Polar, Steric, and Stabilization Effects in Alkoxyamines C–ON Bond Homolysis: A Multiparameter Analysis

Denis Bertin, Didier Gigmes, Sylvain R. A. Marque,* and Paul Tordo

UMR 6517 Chimie, Biologie et Radicaux Libres, case 542, Université de Provence, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France

Received January 3, 2005; Revised Manuscript Received January 12, 2005

ABSTRACT: We present measurements of the rate constants (k_d) of the C–ON bond cleavage in new alkoxyamine models containing the *N*-(2-methyl-2-propyl)-*N*-(1-diethylphosphono-2,2-dimethylpropyl)-*N*-oxyl (SG1) moiety. The homolysis rate constants of 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)and SG1-based alkoxyamines are analyzed in terms of polar inductive/field (σ_U) , steric (v), and radical stabilization $(\sigma_{\rm RS})$ contributions of the leaving alkyl radicals, using a multiparameter equation, i.e., $\log(k_d/k_{d,0}) = \rho_U \sigma_U + \delta v + \rho_{\rm RS} \sigma_{\rm RS}$. The rate constants increase with increasing electron withdrawing, steric, and stabilization demands of the leaving alkyl radicals. Good correlations are found for TEMPO $(\log(k_d/k_{d,0}) = 13.6\sigma_U + 6.6v + 13.9\sigma_{\rm RS})$ and SG1 $(\log(k_d/k_{d,0}) = 19.5\sigma_U + 7.0v + 15.3\sigma_{\rm RS})$ derivatives, highlighting the polar sensitivity of the leaving alkyl radical to the nitroxyl moiety. Such correlations should facilitate the design of new alkoxyamines as initiators/regulators and help to improve the tuning of NMP experiments.

Introduction

In their seminal works, Rizzardo et al.¹ and later Georges et al.² have demonstrated that polymers with polydispersities well below the theoretical limit of 1.5 for classical radical polymerization can be prepared by nitroxide-mediated radical polymerization (NMP). Since then, many groups³ have pushed this concept further to the preparation of polymers with well-defined architectures, molecular weights, and compositions. These polymerizations are governed by the persistent radical effect (PRE).⁴⁻⁸ The simplest mechanism involves the reversible dissociation of a dormant nitroxyl end-capped polymer chain with $n \ge 0$ monomer units into a transient carbon-centered radical R_n^{\bullet} and a persistent nitroxyl radical (reactions 1 and 2 in Scheme 1), the propagation of the carbon-centered radical (reaction 3, Scheme 1), and its irreversible termination (reaction 4, Scheme 1).⁶

In the course of time a quasi-equilibrium of the reversible dissociation step (reactions 1 and 2, Scheme 1) is reached. This is unusual because there is a large excess of persistent species and because the two concentrations are weakly time dependent. If this quasiequilibrium is rapidly established in comparison to the monomer conversion, all of the chains grow uniformly from n = 0 on. A kinetic treatment⁹ with chain-lengthindependent rate constants¹⁰ has shown that the polymerization time decreases with increasing equilibrium constants $K = k_{\rm d}/k_{\rm c}$ of the reversible dissociation of the nitroxyl end-capped polymer alkoxyamine. That is, it decreases with increasing values of k_{d} . The polydispersity index decreases with increasing conversion and becomes small for large products $k_d k_c$. However, k_d must not exceed a critical value for which the controlling PRE breaks down, and the optimum values of $k_{\rm d}$ and $k_{\rm c}$ depend on the propagation and termination rate constants (reactions 3 and 4, Scheme 1). In general, $k_{\rm d} \ge$ 10^{-3} s⁻¹ is desirable,¹¹ and it would be helpful if k_d could be reasonably predicted on the basis of alkoxyamine and

* To whom correspondence should be addressed: Fax 33-4-91-28-87-58; e-mail marque@srepir1.univ-mrs.fr.

$$k_{ni} + M \xrightarrow{k_{p}} R_{ni+1}$$
 (3)

 $R_n + R_n$ Non-radical Products (4)

Scheme 2. Radical Cyclization Reaction Using the PRE

(70%, trans:cis = 2.5:1) (13%, trans:cis = 1:1)

nitroxyl radical structures to avoid unnecessary synthetic and polymerization works.

Moreover, very recently, the first purposely done experiments to use the PRE and alkoxyamines in radical chemistry have been presented by Studer and Ciufolini et al. (Scheme 2).¹² Consequently, knowledge of k_d is also useful for the synthetic planning of nitroxyl-mediated tin free radical chemistry.^{13,14}

For selected cases, the enthalpic and steric factors that influence k_d have been addressed before.^{15–23} Studies on 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)– alkoxyamines have recently shown a relationship between E_a or log k_d and bond dissociation energy (BDE-(C-ON)^{24,25} or BDE(C-H)^{13,26}) of the leaving alkyl radical, suggesting that stabilization of the leaving alkyl radical is a major factor. Such a relationship also seemed valid for other alkoxyamines based on *N*-(2-

methyl-2-propyl)-N-(1-diethylphosphono-2,2-dimethylpropyl)-N-oxyl (SG1) and di-tert-butylnitroxyl (DBNO) moieties.²⁶ However, it gives only a rough estimation of the value of k_d and is strongly dependent on the accuracy of the value of BDE(C-H). Indeed, other effects such as steric and polar effects in the ground state can bias the values of BDE (C-H).²⁷⁻³³ Furthermore, we have recently shown that the correlation log $k_{\rm d}$ vs BDE(C-H) for SG1 derivatives is more complicated than expected from the well-known TEMPO derivative case.³⁴ To overcome these difficulties, we present hereafter an analysis following a multiparameter approach³⁵ where log $k_{\rm d}$ is parametrized with the molecular descriptors corresponding to the polar inductive/field³⁶⁻⁴¹ ($\sigma_{\rm U}$), steric^{42,43} (v), and the stabilization⁴⁴ $(\sigma_{\rm RS})$ effects of the leaving alkyl radicals in the TEMPOand SG1-alkoxyamine series. Scheme 3 shows the nitroxyl and alkyl moieties of the alkoxyamines.

