization from CH_2Cl_2 /petroleum ether gave bright yellow needles of I, II, or III. Mass spectrum for a representative compound, with relative abundances for isotopes 130 Te and 35 Cl is given below. Mass spectrum of I: M^{+} (2.4%), $R_{2}Te^{++}$ (13.0%), $RTeCl_{2}^{++}$ (3.0%), $RTeCl_{2}^{++}$ (68.0%), $C_{6}H_{4}OTeCl^{++}$ (12.3%), RTe^{++} (63.4%), $C_{6}H_{4}OTe^{++}$ (20.7%), R_{2}^{++} (32.9%) $C_{13}H_{11}O_{2}^{++}$ (39.0%), $C_{5}H_{4}Te^{++}$ (11.0%), $C_{12}H_{11}O^{++}$ (7.2%), $TeCl^{++}$ (20.1%), RCl^{++} (36.6%), Te^{++} (9.8%), RTe^{++} (1.2%), R^{++} (4.9%), $C_{6}H_{4}O^{++}$ (28.0%), $R_{2}^{+}NH^{++}$ (67.1%), $R_{2}^{+}N^{++}$ (61.0%), $C_{5}H_{4}^{+++}$ (23.2%), $C_{4}H_{10}^{++}$ (100.0%). Preparation of VI, VII and VIII. The filtrate A was allowed to stand for 4-5 days and then on reducing the volume to half under vacuum, colourless crystals of VI, VII or VIII were obtained, which were filtered, washed twice with 2-3 ml benzene and dried in vacuum. Mass spectrum of VIII: $RTeCl_2^+$ (0.6%), Te_2^+ (2.8%), $RTeCl^{+*}$ (5.0%), RTe^+ (13.4%), $TeCl^+$ (1.0%), R_2^{+*} (2.2%), Te^{+*} (5.0%), RCl^+ (5.0%), R^+ (46.9%), $R_2'NH^{+*}$ (20.6%), $R_2'N^+$ (15.0%), $C_4H_{10}^+$ (100.0%), $C_4H_3^{+*}$ (25.0%), $C_2H_6N^+$ (43.7%), HCl^{+*} (69%). Preparation of IV, V and IX. The addition of 50 ml of petroleum ether to the filtrate A gave a dull white precipitate, which upon recrystallization from benzene gave IX. When more petroleum ether $(30-60^{\circ}\text{C})$ (100 ml) was added to the filtrate, yellow needles of IV or V were separated which were recrystallized from CH₂-Cl₂/petroleum ether $(30-60^{\circ}\text{C})$. Mass spectrum of V: RTeCl₂⁺ (0.2%), R₂⁺⁺ (1.0%), RTeCl⁺⁺ (1.0%), RTe⁺ (4.2%), Te₂⁺ (2.3%), C₆H₄OTe⁺⁺ (0.8%), RCl⁺ (5.8%), C₅H₄Te⁺⁺ (1.6%), R⁺ (4.7%), TeCl⁺ (2.6%), Te⁺⁺ (5.8%), C₆H₄O⁺⁺ (4.2%), R₂'NH⁺⁺ (7.4%), R₂'N⁺ (8.9%), C₄H₈⁺ (100.0%), C₄H₃⁺ (63.2%), C₃H₈⁺⁺ (42.1%). Reaction of p-MeOC₆H₄TeCl₃ with Me₃SiNC₄H₈ in CCl₄ In a similar reaction set up, p-MeOC₆H₄TeCl₃ (1.14 g, 3.3 mmol) was treated with (0.5 g, 3.3 mmol) Me₃SiNR'₂ in 50 ml CCl₄. The reaction was stirred for 12 hours and was subsequently filtered to remove any insoluble impurity. Ether (50 ml) was then added causing a white precipitate which was separated immediately by filtration, washed with ether and dried in vacuum to yield 0.7 g (45%) of a highly moisture- and air-sensitive adduct, p-MeOC₆H₄TeCl₃ · Me₃Si-NC₄H₈ (m.p. 75–77°C), which could not be recrystallized satisfactorily. Found: C, 34.00; H, 4.43; N, 2.75; Cl, 21.60. Calcd. for C₁₄H₂₉ONSiTe: C, 34.70; H, 4.96; N, 2.89; Cl, 22.00%. A similar reaction with Me₃SiNEt₂ in CCl₄ also gave a 1:1 adduct, m.p. 132-135°C. ## Reaction of TeCl₄ and Me₃SiNEt₂ In a 500 ml round bottom flask equipped with a magnetic stirrer were placed 3.02 g TeCl₄ (11.2 mmol) and 100 ml benzene. Me₃SiNEt₂ (1.62 g, 11.2 mmol) in 100 ml benzene was added very slowly over a period of 6 h. The colour of the reaction mixture changed from yellow to green and a black muddy