Selective Photocatalytic Oxidation of Alcohols to Aldehydes in Water by TiO₂ Partially Coated with WO₃

Daijiro Tsukamoto,^[a] Makoto Ikeda,^[a] Yasuhiro Shiraishi,^{*[a]} Takayoshi Hara,^[b] Nobuyuki Ichikuni,^[b] Shunsuke Tanaka,^[c] and Takayuki Hirai^[a]

Abstract: Semiconductor TiO₂ particles loaded with WO₃ (WO₃/TiO₂), synthesized by impregnation of tungstic acid followed by calcination, were used for photocatalytic oxidation of alcohols in water with molecular oxygen under irradiation at $\lambda > 350$ nm. The WO₃/TiO₂ catalysts promote selective oxidation of alcohols to aldehydes and show higher catalytic activity than pure TiO₂. In particular, a catalyst loading 7.6 wt% WO_3 led to higher aldehyde selectivity than previously reported photocatalytic systems. The high aldehyde selectivity arises because subsequent photocatalytic decomposition of the formed aldehyde is suppressed on the catalyst. The TiO₂ surface of the catalyst, which is

Keywords: alcohols • aldehydes • oxidation • photocatalysis • water

active for oxidation, is partially coated by the WO₃ layer, which leads to a decrease in the amount of formed aldehyde adsorbed on the TiO₂ surface. This suppresses subsequent decomposition of the aldehyde on the TiO₂ surface and results in high aldehyde selectivity. The WO₃/TiO₂ catalyst can selectively oxidize various aromatic alcohols and is reusable without loss of catalytic activity or selectivity.

Introduction

Since the discovery of redox properties of photoirradiated titanium dioxide (TiO_2) ,^[1] heterogeneous photocatalysis with TiO_2 has mainly been employed for the decomposition of harmful organic compounds in air and water, promoting mineralization of these compounds into CO_2 and H_2O .^[2] Application of TiO_2 photocatalysis for organic synthesis has also attracted much attention. Several TiO_2 -based photocatalytic systems have been proposed so far;^[3] however, many of these systems need to be performed either in organic solvents or in the gas phase.^[4] Water is a desirable solvent for chemical reactions, because of environmental concerns, safety, and cost, and organic syntheses in water is currently the focus of much attention.^[5] There are, however, only a few reports of selective photocatalytic organic transforma-

- [a] D. Tsukamoto, M. Ikeda, Dr. Y. Shiraishi, Prof. T. Hirai Research Center for Solar Energy Chemistry and Division of Chemical Engineering Graduate School of Engineering Science Osaka University Toyonaka 560-8531 (Japan) Fax: (+81)6-6850-6271 E-mail: shiraish@cheng.es.osaka-u.ac.jp
 [b] Dr. T. Hara, Dr. N. Ichikuni
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Chiba 263-8522 (Japan)
- [c] Dr. S. Tanaka Department of Chemical, Energy and Environmental Engineering Kansai University Suita 564-8680 (Japan)

tions in water, such as hydrocarbon oxidation,^[6] aromatic hydroxylation,^[7] naphthalene oxygenation,^[8] heterocycle functionalization,^[9] and cyclization of amino acids.^[10] In most cases, photocatalytic reactions on TiO₂ in water proceed through the following steps:^[11] 1) Generation of electron (e⁻) and positive hole (h⁺) pairs by absorption of supra-band gap photons; and 2) oxidation of substrates by h⁺ or the hydroxyl radicals ('OH) formed by the reaction of h⁺ with surface –OH groups or adsorbed H₂O molecules. The oxidation step is, however, nonselective and usually promotes further oxidation of substrate. Selective photocatalytic transformation in water therefore requires selective promotion of the substrate reaction while suppressing the product reaction.^[12]

Selective oxidation of alcohols to aldehydes is one of the most important functional group transformations in organic synthesis.^[13] Photocatalytic reactions with TiO₂-based catalysts successfully promote selective alcohol oxidation when using organic solvents.^[14] Selective photocatalytic oxidation in water is, however, difficult because the formed aldehyde is decomposed by sequential photocatalytic reactions on the TiO₂ surface.^[15] The highest aldehyde selectivity in water has been achieved by the groups of Augugliaro and Palmisano,^[16] using low-crystalline TiO₂ particles that are simply prepared by hydrolysis of TiCl₄ in water followed by aging of the resulting gel. The aldehyde selectivity in the reaction of benzyl alcohol, a typical aromatic alcohol, is only 42% at 50% alcohol conversion, although the reaction of 4-methoxybenzyl alcohol produces the corresponding aldehyde with particularly high selectivity (72-74% at 50% alcohol conversion). In addition, the catalytic activity of the catalysts is much lower than that of crystalline TiO₂.

FULL PAPER

(x

(wt%) =

Results and Discussion

Catalyst preparation: Five kinds of $WO_3(x)/TiO_2$ catalysts

 $WO_3/(WO_3+TiO_2) \times 100$; x=1.4, 3.4, 7.6, 10.3, 18.5) were

synthesized by impregnation of tungstic acid (H₂WO₄) onto

the TiO_2 particles followed by calcination according to a literature procedure^[21] (see Experimental Section). Japan Ref-

erence Catalyst JRC-TiO-4 TiO₂ particles (equivalent to De-

gussa P25; anatase/rutile=80:20) and the required amount

of H₂WO₄ were stirred in an ammonia solution at 353 K and

calcined at 673 K under O_2 , affording $WO_3(x)/TiO_2$ catalysts

as white powders. The properties of the catalysts are sum-

marized in Table 1. Figure 1 shows the diffuse reflectance

loadings

WO₃

The purpose of the present work was the development of TiO_2 photocatalytic systems that promote selective oxidation of alcohols to aldehydes in water, while maintaining high catalytic activity. It is known that the photocatalytic reactivity of organic compounds depends strongly on the extent of adsorption onto the catalyst surface;^[17] stronger adsorption usually promotes reactivity enhancement. This implies that one of the possible ways to enhance aldehyde selectivity is the suppression of aldehyde adsorption onto the TiO₂ surface. The easiest way to achieve this is to coat the TiO₂ surface by metal oxide species; a different metal oxide layer, if created on TiO₂ particles, would lead to a decrease in the amount of aldehyde adsorbed on the TiO₂ surface and suppress sequential photocatalytic decomposition of aldehydes.