Unfortunately, not all derivatives were available for the two nitroxyl fragments 1 and 2 (see Table 1). Alkyl radicals **a**, **b**, **d**, **e**, **g**, **h**, **j**, **o**, **q**, **s**, and **t** should be reasonable models for the propagating radical of α -methylstyrene, styrene, methacrylates, acrylates, methacrylonitrile, acrylonitrile, butadiene, ethylene, isoprene, methacrylic acid, and acrylic acid, respectively.

Experimental Section

All reactions were carried out in oven-dried glassware under an argon atmosphere. Benzene (98%), copper bromide (98%), copper powder (99%), N,N,N',N',N''-pentamethyldiethylenetriamine (99%), and 2-bromobutyric acid (97%) were used as received from Aldrich. The 2-bromo-2-methylpropionic acid (98%) was purchased from Fluka and used as received. TEMPO (98%, Lancaster) was sublimed, and SG1 (85% purity, Arkema group) was used as received. The solvent tert-butylbenzene (t-BuPh, Aldrich) was purified by standard procedures.⁴⁵ NMR experiments were performed in CDCl₃ as solvent on a 300 Avance Bruker spectrometer (¹H 300 MHz, ¹³C 75.48 MHz, and ³¹P 121.59 MHz) in "Centre Regional de RMN" in Marseille. Chemical shifts were given with TMS as internal reference for ¹H NMR, CDCl₃ (internal reference) for ¹³C NMR, and H₃PO₄ 85% (external reference) for ³¹P NMR. Elemental analyses were done in "Service Commun de Micro Analyse Université d'Aix-Marseille 3". Alkoxyamines 2r and 2s were synthesized following a modified^{21,23,25,34} Matyjaszewski procedure, 46 stored at -20 °C, and had a purity higher than 98%. Chromatography columns were performed using Merck silica gel 60.

General Procedure for the Synthesis of Alkoxyamines 2r and 2s. Under an inert atmosphere, a solution of SG1 (5 mmol, 1.47 g) and alkyl bromide (10 mmol, 1.67 g of 2-bromobutyric acid or 2-bromo-2-methylpropionic acid) in benzene (8 mL) was transferred to a mixture of CuBr (10 mmol, 1.43 g), N,N,N',N',N''-pentamethyldiethylenetriamine (20 mmol, 3.47 g), and Cu(0) (5 mmol, 0.64 g) in benzene (8 mL). After 3 h stirring at room temperature, 30 mL of water was poured into the mixture which was washed with diethyl ether (3 \times 20 mL). The aqueous layer was saturated with NH₄Cl and then extracted with diethyl ether (3 \times 20 mL). The combined organic layers were dried over anhydrous MgSO₄. Removal of the solvent under reduced pressure afforded **2r** (1.34 g, 70%) as a mixture of two diastereoisomers and 2s (1.43 g, 75%). The diastereoisomers of 2r were further separated by silica gel column chromatography (ethyl acetate).

N-(2-Methylpropyl)-N-(1-diethylphosphono-2,2-dimethylpropyl)-O-(1-carboxylpropyl)hydroxylamine (2r). Anal. Calcd for C₁₇H₃₆NO₆P (381.44): C 53.53; H 9.51; N 3.67. Found: C 53.54; H 9.66; N 3.91. Isomer A: ³¹P NMR (CDCl₃): 27.0. ¹H NMR (CDCl₃): 0.88 (t, ${}^{3}J_{H-H} = 14.0$ Hz, 3H, CHCH₂CH₃), 1.09 (s, 9H, C(CH₃)), 1.12 (s, 9H, C(CH₃)), 1.31 $(t, {}^{3}J_{H-H} = 12.0 \text{ Hz}, 3H, \text{ OCH}_{2}CH_{3}), 1.29 (t, {}^{3}J_{H-H} = 12.0 \text{ Hz},$ 3H, OCH₂CH₃), 1.6-2.0 (m, 1H, CHCH₂CH₃), 2.23-2.36 (m, 1H, CH CH_2 CH₃), 3.35 (d, ${}^{2}J_{H-P} = 21.0$ Hz, 1H, CHP), 3.9–4.4 (m, 5H, CH₂CH₃ and CHCH₂). ¹³C NMR (CDCl₃): 174.0 (COOH), 86.8 (CH–COOH), 70.8 (d, ${}^{1}J_{C-P} = 210$ Hz, C–P), 62.9 (C–N), 60.69 (d, ${}^{2}J_{C-P} = 12.0$ Hz, CH_{2} –O–P), 60.2 (d, ${}^{2}J_{C-P} = 10.6$ Hz, CH_{2} –O–P), 35.65 (d, ${}^{2}J_{C-P} = 7.5$ Hz, P–CHCMe₃), 30.0 (d, ${}^{3}J_{C-P} = 8.5$ Hz, CHC(CH_{3})₃), 27.8 $(C(CH_3))$, 16.42 (d, ${}^{3}J_{C-P} = 8.7$ Hz, P $-OCH_2CH_3$), 16.21 (d, ${}^{3}J_{C-P} = 10.6$ Hz, P $-OCH_2CH_3$), 9.3 (CH_2CH_3) . Isomer B: ${}^{31}P$ NMR (CDCl₃): 24.3. ¹H NMR (CDCl₃): 0.95 (t, ${}^{3}J_{H-H} = 14.0$ Hz, 3H, CHCH₂CH₃), 1.12 (s, 9H, C(CH₃)), 1.14 (s, 9H, C(CH₃)), $1.26 (t, {}^{3}J_{H-H} = 13.0 \text{ Hz}, 3H, \text{ OCH}_{2}CH_{3}), 1.28 (t, {}^{3}J_{H-H} = 13.0 \text{ Hz}, 3H, \text{ OCH}_{2}CH_{3})$ Hz, 3H, OCH₂CH₃), 1.6–2.0 (m, 1H, CHCH₂CH₃), 2.23–2.36 (m, 1H, CHCH₂CH₃), 3.31 (d, ${}^{2}J_{H-P} = 21.0$ Hz, 1H, CHP), 3.9– 4.4 (m, 5H, CH₂CH₃ and CHCH₂). ¹³C NMR (CDCl₃): 173.3 (COOH), 87, 0 (CH–COOH), 68.1 (d, ${}^{1}J_{C-P} = 206$ Hz, C–P), 62.8 (C–N), 62.52 (d, ${}^{2}J_{C-P} = 19.7$ Hz, CH_{2} –O–P), 62.16 (d, ${}^{2}J_{C-P} = 9.3$ Hz, $CH_{2}-O-P$), 35.65 (d, ${}^{2}J_{C-P} = 7.5$ Hz, P-CHCMe₃), 30.4 (d, ${}^{3}J_{C-P} = 8.7$ Hz, CHC(CH_{3})₃), 27.8 $(C(CH_3))$, 16.42 (d, ${}^{3}J_{C-P} = 8.7$ Hz, P-OCH₂CH₃), 16.21 (d, ${}^{3}J_{C-P} = 10.6 \text{ Hz}, P-OCH_{2}CH_{3}), 9.7 (CH_{2}CH_{3}).$