substance (tellurium) separated. The reaction mixture was stirred for another 6 h and filtered in a Schlenk-type filtration unit. The volume of filtrate was reduced to half by applying vacuum. Fine yellowish green crystals separated slowly from the filtrate. The crystals were washed with ether and dried in vacuum. Extraction of the black muddy residue with acetone gave another crop of yellowish green crystals. Both the crops were combined and recrystallized from acetone/CH₂Cl₂ to give X. A similar reaction of TeCl₄ with Me₃SiNC₄H₈ gave XI. ## Reaction of Ph₂TeCl₂ with Et₂NLi In a 200 ml three-necked flask equipped with a magnetic stirrer, nitrogen gas inlet, a reflux condenser and septum were placed 1.73 ml (16 mmol) of Et₂NH in 20 ml anhydrous ether at -10° C. BuLi (1.06 g, 16 mmol) was admitted slowly through septum so that a white precipitate of Et₂NLi was formed. The septum was then replaced with an addition funnel and Ph₂TeCl₂ (2.94, 8 mmol) in 40 ml benzene was added dropwise with constant stirring in 2 h. The contents were refluxed for an additional hour and were filtered on cooling to remove LiCl. The filtrate was fractionally distilled to obtain yellow oil of Ph₂Te at 112°C/1 mmHg. Yield 85%. A similar reaction of LiNEt₂ with $(p\text{-MeOC}_6H_4)_2\text{TeCl}_2$ gave $(p\text{-MeOC}_6H_4)_2\text{Te}$. Yield 80%, m.p. 54°C, literature [1] 53–54°C. ## Acknowledgements The authors thank the Natural Science and Engineering Research Council of Canada for an operating grant (J.M.M.), and thank Tim Jones for running the mass spectra. #### References - 1 K.J. Irgolic, The Organic Chemistry of Tellurium, Gordon and Breach, New York, 1974. - 2 J.E. Drake and R.T. Hemmings, Inorg. Chem., 19 (1980) 1879. - 3 K.J. Irgolic, J. Organometal. Chem., 188 (1980) 65. - 4 V.I. Naddaka, V.P. Garkin, I.D. Sadekov and V.I. Minkin, Zh. Org. Khim., 13 (1977) 220. - 5 L.N. Markovskii, E.A. Stukalo and G.P. Kunitskaya, Zh. Org. Khim., 13 (1977) 2055. - 6 L.N. Markovskii, E.A. Stukalo and G.P. Kunitskaya, Zh. Org. Khim., 13 (1977) 2514. - 7 G.W. Fraser, R.D. Peacock and P.M. Watkins, J. Chem. Soc., (A) (1971) 1125. - 8 S.K. Vasishat and V. Goyal, Inorg. Chimica Acta, 44 (1980) L115. - 9 M. Albeck and S. Shaik, J. Chem. Soc. Perkin Trans., (1975) 1223. - 10 D.C. Bradley, Advances in Inorganic Chemistry and Radiochemistry, 15 (1972) 259. - 11 F.J. Berry, E.H. Kustan, M. Roshani and B.C. Smith, J. Organometal. Chem., 99 (1975) 115. - 12 J. Goubeau and U. Weser, Z. Anorg. Allg. Chem., 319 (1963) 276. - 13 W.R. McWhinnie and M.G. Patel, J. Chem. Soc. Dalton Trans., (1972) 199. - 14 D.M. Adams and D.M. Morris, J. Chem. Soc. (A), (1967) 2067. - 15 N. Petragnani, J.V. Comasseto and Y. Kawano, J. Inorg. Nucl. Chem., 38 (1976) 608. - 16 M. Albeck and S. Shaik, J. Organometal. Chem., 91 (1975) 307. - 17 R.O. Sauer and R.H. Hasek, J. Amer. Chem. Soc., 68 (1946) 241. - 18 L. Birkofer, P. Richter and A. Ritter, Chem. Ber., 93 (1960) 2804. - 19 R.C. Paul, K.K. Bhasin and R.K. Chadha, J. Inorg. Nucl. Chem., 37 (1975) 2337.