Several TiO₂ particles coated by metal oxide species such as SiO₂,^[18] V₂O₅,^[19] and MoO₃,^[20] have been synthesized. In particular, the photocatalytic activity of TiO₂ particles coated with WO_3 (WO_3/TiO_2) has been studied extensively for their ability to mediate decomposition of chloroaromatics in water with O2.[21] The WO3/ TiO₂ catalysts show higher activity than pure TiO₂ even though the area of the available TiO₂ surface is reduced by the WO₃ coating. This is because the charge separation between e⁻ and h⁺ is facilitated by the transfer of e- photoformed on the TiO₂ particles to the surface WO3 species.[22]

In the present work, the WO_3/TiO_2 catalysts were employed for photocatalytic oxidation of alcohols in water. We expected that the WO_3 coating would lead to a decrease in the amount of aldehyde adsorbed

Table 1. Properties of catalysts and the results of photocatalytic oxidation of benzyl alcohol in water.[a]

different

with

	Catalyst	$S_{\rm BET} \ [m^2 g^{-1}]^{[b]}$	d_{p} [nm] ^[c]	$E_{ m bg} [m eV]^{[m d]}$	θ [%] ^[e]	$t_{\rm irr}$ $[h]^{[f]}$	Benzaldehyde select. [%] ^[g]	CO ₂ [µmol]
1 ^[h]	TiO ₂	54.0	23.7	3.13	0	9.0	13	121.5
2	WO ₃ (1.4)/TiO ₂	56.5	23.8	3.06	15	5.5	28	60.2
3	WO ₃ (3.4)/TiO ₂	58.2	24.0	3.06	34	3.3	47	12.3
4 ^[i]	WO ₃ (7.6)/TiO ₂	53.1	24.1	3.02	58	5.0	56	6.7
5	WO ₃ (10.3)/TiO ₂	49.7	25.0	3.02	76	5.7	53	9.1
6	WO ₃ (18.5)/TiO ₂	44.4	27.2	3.00	89	6.0	55	7.7
7 ^[j]	$WO_3(7.6 \text{ wt \%}) + TiO_2$					9.5	28	63.7
8	WO ₃	3.0	127	2.80		$24.0^{[k]}$	61	4.8
9 ^[1]	WO ₃ (7.6)/TiO ₂					5.0	55	6.2
10 ^[m]	WO ₃ (7.6)/TiO ₂					5.0	54	7.4

[a] Reagents and conditions: benzyl alcohol (0.1 mmol), water (5 mL), catalyst (5 mg), O₂ (1 atm), 298 K, $\lambda > 350$ nm. [b] BET surface area. [c] Particle size of catalysts determined by dynamic light scattering analysis. [d] Bandgap energies determined by a plot of the Kubelka–Munk function versus the energy of light absorbed (Figure 1). [e] Surface coverage of TiO₂ by WO₃, determined by FTIR analysis (Figure 5). [f] The photoirradiation time required for 50% alcohol conversion. [g] Calculated as [benzaldehyde formed]/[benzyl alcohol converted] × 100. [h] (*o*-, *m*-, *p*-)Hydroxybenzyl alcohols (trace), (*o*-, *m*-, *p*-)hydroxybenzaldehydes (1.9 µmol), and benzoic acid (20.1 µmol) were detected by GC analysis.^[16a] The carbon balance {= $100 \times$ [benzyl alcohol+benzaldehyde+(*o*-, *m*-, *p*-)hydroxybenzyl alcohols+(*o*-, *m*-, *p*-)hydroxybenzaldehydes+benzoic acid +(CO₂ formed)/7]/[initial amount of benzyl alcohol]} was determined to be 92%, in which nonvolatile or thermally-degradable ring-opening products such as carboxylic acids are probably evolved as unidentified products. [i] (*o*-, *m*-, *p*-)Hydroxybenzyl alcohols (0.9 µmol), and benzoic acid (7.2 µmol) were detected by GC analysis. The carbon balance was 80%. [j] TiO₂ (92.4 mg) and WO₃ (7.6 mg) were mixed thoroughly and 5 mg of the mixture was used for reaction. [k] The benzyl alcohol conversion was only 8% even after photoreaction for 24 h. [l] The 1st reuse of the catalyst (entry 4) after washing with MeCN. [m] 2nd reuse.

onto the TiO₂ surface and suppress sequential decomposition, while retaining high catalytic activity. We clarified that the WO₃/TiO₂ system successfully promotes the selective production of aldehydes with higher catalytic activity than pure TiO₂. The aldehyde selectivity in benzyl alcohol oxidation is 56% at 50% alcohol conversion, which is higher than obtained in previously reported photocatalytic systems. Surface analysis of the catalysts based on the Fourier-transformed infrared (FTIR) spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and X-ray photoelectron spectroscopy (XPS) indicate that the high aldehyde selectivity is achieved by partial coverage of the TiO₂ by WO₃. The adsorption of photoformed aldehydes onto the TiO₂ surface is suppressed by the WO₃ coating and the sequential reaction is suppressed significantly.

Figure 1. Diffuse reflectance UV/Vis spectra of respective catalysts: a) TiO₂, b) WO₃(1.4)/TiO₂, c) WO₃(3.4)/TiO₂, d) WO₃(7.6)/TiO₂, e) WO₃(10.3)/TiO₂, f) WO₃(18.5)/TiO₂, and g) WO₃.

Chem.	Eur. J.	2011,	17,	9816-9824	
-------	---------	-------	-----	-----------	--

UV/Vis spectra of the catalysts. It can be seen that an increase in WO₃ loading leads to a red shift of the absorptionedge of the catalysts, suggesting that WO₃ is indeed loaded on the TiO₂ surface.^[21]

Effect of WO₃ loading on photocatalysis: The effect of WO₃ loadings on selective alcohol oxidation in water was investigated by studying the photoreaction of benzyl alcohol. The reaction was performed by photoirradiation ($\lambda > 350$ nm) of water (5 mL) containing catalyst (5 mg) and benzyl alcohol (100 µmol) under an O₂ atmosphere (1 atm) at 298 K. Table 1 summarizes the photoirradiation time (t_{irr}) required for 50% benzyl alcohol conversion and the benzaldehyde selectivity at this conversion. Pure TiO₂ (Table 1, entry 1) showed very low aldehyde selectivity (13%), whereas the WO₃/TiO₂ catalysts (Table 1, entries 2–6) showed much higher selectivity. The selectivity increased with WO₃ loading, and the catalysts with ≥ 7.6 wt% WO₃ show > 53% selectivity, which is higher than the previously reported photocatalytic systems.^[16]

During photocatalytic reaction with TiO₂ in water, the aldehyde formed is sequentially decomposed to CO₂ and H₂O.^[15,16] As shown in Table 1 (entry 1), the amount of CO₂ formed during the reaction with pure TiO₂ was 122 µmol at 50% benzyl alcohol conversion (50 µmol benzyl alcohol reacted). In contrast, the WO₃/TiO₂ catalysts with \geq 7.6 wt% WO₃ (entries 4–6) produced much less CO₂ (less than 10 µmol), suggesting that sequential reaction of aldehyde is significantly suppressed. Figure 2 shows the time-dependent change in the amounts of substrate and product, and the benzaldehyde selectivity during the reaction of benzyl alcohol with TiO₂ or WO₃(7.6)/TiO₂. In the case of TiO₂ (Figure 2 a), the aldehyde selectivity decreased with photoirradiation time, along with an increase in the amount of CO_2 , indicating that subsequent reaction of the aldehyde results in decreased aldehyde selectivity. In contrast, with WO₃-(7.6)/TiO₂ (Figure 2b), the amount of CO₂ scarcely increases with time, and the aldehyde selectivity is almost unchanged (ca. 55%).