Table 1. Experimental Arrhenius Parameters (A and E_a), Rate Constants k_d at 120 °C, and Corrected Activation Energies E_a^{corr} for Alkoxyamines Based on the Nitroxyl Fragments 1 and 2 (Structures Shown in Scheme 3)

alkoxyamines	runs	$T(^{\circ}\mathrm{C})^{a}$	$A^b \ (10^{14} \ { m s}^{-1})$	$E_{\rm a}{}^c~({\rm kJ~mol^{-1}})$	$k_{\rm d,393}^{d}~({ m s}^{-1})$	$E_{\rm a}^{\rm corr\ e}\ (\rm kJ\ mol^{-1})$	ref
1a	9	70 - 92	2.0	115.7	$8.5 imes10^{-2}$	116.2	26
1b	17	90 - 150	2.5	133.0	$5.2 imes10^{-4}$	132.9	26
1c	2	131 - 150	(2.4)	145.5	$1.1 imes10^{-5}$		26
1d	16^{f}	65 - 121	1.8	119.8	$2.2 imes10^{-2}$	120.7	26
1e	$11^{f,g}$	90 - 151	1.0	139.0	$3.4 imes10^{-5}$	141.8	26
1 f	2^{f}	151	(2.4)	161.5	$8.1 imes10^{-8}$		26
1g	15	51 - 103	6.8	118.4	0.13	114.9	26
1ĥ	7	100 - 152	8.9	137.9	$3.4 imes10^{-4}$	134.3	13
1j	3	101 - 131	(2.4)	126.4	$3.8 imes10^{-4}$		26
1k	2	109 - 130	(2.4)	139.2	$7.5 imes10^{-5}$		26
11				79.4	$6.7 imes10^3$		24
1p	1	150	(2.4)	165.0	$2.8 imes10^{-8}$		26, 24
1q	3	130 - 151	(2.4)	145.8	$1.0 imes10^{-5}$		13
1u	2	503 - 533		192.3	$6.6 imes10^{-12}$		24
2b	20^h	60 - 137	1.9	124.5	$5.5 imes10^{-3}$	125.2	26
2c	3	110 - 131	(2.4)	134.4	$3.3 imes10^{-4}$		26
2e	$12^{i,j}$	80 - 132	3.5	128.4	$3.0 imes10^{-3}$	127.2	26, 70, 71
	$4^{j,k}$	90 - 129	(2.4)	130.8	$1.0 imes10^{-3}$		
2f	3	130 - 150	(2.4)	149.1	$3.6 imes10^{-6}$		25
2h	1^l	100	(2.4)	121.9	$1.5 imes10^{-2}$		34,70
	1^l	100	(2.4)	125.2	$5.5 imes10^{-3}$		
	2^m	110	(2.4)	127.4	$2.8 imes10^{-3}$		
2i	3	120 - 140	(2.4)	136.0	$2.0 imes10^{-4}$		34
$2\mathbf{k}$	3	100 - 130	(2.4)	131.9	$7.1 imes10^{-4}$		34
2m	3	90 - 120	(2.4)	130.0	$1.3 imes10^{-3}$		34
2n	6^h	100 - 137	(2.4)	126.4	$3.8 imes10^{-3}$		34
2o	1^n	150	(2.4)	169.2	$7.8 imes10^{-9}$		25
2p	1^n	150	(2.4)	162.3	$6.4 imes10^{-8}$		25
2q	3^n	120 - 140	(2.4)	139.7	$6.5 imes10^{-5}$		25
$2\mathbf{r}$	3^o	112 - 124	(2.4)	128.5	$2.0 imes10^{-3}$		this work
2s	3	60 - 81	(2.4)	112.3	0.28		this work
2t	4	100 - 120	(2.4)	132.9^{p}	$5.3 imes10^{-4}$		70
				130.7^q	$1.0 imes10^{-3}$		

^a $T \pm 1$ °C. ^b Statistical errors smaller than a factor 2. Value in brackets is the average of all experimentally accessible frequency factors. ^c Statistical errors between 2 and 3 kJ mol⁻¹. ^d Values calculated with parameters from columns 4 and 5. ^e Rescaled values of E_a using a mean frequency factor (see text) when it was necessary; i.e., A different from 2.4 × 10¹⁴ s⁻¹. ^f R = t-Bu. ^g Values may be biaised due to a side reaction; see ref 80. ^h Both diastereoisomers show same rate constant. ⁱ Isomers RS/SR, ³¹P NMR (C₆D₆), $\delta = 22.3$ ppm.^j R = Me. ^k Isomers RR/SS, ³¹P NMR (C₆D₆), $\delta = 23.0$ ppm. ^l Both isomers were not purified separately. Rate constants were estimated from a plot of eq 1 showing two slopes. ^m Only one isomer could be measured. ³¹P NMR (C₆D₆) $\delta = 21.8$ ppm. ⁿ As k_d is slow, same side reaction as in ref 80 could occur. ^o Only one diastereoisomer ($\delta = 24.3$ ppm) was available pure. ^p $\delta = 25.6$ ppm in C₆D₆/t-BuPh. ^q $\delta = 22.9$ ppm