To further clarify the reactivity of the aldehyde on TiO_2 and WO_3/TiO_2 catalysts, benzaldehyde was used as the starting material in the photocatalytic reactions. As shown in Figure 3 a, the aldehyde conversions on WO_3/TiO_2 are much lower than that on TiO_2 , and catalysts with higher WO_3 loadings suppressed the reaction more significantly. This suggests that WO_3 loading suppresses the subsequent decomposition of the formed aldehydes and results in high aldehyde selectivity. As shown in Figure 3b, the amount of CO_2 formed during the reaction showed a similar trend. This indicates that decomposition of the aldehyde initiates degradation of the aromatic ring (complete decomposition to CO_2).

The WO₃/TiO₂ catalysts show higher catalytic activity for alcohol oxidation than pure TiO₂. As shown in Table 1, increased WO₃ loadings shorten the photoirradiation time required for 50% benzyl alcohol conversion. Among the catalysts used, WO₃(3.4)/TiO₂ and WO₃(7.6)/TiO₂ showed better activity; these catalysts attained 50% alcohol conversion within 3.3 and 5.0 h photoirradiation, respectively, while pure TiO₂ required 9.0 h irradiation. Further WO₃ loadings (\geq 10.3 wt%), however, decreased the catalytic activity. The aldehyde selectivity and the catalytic activity data suggest that WO₃(7.6)/TiO₂ shows the best catalytic performance. As shown in Table 1 (entry 7), the physical mixture of TiO₂ and 7.6 wt% WO₃ shows much lower aldehyde selectivity and catalytic activity than WO₃(7.6)/TiO₂ (entry 4). This sug-

gests that the WO₃ loading on the TiO₂ surface is essential for both high aldehyde selectivity and catalytic activity.

Surface structure of the catalysts: The TiO₂ surface of WO₃- $(7.6)/\text{TiO}_2$ is partially coated by a WO₃ layer. The impregnation of H₂WO₄ on the TiO₂ surface followed by calcination leads to the formation of a WO₃ layer consisting of branched chains of pentahedral WO₅ units and terminal tetrahedral WO₄ units,^[23a] schematically shown in as Scheme 1. Figure 4 shows the W L₁- and L₃-edge XANES spectra of WO₃/TiO₂ catalysts; the spectra for Na₂WO₄ and WO₃ powders are also shown as reference spectra for the WO₄ and WO₅ units, respectively. In the W L₁-edge spectra (Fig-

a) b) 60 60 Select. / % Select. / % 30 30 0 0 5 3 ģ 2 4 6 3 ò Time / h Time / h 20 120 20 120 formed / µmol formed / µmol C / mM C / mM 10 10 ^SCO ŝ 0 0 0 3 9 3 5 6 2 Time / h Time / h

Figure 2. Time-dependent change in (top) the benzaldehyde selectivity and (bottom) the concentrations of (open circle) benzyl alcohol and (closed circle) benzaldehyde and (triangle) the amount of CO_2 formed, during photoreaction of benzyl alcohol in water with a) TiO₂ and b) WO₃(7.6)/TiO₂ catalysts. Reaction conditions are identical to those in Table 1.

9818 -

www.chemeurj.org

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 3. Time-dependent changes in a) the benzaldehyde conversion and b) the amount of CO₂ formed during the reaction of benzaldehyde in water with TiO₂ or WO₃(*x*)/TiO₂. Reagents and conditions: water (5 mL), benzaldehyde (0.5 μ mol), catalyst (5 mg), O₂ (1 atm), 298 K, λ > 350 nm.

Scheme 1. Proposed surface structure of $WO_3(x)/TiO_2$ catalysts.

ure 4A), Na₂WO₄ (line a) shows an intense pre-edge peak at approximately 12102.5 eV, which was assigned to the tetrahedral WO₄ units.^[23] In contrast, WO₃ particles (line e) show a broad pre-edge peak that can be assigned to the pentahedral WO₅ units.^[23a] As shown by the lines b–d, the peak intensity of WO₃/TiO₂ becomes broader with increasing WO₃ loadings, indicating that the catalysts with higher WO₃ loadings contain larger numbers of WO₅ units than WO₄ units. This result was also confirmed by the W L₃-edge spectra

FULL PAPER

Figure 4. Normalized A) W L₁-edge and B) W L₃-edge XANES spectra of a) Na_2WO_4 , b) $WO_3(3.4)/TiO_2$, c) $WO_3(7.6)/TiO_2$, d) $WO_3(18.5)/TiO_2$, and e) WO_3 .

(Figure 4B). Na₂WO₄ (line a) shows a sharp absorption at approximately 10210 eV, which can be assigned to tetrahedral WO₄ units.^[23] In contrast, WO₃ particles (line e) show a broad absorption due to the small number of WO₄ units. The absorption of WO₃/TiO₂ catalysts (lines b–d) becomes broader with increasing WO₃ loading. This again suggests that the catalysts with higher WO₃ loadings contain larger numbers of WO₅ units than WO₄ units. These data indicate that, as shown in Scheme 1, the catalysts with lower WO₃ loading contain narrow WO₃ islands on the TiO₂ surface, and increases in the WO₃ loading leads to a coalescence of these islands (producing larger WO₃ islands). These data suggest that the TiO₂ surface of the catalyst is covered by a WO₃ layer and that the coverage increases with WO₃ loading.

The percent coverage of the TiO₂ surface by WO₃, given as θ , can roughly be determined by diffuse reflectance FTIR analysis. As shown in Figure 5, the strong absorption at 3691 cm⁻¹, assigned to the Ti–OH species on the TiO₂ surface,^[24] decreases with increasing WO₃ loading due to the adhesion of WO₃. As shown in the inset of Figure 5, the θ value determined from the absorption decrease increases with increasing WO₃ loading; WO₃(7.6)/TiO₂ has 58% coverage and WO₃(18.5)/TiO₂ shows much higher coverage (89%).

The catalyst surface was further characterized by TEM and XPS analysis. As shown in Figure 6a and Figure 6b, catalysts with \leq 7.6 wt % WO₃ have a transparent surface, indicating that monolayer WO₃ forms on the TiO₂ surface.^[25] In contrast, WO₃(18.5)/TiO₂ shows dark flecks (Figure 6c), sug-

EUROPEAN JOURNAL

Figure 5. Diffuse reflectance FTIR spectra of TiO_2 and $WO_3(x)/TiO_2$. (Inset) Percent coverage (θ) of TiO_2 surface by WO_3 .

Figure 6. TEM images of catalysts: a) WO_3(3.4)/TiO_2, b) WO_3(7.6)/TiO_2, and c) WO_3(18.5)/TiO_2.

gesting that the adhesion of larger amounts of WO₃ produces multilayered WO₃. XPS analysis also confirms this. As shown in Figure 7, the intensity ratio of the W 4d and Ti 2p signals (I_{W4d}/I_{Ti2p}) increases linearly with increasing WO₃ loading at \leq 7.6 wt% WO₃, but becomes gentler at

Figure 7. Relationship between the intensity ratio of W 4d and Ti 2p signals (I_{W4d}/I_{T12p}) and the WO₃ loading, *x*, for WO₃(*x*)/TiO₂ catalysts, obtained by XPS measurements.

>7.6 wt % WO₃. This indicates that monolayer WO₃ islands form at \leq 7.6 wt % WO₃ (Scheme 1b and c), and that multilayer WO₃ islands form at higher WO₃ loadings (Scheme 1d).^[26] These data suggest that WO₃(7.6)/TiO₂ catalysts possessing high catalytic activity and aldehyde selectivity have surface structures consisting of an exposed TiO₂ surface (42 %) and a monolayer WO₃ surface (58 %).

Mechanism for high catalytic activity: Photoirradiation of WO_3/TiO_2 catalysts promotes excitation of both TiO_2 and WO_3 . The WO_3 surface is, however, inactive for oxidation, and the exposed TiO_2 surface behaves as the oxidation site. The inactivity of the WO_3 layer for oxidation can be explained by the valence band potentials of TiO_2 and WO_3 . As shown in Scheme 2, the valence band potential of WO_3 (+3.20 V vs. NHE) is more positive than that of TiO_2 (+2.95 V vs. NHE),^[27] indicating that, in the WO_3/TiO_2 system, h⁺, even if formed on the photoexcited WO_3 , is transferred exothermically to TiO_2 .^[22a] The valence band potentials of WO_3 layer on the WO_3/TiO_2 catalyst is not an oxidation site, leaving the exposed TiO_2 surface as the functioning oxidation site.

As shown in Table 1, the WO₃/TiO₂ catalysts show much higher activity for alcohol oxidation than pure TiO₂. This is because the photogenerated e^- on TiO₂ is transferred to the WO₃ layer, which promotes efficient charge separation between the e^- and h^+ pairs.^[22] As shown in Scheme 2, the

Scheme 2. Valence and conduction band potentials for TiO₂ and WO₃.

conduction band potential of TiO_2 (-0.18 V vs. NHE) is more negative than that of WO₃ (+0.40 V vs. NHE),^[27] suggesting that the e⁻ formed on TiO₂ is transferred exothermically to the WO₃ layer. The e^- on the conduction band of the WO₃ layer is not consumed by one-electron reduction of O_2 because the reduction potential ($O_2 + e^- \rightarrow O_2^{--}$, -0.13 V vs. NHE)^[28] is more negative than the conduction band potential of WO₃ (Scheme 2). The e^- is consumed by multielectron reduction of O2, which occurs exothermically because the reduction potentials $(O_2+2H^++2e^-\rightarrow H_2O_2)$, +0.68 V vs. NHE; $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O_1$, +1.23 V vs. NHE)^[29] are more positive than the conduction band potential of WO₃ (Scheme 2). This mechanism is supported by the analysis of O_2^{-} and H_2O_2 formed during reaction of benzyl alcohol. Figure 8a shows the electron spin resonance (ESR) spectra obtained upon photoirradiation of a benzyl alcohol solution with respective catalysts in the presence of 5,5-dimethyl-1-pyrroline N-oxide (DMPO), a spin-trapping reagent. All of the systems show distinctive signals that can be assigned to the DMPO-O₂⁻ spin adduct ($a_{\rm N} = 12.9 \,{\rm G}$; $a_{\rm H}^{\beta} =$ 10.4 G; $a_{\rm H}^{\gamma} = 1.4$ G; g = 2.0059;^[30] however, the signal intensity decreases with increasing WO₃ loading (Figure 8b). This indicates that, on WO₃/TiO₂, the e⁻ on the conduction band of the WO₃ layer is not typically consumed by one-electron reduction of O_2 . Figure 9 shows the amount of H_2O_2 formed during the reaction. The amount of H₂O₂ increases with increasing WO₃ loading, and catalysts with 3.4-7.6 wt % WO₃ produce larger amounts of H₂O₂. The obtained profile of H_2O_2 generation is consistent with the oxidation activity of benzyl alcohol (Table 1). These data indicate that the e⁻ on the conduction band of WO₃ is consumed by multi-electron reduction of O₂.

It is known that commercially-available WO₃ particles do not promote multi-electron reduction of O₂ well,^[29] as also shown in Figure 9; however, the present WO₃/TiO₂ catalysts do promote such a reduction process. The promotion of multi-electron reduction on WO₃/TiO₂ is probably due to the large surface area of the WO₃ layer. As shown in

Figure 8. a) ESR spectra of DMPO- O_2^{-} spin adduct signals obtained by photoirradiation of a benzyl alcohol solution containing DMPO with TiO₂ (x=0) and WO₃(x)/TiO₂ (see Experimental section). b) The relative intensity obtained by double integration of the spin adduct signals between 3405–3455 G, for which the intensity obtained with TiO₂ (x=0) was set as 1.

----FULL PAPER

Figure 9. The amount of H_2O_2 formed during photocatalytic oxidation of benzyl alcohol in water with respective catalysts. H_2O_2 concentration was determined by titration with KMnO₄. Reagents and conditions: water (5 mL), benzyl alcohol (0.1 mmol), catalyst (5 mg), O_2 (1 atm), 298 K, $\lambda >$ 350 nm, irradiation time: 3 h.