N-(2-Methylpropyl)-*N*-(1-diethylphosphono-2,2-dimethylpropyl)-*O*-(2-carboxylprop-2-yl)hydroxylamine (2s). Anal. Calcd for C₁₇H₃₆NO₆P (381.44): C, 53.53; H, 9.51; N, 3.67; Found: C, 53.57; H, 9.28; N, 3.77. ³¹P NMR (CDCl₃): 26.2. ¹H NMR (CDCl₃): 1.15 (s, 9H, C(*CH*₃)), 1.24 (s, 9H, C(*CH*₃)), 1.33 (t, ³J_{H-H} = 6 Hz, 3H, CH₂*CH*₃), 1.36 (t, ³J_{H-H} = 6 Hz, 3H, CH₂*CH*₃), 1.61 (s, 3H, CH₃), 1.78 (s, 3H, CH₃), 3.42 (d, ²J_{H-P} = 27 Hz, 1H, CHP), 3.9–4.4 (m, 4H, CH₂). ¹³C NMR (CDCl₃): 176.5 (COOH), 84.5 (*C*-COOH), 70.8 (d, ¹J_{C-P} = 136 Hz, *C*-P), 63.0 (*C*-N), 62.06 (d, ²J_{C-P} = 6.6 Hz, *CH*₂-O-P), 59.94 (d, ²J_{C-P} = 7.5 Hz, *CH*₂-O-P), 35.74 (d, ²J_{C-P} = 6.0 Hz, *C*Me₃), 29.5 (d, ³J_{C-P} = 6.0 Hz, P-CHC(*CH*₃)₃), 27.4 (C(*CH*₃)₃), 27.9 (*CCH*₃), 24.1 (*CCH*₃), 16.15 (d, ³J_{C-P} = 6.0 Hz, P-OCH₂*CH*₃).

ESR Kinetic Experiments. ESR kinetic experiments were performed on a CW-ESR spectrometer (Bruker EMX) in conditions previously described,^{7,10,13,21,26} using air (oxygen) as an alkyl radical scavenger and samples freshly prepared from pure compounds.

Results

Measurements of the Rate Constant of the C–ON Bond Homolysis. Here, in the absence of monomers, we assumed that low molecular weight leaving alkyl radicals mimic polymerizing systems with similar substituted propagating alkyl radicals. Since there is no propagation in the present case and n = 0, only reactions 1, 2, and 4 (Scheme 1) should occur. Re-formation of the alkoxyamine by reaction 2 increases its apparent

lifetime considerably. Therefore, $k_{\rm d}$ cannot be taken directly from its decay under normal reaction conditions.^{4,7,8,26} Instead, conditions have to be chosen such that the transient radicals are rapidly and completely converted into other unreactive species (reaction 4) before reaction 2 (Scheme 1) can occur. In our earlier works,^{7,26} we showed that k_d can be measured conveniently by quantitative CW-ESR spectroscopy from the appearance of the nitroxyl radical signal using a suitable alkyl radical scavenger such as galvinoxyl, TMIO-¹⁵ND₁₂ (perdeuterated 2,2,10,10-tetramethylisoindolin-[¹⁵N]-Noxyl), TEMPO, and air (oxygen). Other authors have employed nitroxyl radicals,¹⁸ styrene,^{15–23,47} good hy-drogen donors,^{24,48} diiodine or nitroso compounds,⁴⁹ and oxygen.^{20,49,50} The experimental cleavage rate constants $k_{\rm d}$ were measured using either the plateau method (eq 1) or the initial slope (eq 2) of the time evolution of the doubly integrated ESR signal of the growing nitroxyl radical in the presence of oxygen as alkyl radical scavenger.^{7,10,13,21,25,26}

$$\ln\left(\frac{[\text{nitroxide}]_t - [\text{nitroxide}]_{\infty}}{[\text{nitroxide}]_{\infty}}\right) = -k_{d}t \qquad (1)$$

$$\frac{[\text{introxide}]_t}{[\text{nitroxide}]_{\infty}} = k_{\text{d}}t \tag{2}$$

Table 2. Values of the Universal Electrical Hammett Constant σ_{U} , the Steric Constant v, the Corrected (RSE^{corr}) and Uncorrected (RSE) Radical Stabilization Energy, the Radical Stabilization Constants σ_{RS} and σ , and Bond Dissociation Energy of the C–H Bond BDE(C–H) of the Alkyl Fragments a–u (Structures Shown in Scheme 3)

alkyl fragment	$\sigma_{\mathrm{U}}{}^{a}$	v^b	$\mathrm{RSE}^c~(\mathrm{kJ~mol^{-1}})$	$\mathrm{RSE}^{\mathrm{corr}\;d}\;(\mathrm{kJ\;mol^{-1}})$	$\sigma_{\mathrm{RS}}{}^d$	0* e	$BDE(C\!-\!H)^{f}(kJ\;mol^{-1})$
a	0.05	$1.28^{g,h}$	-35.1	-53.1	0.36	2.46^{i}	$352.8(6.3)^{j}$
b	0.07	$0.86^{g,k}$	-35.1	-49.3	0.34	2.11^l	$357.0(6.3)^{j}$
С	0.03	0.70	-35.1	-44.7	0.31	1.73	$370.0 \ (6.3)^m$
d	0.07^{n}	$1.43^{g,o,p}$	-11.7	-29.7	0.20	1.16^q	$379.0 (15.0)^r$
е	0.09^{s}	$1.00^{g,p,t}$	-11.7	-25.9	0.18	0.81^{u}	$385.0 (15.0)^r$
f	0.15	$0.80^{g,p,v}$	-11.7	-21.3	0.15	0.43^{w}	$406.3 (10.5)^r$
g	0.14^{n}	$1.20^{g,x}$	-14.2	-32.2	0.22	1.15^{y}	$362.6 (8.4)^{z}$
ĥ	0.17^{s}	$0.79^{g,aa}$	-14.2	-28.4	0.19	1.10^{bb}	$375.8 \ (9.6)^z$
i	0.20	$0.58^{g,cc}$	-14.2	-23.8	0.16	0.72	$396.3 (8.8)^{z}$
j	0.03^{s}	$0.86^{g,dd}$	-52.7	-66.9	0.46	2.43^{ee}	$354.0~(6.3)^{ff}$
k	0.02	0.69	-52.7	-62.3	0.43	2.05	$368.8 (8.8)^m$
1	0.07^{s}	$1.50^{d,gg}$	-62.6^{hh}	-78.8	0.54	_ii	$321.9 \ (6.3)^{ij}$
m	0.12^{kk}	0.72	-27.9^{ll}	-37.5	0.25	1.5^{mm}	$364.5 (8.4)^{j}$
n	0.09^{s}	$0.82^{g,nn}$	-26.8^{oo}	-41.0	0.28	0.84^{pp}	$385.8(5.9)^{j}$
0	-0.01^{kk}	0.73	0.0	-9.6	0.07	0.42	$422.6~(1.7)^{qq}$
р	0.00	0.87	0.0	-14.2	0.10	0.80	$399.6 (4.0)^m$
q	-0.01	1.24	0.0	-18.0	0.12	1.15	$404.0 (1.7)^m$
r	0.09^{s}	$1.02^{g,rr}$	-12.3^{ss}	-26.5	0.18	0.78^{tt}	394.5^{tt}
s	0.07^{n}	$1.24^{g,uu}$	-12.3^{ss}	-30.3	0.21	1.13^{vv}	$388.5 (12.1)^{ww}$
t	0.09^{s}	$0.83^{g,xx}$	-12.3^{ss}	-26.5	0.18	0.78^{yy}	$394.5 (12.1)^{zz}$
u	-0.01	0.52	0.0	0.0	0.00	0.00	$438.5 (0.4)^m$