Table 1, the surface area of TiO_2 is 54.0 m²g⁻¹, whereas that of commercial WO₃ is only $3.0 \text{ m}^2\text{g}^{-1}$, suggesting that the surface area of the WO₃ layer on TiO₂ is much larger. Several literature reports have shown that WO₃ materials with large surface areas show higher catalytic activity than commercial WO₃ particles.^[31] The larger surface area of the WO₃ layer on TiO₂ probably promotes efficient multi-electron reduction of O_2 . As shown in Table 1 (entries 5 and 6), catalysts with higher WO₃ loadings (>10.3 wt%) show decreased catalytic activity, which is consistent with the amount of H₂O₂ formed (Figure 9). Coverage of the TiO₂ surface by the WO₃ layer increases with increasing WO₃ loading, and catalysts with > 10.3 wt % WO₃ have very large coverage (\geq 76%). This leads to a decrease in the amount of exposed TiO₂ surface (decrease in the oxidation site) and, hence, results in decreased catalytic activity. Choosing a catalyst with an appropriate WO3 coverage is therefore important for high catalytic activity.

Mechanism for high aldehyde selectivity: The high aldehyde selectivity of WO₃/TiO₂ catalysts arises because the WO₃ loading leads to a decrease in the area of exposed TiO₂ surface. This leads to a decrease in the amount of aldehyde adsorbed onto the TiO₂ surface and suppresses sequential decomposition, as schematically shown in Scheme 3. Adsorption experiments were carried out to clarify the adsorption properties of aldehyde onto the catalyst surface. The respective catalyst (5 mg) was added to water (5 mL) containing different amounts of benzaldehyde $(0.01-1.0 \text{ mmol } \text{L}^{-1})$ and stirred at 298 K for 3 h. Figure 10 A shows the adsorption isotherm, in which $C_{\rm e}$ is the equilibrium concentration of aldehyde in solution and Q is the amount of aldehyde adsorbed on the catalysts, respectively. All of the curves show Langmuir-type profiles, and the Q values for WO₃/TiO₂ (bf) are higher than that for pure TiO_2 (Figure 10 Aa). Figure 10B shows the first-order linear transform of the isotherm obtained by applying Equation (1),^[32] in which Q_{max} and K are the total number of adsorption sites on the catalysts and the adsorption equilibrium constant, respectively.

Chem. Eur. J. 2011, 17, 9816-9824

Scheme 3. Schematic representation of surface reactions on a) TiO2 and b) WO₃/TiO₂ catalysts.

Figure 10. A) Adsorption isotherms and B) the linear-transformed Langmuir plots of benzaldehyde obtained by adsorption experiments in water at 298 K for 3 h with various catalysts: a) TiO₂, b) WO₃(1.4)/TiO₂, c) WO₃(3.4)/TiO₂, d) WO₃(7.6)/TiO₂, e) WO₃(10.3)/TiO₂, and f) WO₃(18.5)/TiO₂.

larger than that for pure TiO₂ and become larger with increasing WO₃ loading. This suggests that the WO₃ layer has higher adsorption affinity with benzaldehyde than the TiO₂ surface.

To clarify the adsorption profile of aldehydes on the exposed TiO₂ surface of WO₃/TiO₂, the number of adsorption sites on the exposed TiO₂ surface (Q_{TiO_2}) and the WO₃ surface $(Q_{\rm WO_3})$ were determined. The $Q_{\rm TiO_2}$ values were obtained from the Q_{max} value for pure TiO₂ (4.33× $10^{-2} \text{ mmol g}^{-1}$), using the WO₃ loading (x) and the surface coverage (θ) in Equation (2) and the Q_{WO_3} values for WO₃/ TiO_2 can, therefore, be expressed by Equation (3)

$$Q_{\text{TiO}_2} = 4.33 \times 10^{-2} \times (1 - x/100) \times (1 - \theta/100)$$
(2)

$$Q_{\rm WO_3} = Q_{\rm max} - Q_{\rm TiO_2} \tag{3}$$

As summarized in Table 2, the Q_{TiO_2} values decrease with increasing WO₃ loading, along with an increase in Q_{WO_3} . The percentage of aldehyde adsorbed on the TiO₂ surface in the total amount of the adsorbed aldehyde, defined as $Q_{\rm TiO}$ / $(Q_{\text{TiO}_2}+Q_{\text{WO}_3})$, decreases with increasing WO₃ loading. This suggests that the WO₃ loading leads to a decrease in the aldehyde adsorption on the exposed TiO₂ surface, at the same time as increasing the adsorption onto the WO₃ surface, which is inactive for aldehyde decomposition. This suppresses sequential decomposition of the aldehyde on the TiO₂ surface. As shown in Figure 3, photodecomposition of benzaldehyde is suppressed with increasing WO₃ loading, which is consistent with the adsorption results. These data indicate that the increased aldehyde selectivity during photocatalytic alcohol oxidation (Table 1) is due to decreased aldehyde adsorption on the TiO₂ surface.

Selective oxidation of other alcohols: The present photocatalytic system with $WO_3(7.6)/TiO_2$ is capable of selective oxidation of other benzylic alcohols (Table 3). As shown in entry 1, the aldehyde selectivity in the reaction of 4-methoxybenzyl alcohol with pure TiO₂ is only 23% at 50% alcohol conversion. In contrast, WO₃(7.6)/TiO₂ produces the aldehyde with >54 % selectivity (Table 3, entries 2 and 3). In addition, WO₃(7.6)/TiO₂ successfully oxidizes a range of substituted benzylic alcohols to the corresponding aldehydes with higher yields than achieved with pure TiO₂.

It must be noted that the $WO_3(7.6)/TiO_2$ catalyst is reusable for further reactions. The WO₃(7.6)/TiO₂ catalyst used for photocatalytic oxidation of benzyl alcohol was recovered

Table 2. Adsor	ption parameters	for benzaldehy	de on various	catalysts. ^[a]
----------------	------------------	----------------	---------------	---------------------------

			2	-		
$C_{\rm e}/Q = 1/KQ_{\rm max} + C_{\rm e}/Q_{\rm max} $ (1)	Catalyst	$Q_{ m max} \ [{ m mmol}{ m g}^{-1}]$	K [Lmmol ⁻¹]	$Q_{ ext{TiO}_2} \ [ext{mmol} ext{g}^{-1}]$	$Q_{ m WO_3} \ [m mmolg^{-1}]$	$Q_{\text{TiO}_2}/(Q_{\text{TiO}_2}+Q_{\text{WO}_3}) \times 100 [\%]$
	TiO ₂	4.33×10^{-2}	4.67	4.33×10^{-2}		
Table 2 summarized these	WO ₃ (1.4)/TiO ₂	4.87×10^{-2}	5.12	3.63×10^{-2}	1.24×10^{-2}	75
Table 2 summarizes these	WO ₃ (3.4)/TiO ₂	5.19×10^{-2}	6.97	2.76×10^{-2}	2.43×10^{-2}	53
values, which were determined	WO ₃ (7.6)/TiO ₂	5.59×10^{-2}	7.57	1.68×10^{-2}	3.91×10^{-2}	30
from the slope and intercept of	WO ₃ (10.3)/TiO ₂	6.04×10^{-2}	7.58	0.93×10^{-2}	5.11×10^{-2}	15
the line in Figure 10 B. The Q_{max}	WO ₃ (18.5)/TiO ₂	6.73×10^{-2}	8.62	0.39×10^{-2}	6.34×10^{-2}	6
and K values for WO_3/TiO_2 are	[a] Reagents and conditions: water (5 mL), benzaldehyde (0.05–5.0 µmol), catalyst (5 mg), 298 K, 3 h.					