^a Values given in ref 58 unless otherwise mentioned. ^b Values given in refs 42 and 43 unless otherwise mentioned. ^c Values given in ref 55 unless otherwise mentioned. One assumed that primary alkyl radicals exhibit same RSE as secondary and tertiary. ^d See text. ^e Values given in ref 57 unless otherwise mentioned. ^f Errors are given in parentheses. ^g Estimated from eq 13. ^h $v_1 = v(t\text{-}Bu)$ and $v_2 = v(Ph) = 0.57$. ⁱ Value of σ (PhCH₂) incremented of 0.73; see ref 57. ^j Reference 76. ^k $v_1 = v(t\text{-}Pr) = 0.76$ and $v_2 = v(Ph) = 0.57$. ⁱ Value of σ (PhCH₂) incremented of 0.38; see ref 57. ^m Reference 64. ⁿ Estimated from eq 12. ^o $v_1 = v(t\text{-}Bu)$ and $v_2 = v(CO_2\text{Alk}) = 0.9$. ^p In the case of TEMPO derivatives, the type of R group (Me or t-Bu) does not modify the values of k_d unlike for SG1 derivatives; see ref 81. ^s Estimated from eq 11. ^t $v_1 = v(i\text{-}Pr) = 0.76$ and $v_2 = v(CO_2\text{Alk}) = 0.9$. ^a Value of σ (MeOOCH₂) estimated in footnote w incremented of 0.33; see ref 57. ^s $v_1 = v(\text{E}$ bu) and $v_2 = v(CO_2\text{Alk}) = 0.9$. ^a Value of σ (MeOOCH₂) estimated in footnote w incremented of 0.38; see ref 57. ^s $v_1 = v(\text{E}$ bu) and $v_2 = v(CO_2\text{Alk}) = 0.9$. ^a Value of σ (MeOOCH₂) estimated in footnote w incremented of 0.38; see ref 57. ^s $v_1 = v(\text{E}$ bu) and $v_2 = v(\text{CO}_2\text{Alk}) = 0.9$. ^w Value estimated using eq 32 and $a_{\text{H}/4}\text{MeOOCCMeH} = 24.68 G from refs 55 and 84. ^s <math>v_1 = v(\text{E}$ bu) and $v_2 = v(\text{CN}) = 0.40$. ^b Value of σ (NCCH₂) incremented of 0.38; see ref 57. ^f Reference 26. ^{gg} A mean value between v(Ph) and $v(\text{C}_{\text{H}_1})$ was assumed. ^{hh} Estimated from eq 3 in ref 55 and $a_{\text{H},a} = 13.56$ G from ref 76. ^{man} $v_1 = v(i\text{-}\text{Pr}) = 0.76$ and $v_2 = v(\text{CH} = 0.4$. ^b Estimated from eq 3 in ref 55 and $a_{\text{H},a} = 10.5$ G from ref 76. ^{man} $v_1 = v(i\text{-}\text{Pr}) = 0.76$ and $v_2 = v(\text{CO}_2\text{H}) = 0.40$. ^b Estimated from eq 3 in ref 55 and $a_{\text{H},a} = 10.5$ G from ref 76.

The experiments were carried out in *t*-BuPh and SG1 used as the standard nitroxyl radical. We showed earlier that the frequency factor A for the C–ON bond homolysis for 30 alkoxyamines did not vary much with the alkoxyamine structure but lay between 10^{13} and 10^{15} $\rm s^{-1}$ with an averaged value A of 2.4 \times 10^{14} $\rm s^{-1}$ 7,13,21,25,26,34 For **2s** and **2r**, the rate constants were determined only at a few temperatures. Thus, the activation energies $E_{\rm a}$ were estimated directly from the rate constants $k_{\rm d}$ using the averaged frequency factor A. The estimated E_a values given in Table 1 correspond to the average of individual values over the temperature range. Individual values vary by less than 2 kJ mol⁻¹ from the average values listed in Table 1. The number of experiments, temperature ranges, frequency factors A, activation energies $E_{\rm a}$, cleavage rate constants at 120 °C $k_{
m d,393}$, and corrected activation energies $E_{
m a}^{
m corr}$ for alkoxyamines based on the nitroxyl fragments 1 and 2 are listed in Table 1.

Bond Dissociation Energy BDE(C–H). We have recently shown³⁴ that the values of E_a for the homolysis of the CO–N bond of SG1–alkoxyamines were divided into two families (one nonpolar and one polar depending on the substituent carried by the leaving alkyl radical) when $E_{\rm a}$ was plotted against BDE(C-H) (eqs 3a and 3b).