[a] Reagents and conditions: water (5 mL), benzaldehyde (0.05–5.0 µmol), catalyst (5 mg), 298 K, 3 h.

Table 3. Photocatalytic oxidation of various alcohols on $\rm TiO_2$ and WO_3-(7.6)/TiO_2^{[a]}

	R	OH $hv (\lambda > 35)$ O ₂ , 298 K, photocata	0 nm) water alyst	R	
	R	Catalyst	t _{irr} [h] ^[b]	Aldehyde select [%] ^[c]	CO ₂ [µmol]
1	p-methoxy	TiO ₂	8.0	23	108
2	-	WO ₃ (7.6)/TiO ₂	6.0	54	8.4
3 ^[d]		WO ₃ (7.6)/TiO ₂	18.5	62	13.0
4	<i>p</i> -methyl	TiO ₂	5.5	10	55.2
5		WO ₃ (7.6)/TiO ₂	4.0	42	4.3
6 ^[e]	<i>m</i> -methyl	TiO_2	5.0	19	34.3
7 ^[e]		WO ₃ (7.6)/TiO ₂	3.5	44	1.6
8	p-chloro	TiO ₂	6.0	32	52.1
9		WO ₃ (7.6)/TiO ₂	2.5	60	3.9
10	m-chloro	TiO ₂	9.5	23	71.6
11		WO ₃ (7.6)/TiO ₂	4.8	50	5.5
12 ^[e]	<i>p</i> -bromo	TiO ₂	6.0	23	33.3
13 ^[e]		WO ₃ (7.6)/TiO ₂	1.5	41	1.8

[a] Reagents and conditions: water (5 mL), alcohol (0.1 mmol), catalyst (5 mg), O₂ (1 atm), 298 K, $\lambda > 350$ nm. [b] The photoirradiation time required for 50% alcohol conversion. [c] Calculated as [aldehyde formed]/ [alcohol converted] × 100. [d] 0.5 mmol of alcohol was used. [e] 0.05 mmol of alcohol was used due to low solubility of the alcohol in water.

by simple centrifugation. As shown in Table 1 (entries 9 and 10), the catalyst, when reused for further reaction after washing with MeCN, shows almost the same aldehyde selectivity and catalytic activity as the virgin catalyst (Table 1, entry 4). This indicates that the catalyst can be reused for selective oxidation of alcohols at least twice without loss of selectivity and activity.

Conclusion

The WO₃/TiO₂ catalysts promote selective oxidation of alcohols to aldehydes in water with O₂ under photoirradiation at $\lambda > 350$ nm. Catalysts containing approximately 8 wt % WO₃ show high catalytic activity and possess aldehyde selectivity much higher than the previously reported photocatalytic systems. The high activity is due to the transfer of e⁻ from the conduction band of TiO₂ to the surface WO₃. This leads to a charge separation between e⁻ and h⁺ and promotes efficient alcohol oxidation on the TiO₂ surface. The high aldehyde selectivity is due to a decrease in the available TiO₂ surface due to the WO₃ coating. This suppresses further reaction of the formed aldehydes on the TiO₂ surface and results in high aldehyde selectivity. It is known that several catalytic (nonphotocatalytic) systems achieve selective alcohol oxidation in water with very high yields.^[33] The conversion and aldehyde selectivity of the present photocatalytic system is much lower than those of the nonphotocatalytic systems; therefore, further improvement of catalytic performance is necessary for practical application. Nevertheless, the basic concept presented here, which is based on the creation of metal oxide surface behaving as an electron acceptor site on

the semiconducting surface, may contribute to the development of photocatalytic systems promoting selective organic transformations.

FULL PAPER

Experimental Section

Materials: All reagents were purchased from Wako, Tokyo Kasei, or Sigma–Aldrich and used without further purification. Water was purified by the Milli-Q system. Japan Reference Catalyst JRC-TIO-4 TiO₂ was kindly supplied by the Catalysis Society of Japan. The WO₃(*x*)/TiO₂ catalysts with different WO₃ loadings [*x* (wt%) = WO₃/(TiO₂+WO₃)×100; *x*=1.4, 3.4, 7.6, 10.3, 18.5] were synthesized by an impregnation method as follows;^[21] TiO₂ (1 g) was stirred in an ammonia solution (1.0 molL⁻¹, 50 mL) containing an appropriate amount of H₂WO₄. The obtained solution was dried at 353 K under vigorous stirring. The powders formed were calcined at 673 K for 2 h under O₂ flow (0.5 Lmin⁻¹), affording white powders of catalysts. WO₃ was purchased from Kojundo Chemical Laboratory Co. and used as a reference.

Photoreaction: Each catalyst (5 mg) was suspended in water (5 mL) containing the substrate within a Pyrex glass tube (ϕ 10 mm; capacity, 20 mL). The tube was sealed with a rubber septum cap. The catalyst was dispersed by ultrasonication for 5 min and O₂ was bubbled through the solution for 5 min. The solution was photoirradiated with magnetic stirring by a 450 W high-pressure mercury lamp (USHIO Inc.), filtered through a glass filter to give light wavelength of $\lambda > 350$ nm. The light intensity at 350–400 nm was 2.81 mW cm⁻². The temperature of the solution was kept at 298 K in a water bath during photoirradiation. After photoirradiation, the gas-phase product was analyzed by GC-TCD (Shimadzu; GC-14B). The catalyst was recovered by centrifugation and washed with MeCN (5 mL). The combined solution was analyzed by GC-FID (Shimadzu; GC-1700); the substrate and product concentrations were determined with authentic samples. Identification of the products was performed by GC-MS (Shimadzu; GC–MS-QP5050 A) analysis.