 $E_{\rm a}$ kJ mol⁻¹ = -133.0 (250) kJ mol⁻¹ + 0.72 (7) × BDE(C-H) kJ mol⁻¹ $R^2 = 0.97$ (3a)

$$E_{\rm a}$$
 kJ mol⁻¹ = -137.0 (780) kJ mol⁻¹ + 0.69 (13) ×
BDE(C-H) kJ mol⁻¹ $R^2 = 0.77$ (3b)

The regression coefficient for the polar line is not good $(R^2 = 0.77)$ due to a scattering of the data because the differences in E_a for the two isomers of **2e**, **2h**, and **2t** were not taken into account and due to the strongly deviating value of E_a of **2f**. Such deviation might be caused either by the large error on BDE(C-H) of H-CH₂COOMe (see Table 2) or by a biased value of E_a due to side reactions. Alkoxyamine **2r** is not included in the regression because the statistic parameters are poorer ($R^2 = 0.61$). That is certainly due to some steric effect of the ethyl group of the **r** group. However, the value of E_a for **2r** lies close to the line corresponding to

Figure 1. Activation energies E_a for the C–ON bond homolysis of alkoxyamines based on the nitroxyl fragment **2** vs bond dissociation energy BDE(C–H) of the corresponding hydrocarbon (structures shown in Scheme 3): (**■**) nonpolar (primary and secondary) leaving alkyl radicals; (**●**) polar (primary and secondary); and (**△**) tertiary leaving alkyl radical (polar and nonpolar).

the polar leaving alkyl radicals (Figure 1). In contrast, 2s lies far from the two lines (polar and nonpolar radicals), which suggests a possible influence of the steric effect. Indeed, such a result could explain the position of 2q on the line for polar leaving alkyl radicals (vide infra).

Radical Stabilization Energy. Some years ago, Rüchardt et al.^{51–55} defined a radical stabilization energy (RSE), which was assumed free of any of the effects observed with BDE(C–H). Therefore, we plotted E_a vs RSE for TEMPO (Figure 2) and SG1 (Figure 3) derivatives. Assuming the same RSE for primary, secondary, and tertiary leaving alkyl radicals (Table 2), three lines (eqs 4–6) were drawn for TEMPO derivatives.

$$\begin{split} E_{\rm a}^{\rm corr} \, (\rm kJ \ mol^{-1}) = \\ 167.0 \, (\pm 3.4) + 0.55 \, (\pm 0.09) \times \rm RSE \ (4) \\ R^2 = 0.97, \, \sigma = 2.7, \, N = 3 \end{split}$$

 $E_{\rm a}^{\rm corr} \,({\rm kJ} \,{\rm mol}^{-1}) =$

$$159.0 (\pm 10.3) + 0.99 (\pm 0.28) \times \text{RSE}$$
 (5)

$$R^2 = 0.76, \sigma = 15.4, N = 6$$

 $E_{\rm a}^{\rm corr}$ (kJ mol⁻¹) =

$$135.5 (\pm 9.4) + 0.73 (\pm 0.48) \times \text{RSE}$$
 (6)

$$R^2 = 0.54, \sigma = 12.0, N = 4$$

The straight line for the primary (eq 4) alkyl radicals shows a high linear correlation coefficient ($R^2 = 0.97$), which suggests a major influence of RSE on k_d . The straight lines for the secondary (eq 5) and tertiary (eq 6) exhibit a poor R^2 (Figure 2). This scattering is certainly caused by some steric effect arising from the methyl group(s) on the carbon of the C–ON bond or by the peculiar conformation of the two six-membered rings (**p** and **l**) for the secondary alkyl radical.

Although two straight lines (primary and secondary alkyl radicals) were drawn for SG1 derivatives, Figure 3 shows the scattered plots of E_a vs RSE which are underlined by small R^2 values (eq 7 for primary and eq 8 for secondary alkyl radicals). It is clear that the stabilization of the leaving alkyl radical is not the only

Figure 2. Activation energies E_a for C–ON bond homolysis in alkoxyamines based on the nitroxyl fragment 1 vs radical stabilization energy (RSE) of the leaving alkyl radicals: (\blacksquare) tertiary, (\bullet) secondary, and (\blacktriangle) primary leaving alkyl radicals (structures shown in Scheme 3).

Figure 3. Activation energies E_a for C–ON bond homolysis in alkoxyamines based on the nitroxyl fragment **2** vs radical stabilization energy (RSE) of the leaving alkyl radicals: (\bullet) secondary and (\blacktriangle) primary leaving alkyl radicals (structures shown in Scheme 3).

factor to take into account. Further comments will be developed in the Discussion section.

$$\begin{aligned} E_{\rm a}^{\rm corr} \, (\rm kJ \ mol^{-1}) = \\ 156.3 \, (\pm 7.3) + 0.62 \, (\pm 0.25) \times \rm RSE \ \ (7) \\ R^2 = 0.60, \, s = 10.0, \, N = 6 \end{aligned}$$

 $E_{\rm a}^{\rm corr}$ (kJ mol⁻¹) =

$$142.5~(\pm 5.8) + 0.75~(\pm 0.33) imes {
m RSE}~(8)$$
 $R^2 = 0.39, s = 9.4, N = 10$

Taft–Ingold Approach. To overcome the several difficulties²⁷ inherent in the use of BDE(C–H) as predictive tool and to gain more insight into the effects involved in the C–ON bond homolysis of the alkoxyamines, we investigated a multiparameter approach.³⁵ Indeed, one of us has already used this approach to disentangle the polar and steric effects of the nitroxyl moiety acting on the rate constant of the homolysis of the alkoxyamine C–ON bond.⁵⁶ From the previous approaches (vide supra) applied to the TEMPO and SG1 derivatives, it was obvious that the polar, steric, and radical stabilization effects of the leaving alkyl radicals influence k_d and are differently intertwined depending on the type of

nitroxyl moiety. Thus, eq 9 should help to disentangle these effects by applying polar inductive/field ($\sigma_{\rm U}$),^{36–41} steric (v),^{42,43} and radical stabilization ($\sigma_{\rm RS}$ or σ^{\bullet})^{44,57} molecular descriptors to the leaving alkyl radicals.

$$\log k_{\rm d} = \log k_{\rm d,0} + \rho_{\rm RS}\sigma_{\rm RS} + \rho_{\rm U}\sigma_{\rm U} + \delta v \qquad (9)$$

As the various substituents were directly bound to the reactive center (Scheme 4), the value of $\sigma_{\rm U}$ of the CR₁R₂R₃ group was used (Table 2).⁵⁸

The unknown values were given by eqs 10-12 for primary, secondary, and tertiary alkyl groups, respectively.⁵⁹

$$\sigma_{\rm U,R_1CH_2} = 0.416\sigma_{\rm U,R_1} - 0.0103 \tag{10}$$

$$\sigma_{\rm U,R_1R_2CH} = 0.297 \sum \sigma_{\rm U,R} + 0.00482 \qquad (11)$$

$$\sigma_{\rm U,R_1R_2R_3C} = 0.248 \sum \sigma_{\rm U,R} + 0.00398 \qquad (12)$$

For the steric demand, the constant of Charton^{42,43} v (Table 2) was preferred to the Taft⁶⁰ constants $E_{\rm s}$ because more groups were available, and the values were expected to be free of inductive and resonance effects.^{42,43} The missing values were given by eq 13.⁶¹

$$v = 0.866v_1 + 0.436v_2 - 0.0455 \tag{13}$$

Values of v_1 and v_2 were given by Charton.^{42,43,61} Furthermore, Charton showed that the v_2 values for the ester group varies between 0.50 and 1.39 depending on the value of the dihedral angle θ between the COOR group and the reactive center.⁶¹ Hence, for **1e** (R = Me) and for **2e** (R = Me), X-rays showed θ values of 60° and of 30°, respectively;⁶² thus, a mean value of $\theta = 45$ ° (i.e., $v_2 = 1.0$) could be assumed for all derivatives in both series.⁶¹ Intuitively, the **1** group (Scheme 3) looks more sterically demanding than the cyclohexyl (v =0.87)⁴² but less than the phenyl group (v = 2.15).⁴² We thus chose a value v = 1.5 to represent the size of the cyclohexadienyl group.⁶¹

The main problems arose with the radical stabilization molecular descriptor ($\sigma_{\rm RS}$). In fact, the Hammett constants $\sigma_{\rm U}$ and $\sigma_{\rm R}$ (delocalization effect) are not the most suitable to take into account the radical stabilization.²⁸ A lot of work had already been done in that field but mainly on the benzylic-type compounds.⁶³ To the best of our knowledge, only Afanas'ev⁵⁷ developed in the 1970s a general scale for alkyl radical stabilization (vide infra). However, over the past two decades, Rüchardt's group^{51–55} has developed a RSE scale for a large series of alkyl radicals. Those RSE values were assumed to be free of the ground-state effects involved in the homolysis of C-X bonds (X being any atom or group).⁵¹⁻⁵⁵ Moreover, the RSE values include the effects due to the electron-withdrawing, electron-donating, and resonance capacities of the various groups bound to the radical center. The RSE values are the same whatever the type of alkyl radicals studied and are given in kJ mol⁻¹ (Table 2) and are not dimensionless like $\sigma_{\rm U}$ and $v.^{55}$ The difference in the *y*-intercept of eqs 4–6 may be assumed as the stabilization due to the type (primary, secondary, and tertiary) of alkyl radical studied. However, these values are larger than those deduced from the BDE-(C-H) of the corresponding alkane.⁶⁴ We supposed that some ground-state effects biased them. Consequently, we preferred to use the values given by Rüchardt et al.⁵³ and reported them in eqs 14–16 to give the corrected radical stabilization energy (RSE^{corr}, Table 2), RSE-(CH₃•) = 0.0 kJ mol⁻¹ being the reference.

$$RSE^{corr}(tertiary) = RSE - 18.0 \text{ kJ mol}^{-1}$$
 (14)

$$RSE^{corr}(secondary) = RSE - 14.2 \text{ kJ mol}^{-1}$$
(15)

$$RSE^{corr}(primary) = RSE - 9.6 \text{ kJ mol}^{-1}$$
 (16)

To normalize the RSE^{corr} values, we used the formation enthalpy of the methyl radical ($\Delta H_{\rm f}({\rm CH_3}^{\bullet}) = -146.3$ kJ mol⁻¹) as it should contain a minimum of effects due to the saturated ground state of the molecule.⁶⁴ The values of $\sigma_{\rm RS}$ are given by eq 17.

$$\sigma_{\rm RS} = \frac{\rm RSE^{\rm corr}}{\Delta H_{\rm f}(CH_3^{\bullet})} \tag{17}$$

The larger $\sigma_{\rm RS}$ is, the more stabilized the alkyl radical is. Before applying the $\sigma_{\rm RS}$ values to the multiparametric regressions, it had been checked that they were not correlated to $\sigma_{\rm U}$ ($R^2 = 0.01$) and v ($R^2 = 0.02$).

A previous work¹³ showed that a partial positive charge was present on the carbon of the polarized C–ON bond. Consequently, $\sigma_{\rm R}$, $\sigma_{\rm R}^+$, and $\sigma_{\rm R}^-$ (molecular descriptors for delocalization effect) were tested.^{36,58} In the absence of one of the major parameters i.e., $\sigma_{\rm U}$, $\sigma_{\rm RS}$, and v, R^2 and *F*-test values were very poor, and a fourparameter regression did not significantly improve the correlation. Therefore, for the moment, no experimental results justify the use of the resonance Hammett constants.

In earlier works,^{13,26} plotting $E_a(C-ON)$ vs BDE-(C-H) showed that, for TEMPO derivatives, k_d was mainly influenced by the stabilization energy and also to a smaller extent by the size of the leaving alkyl radical. In contrast, plotting $E_a(C-ON)$ vs BDE(C-H) for SG1 derivatives (Figure 1) emphasized the influence of the polarity of the leaving alkyl radical, besides the two precited effects.³⁴ Hence, all the possible correlation combinations with $\sigma_{\rm RS}$, $\sigma_{\rm U}$, and v were tested and collected in Tables 3 and 4. For the TEMPO derivative series, eqs 18-20 suggest that radical stabilization is the major factor—but the statistical data ($R^2 = 0.59$) are worse than with BDE(C-H) as expected-and also that the effect of the size of the leaving alkyl radical is not negligible ($R^2 = 0.49$) whereas the polarity seems unimportant ($R^2 = 0.10$). The statistical data of eqs 18-20 are improved by eqs 21 and 23 (biparametric regressions). They could be further improved by removing deviating data such as those corresponding to the tertiary alkyl radicals or compounds 1b,c,j and k. Equation 22 (Table 3) shows very good R^2 and F-test values, which confirms the influence of the size and stabilization of the leaving alkyl radical. Equation 24 (three parameters) improves the statistical data of eq 22. It will thus be considered as the equation giving the better description of the effects influencing C-ON bond homolysis in alkoxyamines (Figure 4, vide infra). The discrepancy observed with 1f is certainly due to the