Analysis: The total amounts of W and Ti in the catalysts were determined with an X-ray fluorescence spectrometer (Seiko Instruments, Inc.; SEA2110). Diffuse reflectance UV/Vis spectra were measured with a UV/Vis spectrophotometer (Jasco Corp.; V-550 with Integrated Sphere Apparatus ISV-469) with BaSO4 as a reference. FTIR spectra were measured with an infrared spectrophotometer (Jasco Corp.; FTIR-610) using CaF2 as a reference. Particle size distribution was determined with a Horiba LB-500 dynamic light-scattering particle size analyzer. BET surface area was measured at 77 K using an AUTOSORB-1-C/TCD analyzer (Yuasa Ionics Co., Ltd.). The W L-edge XANES spectra were measured with the apparatus at the NW10A, Photon Factory (PF) at the High Energy Accelerator Research Organization (KEK), Tsukuba, Japan (KEK-PF, proposal No. 2009G069). Synchrotron radiation emitted from a 6.5 GeV storage ring with a Si (311) double crystal monochromator. TEM images were recorded with a JEOL JEM-2010 microscope at an acceleration voltage of 200 kV. XPS measurement was performed with a JEOL JPS-9000MX spectrometer using MgKa radiation as the energy source.

ESR measurement: ESR spectra were recorded at the X-band with a Bruker EMX-10/12 spectrometer with a 100 kHz magnetic field modulation at a microwave power level of 10.5 mW; microwave power saturation of the signals did not occur.^[12] The magnetic field was calibrated using 1,1'-diphenyl-2-picrylhydrazyl (DPPH) as standard. The measurement was carried out as follows:^[30] each catalyst (0.5 gL⁻¹) was suspended in water containing benzyl alcohol (10 mmolL⁻¹) and DMPO (100 mmolL⁻¹) and dispersed well by ultrasonication. An aliquot (100 µL) of the suspension and DMSO (900 µL) were introduced into a flat ESR cell [10 × 20 × 0.3 mm (path length)], and O₂ was bubbled through the solution for 1 min. The cell was placed in the ESR sample cavity and photoirradiated using a 500 W Xe lamp through a glass filter to give light wavelengths of $\lambda > 350$ nm at RT. After photoirradiation for 1 min, the irradiation was turned off and the measurement was started immediately.

Acknowledgements

We thank the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) for a Grant-in-Aid for Scientific Research (Nos. 20360359 and 23360349). D.T. thanks the Japan Society for Promotion of Science (JSPS) for Young Scientist and the Global COE Program "Global Education and Research Center for Bio-Environmental Chemistry" of Osaka University.

- [1] A. Fujishima, K. Honda, Nature 1972, 238, 37-38.
- [2] a) O. Legrini, E. Oliveros, A. M. Braun, Chem. Rev. 1993, 93, 671–698; b) M. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69–96; c) A. L. Linsebigler, G. Lu, J. T. Yates, Jr., Chem. Rev. 1995, 95, 735–758; d) J.-M. Herrmann, Catal. Today 1995, 24, 157–164; e) A. Mills, S. Le Hunte, J. Photochem. Photobiol. A 1997, 108, 1–35; f) A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C 2000, 1, 1–21.
- [3] a) M. A. Fox, Acc. Chem. Res. 1983, 16, 314–321; b) M. A. Fox,
 M. T. Dulay, Chem. Rev. 1993, 93, 341–357; c) G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, Chem. Commun. 2007, 3425–3437; d) Y. Shiraishi, T. Hirai, J. Photochem. Photobiol. C 2008, 9, 157–170; e) G. Palmisano, E. Garcia-Lopez, G. Marci, V. Loddo, S. Yurdakal, V. Augugliaro, L. Palmisano, Chem. Commun. 2010, 46, 7074–7089; f) C. Gambarotti, C. Punta, F. Recupero, T. Caronna, L. Palmisano, Curr. Org. Chem. 2010, 14, 1153–1169.
- [4] a) H. Wang, R. E. Partch, Y. Li, J. Org. Chem. 1997, 62, 5222–5225;
 b) H. Yoshida, C. Murata, T. Hattori, Chem. Commun. 1999, 1551–1552;
 c) K. V. Subba Rao, M. Subrahmanyam, Photochem. Photobiol. Sci. 2002, 1, 597–599;
 d) A. Maldotti, R. Amadelli, L. Samiolo, A. Molinari, A. Peroni, S. Tollari, S. Cenini, Chem. Commun. 2005, 1749–1751;
 e) Y. Shiraishi, Y. Sugano, S. Tanaka, T. Hirai, Angew. Chem. 2010, 122, 1700–1704; Angew. Chem. Int. Ed. 2010, 49, 1656–1660.
- [5] a) S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless, Angew. Chem. 2005, 117, 3339–3343; Angew. Chem. Int. Ed. 2005, 44, 3275–3279; b) C.-J. Li, L. Chen, Chem. Soc. Rev. 2006, 35, 68–82; c) U. M. Lindström, Chem. Rev. 2002, 102, 2751–2772.
- [6] M. A. Gonzalez, S. G. Howell, S. K. Sikdar, J. Catal. 1999, 183, 159– 162.
- [7] a) S. Ikeda, Y. Kowata, K. Ikeue, M. Matsumura, B. Ohtani, *Appl. Catal. A* 2004, 265, 69–74; b) G. Palmisano, M. Addamo, V. Augugliaro, T. Caronna, E. García-López, V. Loddo, L. Palmisano, *Chem. Commun.* 2006, 1012–1014; c) H. Yoshida, H. Yuzawa, M. Aoki, K. Otake, H. Itoh, T. Hattori, *Chem. Commun.* 2008, 4634–4636.
- [8] F. Soana, M. Sturini, L. Cermenati, A. Albini, J. Chem. Soc. Perkin Trans. 2 2000, 699–704.
- [9] T. Caronna, C. Gambarotti, L. Palmisano, C. Punta, F. Recupero, J. Photochem. Photobiol. A 2005, 171, 237–242.
- [10] B. Ohtani, S. Tsuru, S. Nishimoto, T. Kagiya, J. Org. Chem. 1990, 55, 5551–5553.
- [11] a) J.-M. Herrmann, *Top. Catal.* 2005, 34, 49–65; b) T. Tachikawa, M. Fujitsuka, T. Majima, *J. Phys. Chem. C* 2007, 111, 5259–5275.
- [12] a) Y. Shiraishi, N. Saito, T. Hirai, J. Am. Chem. Soc. 2005, 127, 12820–12822; b) Y. Shiraishi, N. Saito, T. Hirai, J. Am. Chem. Soc. 2005, 127, 8304–8306; c) Y. Shiraishi, D. Tsukamoto, T. Hirai, Langmuir 2008, 24, 12658–12663; d) Y. Shiraishi, Y. Sugano, D. Inoue, T. Hirai, J. Catal. 2009, 264, 175–182.
- [13] S. V. Ley, A. Madin in *Comprehensive Organic Synthesis, Vol. 7* (Eds.: B. M. Trost, I. Fleming, S. V. Ley), Pergamon, Oxford, **1991**, p. 251.
- [14] a) O. S. Mohamed, A. E. M. Gaber, A. A. Abdel-Wahab, J. Photochem. Photobiol. A 2002, 148, 205–210; b) S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, J. Catal. 2009, 266, 279–285; c) M. Zhang, Q. Wang, C. Chen, L. Zang, W. Ma, J. Zhao, Angew. Chem. 2009, 121, 6197–6200; Angew. Chem. Int. Ed. 2009, 48, 6081–6084.

- [15] a) S. A. Larson, J. L. Falconer, *Catal. Lett.* 1997, 44, 57–65; b) P.
 Pichat, *Catal. Today* 1994, 19, 313–334; c) S. A. Larson, J. A. Widegren, J. L. Falconer, *J. Catal.* 1995, 157, 611–625; d) M. C. Blount, J. L. Falconer, *J. Catal.* 2001, 200, 21–33.
- [16] a) V. Augugliaro, T. Caronna, V. Loddo, G. Marcì, G. Palmisano, L. Palmisano, S. Yurdakal, *Chem. Eur. J.* 2008, *14*, 4640–4646; b) S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano, *J. Am. Chem. Soc.* 2008, *130*, 1568–1569; c) S. Yurdakal, G. Palmisano, V. Loddo, O. Alagöz, V. Augugliaro, L. Palmisano, *Green Chem.* 2009, *11*, 510–516.
- [17] a) C. Anderson, A. J. Bard, J. Phys. Chem. 1995, 99, 9882–9885;
 b) C. Anderson, A. J. Bard, J. Phys. Chem. B 1997, 101, 2611–2616.
- [18] a) A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, R. Stevens, *Surf. Interface Anal.* 2006, *38*, 473–477; b) P. Evans, T. English, D. Hammond, M. E. Pemble, D. W. Sheel, *Appl. Catal. A* 2007, *321*, 140–146; c) T. Furusawa, K. Honda, E. Ukaji, M. Sato, N. Suzuki, *Mater. Res. Bull.* 2008, *43*, 946–957.
- [19] a) S. T. Martin, C. L. Morrison, M. R. Hoffman, J. Phys. Chem. 1994, 98, 13695–13704; b) M. Inomata, K. Mori, A. Miyamoto, T. Ui, Y. Murakami, J. Phys. Chem. 1983, 87, 754–761.
- [20] a) K. R. Thampi, J. Kiwi, M. Grätzel, *Catal. Lett.* **1988**, *1*, 109–116;
 b) P. Agarwal, I. Paramasivam, N. K. Shrestha, P. Schmuki, *Chem. Asian J.* **2010**, *5*, 66–69.
- [21] a) Y. R. Do, W. Lee, K. Dwight, A. Wold, J. Solid State Chem. 1994, 108, 198–201; b) J. Papp, S. Soled, K. Dwight, A. Wold, Chem. Mater. 1994, 6, 496–500; c) Y. Tae Kwon, K. Y. Song, W. I. Lee, G. J. Choi, Y. R. Do, J. Catal. 2000, 191, 192–199.
- [22] a) M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, *Chem. Mater.* 2002, *14*, 4714–4720; b) V. Keller, P. Bernhardt, F. Garin, *J. Catal.* 2003, *215*, 129–138; c) W. Smith, Y. Zhao, *J. Phys. Chem. C* 2008, *112*, 19635–19641; d) D. Zhao, C. Chen, C. Yu, W. Ma, J. Zhao, *J. Phys. Chem. C* 2009, *113*, 13160–13165.
- [23] a) F. Hilbrig, H. E. Gobel, H. Knözinger, H. Schmelz, B. Lengelr, J. Phys. Chem. 1991, 95, 6973–6978; b) S. Yamazoe, Y. Hitomi, T. Shishido, T. Tanaka, J. Phys. Chem. C 2008, 112, 6869–6879.
- [24] N. Mukaihata, H. Matsui, T. Kawahara, H. Fukui, H. Tada, J. Phys. Chem. C 2008, 112, 8702–8707.
- [25] a) T. Kim, A. Burrows, C. J. Kiely, I. E. Wachs, J. Catal. 2007, 246, 370–381; b) A. Burrows, C. J. Kiely, R. W. Joyner, H. K. Knözinger, F. Lange, Catal. Lett. 1996, 39, 219–231.
- [26] X.-F. Yu, N.-Z. Wu, H.-Z. Huang, Y.-C. Xie, Y.-Q. Tang, J. Mater. Chem. 2001, 11, 3337–3342.
- [27] H. P. Maruska, A. K. Ghosh, Sol. Energy 1978, 20, 443-458.
- [28] T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, J. Phys. Chem. C 2007, 111, 7574–7577.
- [29] R. Abe, H. Takami, N. Murakami, B. Ohtani, J. Am. Chem. Soc. 2008, 130, 7780–7781.
- [30] D. Dvoranová, V. Brezová, M. Mazúr, M. A. Malati, Appl. Catal. B 2002, 37, 91–105.
- [31] a) M. Iwasaki; W. Park, J. Nanomater. 2008, 169536; b) A. A. Ashkarran A. I. Zad, M. M. Ahadian, S. A. Mahdavi Ardakani, Nanotechnology 2008, 19, 195709; c) D. Chen, J. Ye, Adv. Funct. Mater. 2008, 18, 1922–1928.
- [32] a) Y. Xu, C. H. Langford, *Langmuir* 2001, *17*, 897–902; b) H. Tada,
 M. Akazawa, Y. Kudo, S. Ito, *J. Phys. Chem. B* 1998, *102*, 6360–6366; c) T. Torimoto, Y. Okawa, N. Takeda, H. Yoneyama, *J. Photochem. Photobiol. A* 1997, *103*, 153–157.
- [33] a) G.-J. ten Brink, I. W. C. E. Arends, R. A. Sheldon, *Science* 2000, 287, 1636–1639; b) Y. Uozumi, R. Nakao, *Angew. Chem.* 2003, 115, 204–207; *Angew. Chem. Int. Ed.* 2003, 42, 194–197; c) H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, *J. Am. Chem. Soc.* 2005, 127, 9374–9375.

Received: January 17, 2011 Revised: April 19, 2011 Published online: July 6, 2011

9824 -