Table 3. Correlations of log k_d at 120 °C with Various Molecular Descriptors (Radical Stabilization Constant σ_{RS} , Universal Electrical Hammett Constant σ_U , and Steric Constant v) for Alkoxyamines Based on the Nitroxyl Fragment 1

•	Sur Licevilleur Liu		00, and 200110 0	011000011000000000000000000000000000000				0 1 1 1 0 1 9 1 1	- againer -
eq	$\log k_{ m d,0}$	$ ho_{ m RS}$	$ ho_{ m U}$	δ	N^a	s^b	R^{2c}	t^d	F^e
18 ^f	$-8.4(\pm 1.3)$	$17.7 (\pm 4.3)$			14	2.4	0.59	99.87	
19	$-5.0(\pm 1.4)$		$19.3 (\pm 16.6)$		14	3.5	0.10	77.00	
20	$-11.3(\pm 2.2)$			$7.2(\pm 2.2)$	13^g	2.2	0.49	99.20	
21^h	$-9.5(\pm 1.3)$	$17.6(\pm 3.9)$	$18.4 (\pm 10.3)$	-	14	2.2	0.68	99.97^{i}	99.82^{k}
								91.80^{j}	
22^l	$-14.3(\pm 1.1)$	$13.8(\pm 2.2)$		$7.0(\pm 1.1)$	14	1.2	0.91	99.99^{i}	99.99^{n}
								99.99^{m}	
23^{o}	$-13.2(\pm 2.3)$	-	$12.8(\pm 11.3)$	$8.7(\pm 2.2)$	14	2.4	0.63	72.00^{j}	97.60^{p}
								99.77^{m}	
24	$-14.8(\pm 0.7)$	$13.9(\pm 0.9)$	$13.6(\pm 3.2)$	$6.6(\pm 0.7)$	14	0.8	0.96	99.99^{i}	99.99^q
								99.45^{j}	
								99.99^{m}	

^{*a*} Number of data. ^{*b*} Standard deviation. ^{*c*} Square of the coefficient of the linear regression. ^{*d*} Student *t*-test given in percent. ^{*e*} *F*-test given in percent. ^{*f*} Tertiary alkyl radicals were out of the general trend but included in the regression. ^{*g*} **1** was not included because it was far from the straight line. ^{*h*} Tertiary alkyl radicals were slightly deviating from the regression line. ^{*i*} *t*-test on the value of ρ_{RS} . ^{*j*} *t*-test on the value of ρ_{US} . ^{*k*} *F*-test value is 12. ^{*i*} **1g,h** were slightly deviating. ^{*m*} *t*-test on the value of δ . ^{*n*} *F*-test value is 56. ^{*o*} **1b,c,j,k** were slightly deviating. ^{*p*} *t*-test value is 6. ^{*q*} *F*-test value is 80.

Table 4. Correlations of log k_d at 120 °C with Various Molecular Descriptors (Radical Stabilization Constant σ_{RS} , Universal Electrical Hammett Constant σ_U , and Steric Constant v) for Alkoxyamines Based on the Nitroxyl Fragment 2

eq	$\log k_{ m d,0}$	$ ho_{ m RS}$	$ ho_{ m U}$	δ	N^a	s^b	R^{2c}	t^d	F^e
25	$-11.7~(\pm 0.8)$	49.6 (±4.6)			14^{f}	0.7	0.89	99.99	
26	$-3.6(\pm 0.2)$		$9.0(\pm 2.3)$		14^g	0.4	0.57	99.81	
27	$-5.6(\pm 0.9)$			$3.6(\pm 1.0)$	15^h	0.6	0.49	99.66	
28^i	$-6.9(\pm 1.0)$	$11.1(\pm 3.9)$	$13.8(\pm 5.1)$		19	1.4	0.49	99.00 ^j	99.52^{l}
								98.40^{k}	
29	$-9.4(\pm 2.2)$	$12.6(\pm 4.2)$		$4.1(\pm 2.2)$	19	1.5	0.39	99.10^{j}	98.13^{n}
	. ,	, ,		. ,				92.40^{m}	
30	$-9.1(\pm 2.2)$		$17.7 (\pm 5.9)$	$4.9(\pm 2.2)$	19	1.5	0.39	99.13^{k}	98.17^{o}
								95.55^{m}	
31	$-14.3(\pm 1.3)$	$15.3(\pm 2.2)$	$19.5(\pm 3.0)$	$7.0(\pm 1.1)$	19	0.8	0.85	99.99^{j}	99.99^{p}
	. ,	, ,	. ,	. ,				99.99^{k}	
								$\mathbf{Q}\mathbf{Q}$ $\mathbf{Q}\mathbf{Q}m$	

^{*a*} Number of data. ^{*b*} Standard deviation. ^{*c*} Square of the coefficient of the linear regression. ^{*d*} Student *t*-test given in percent. ^{*e*} *F*-test given in percent. ^{*f*} **2b,c,k,m**, and **n** were not included in the regression because they were far from the trend; $R^2 = 0.25$. ^{*g*} **2f,i,o,p**, and **s** were not included in the regression because they were far from the trend; $R^2 = 0.21$. ^{*h*} **2f,o,p**, and **q** were not included in the regression because they were far from the trend; $R^2 = 0.06$. ^{*i*} Tertiary alkyl radical were deviating from the regression line. ^{*j*} *t*-test on ρ_{RS} . ^{*k*} *t*-test on ρ_{RS} . ^{*k*} *t*-test on δ . ^{*n*} *F*-test value is 5. ^{*p*} *F*-test value is 29.

Figure 4. Log k_d at 120 °C for the C–ON bond homolysis in alkoxyamines based on the nitroxyl fragment 1 vs linear combination of molecular descriptor (radical stabilization constant σ_{RS} , universal electrical Hammett constant σ_U , and steric constant v) for eq 24 (structures shown in Scheme 3).

position of the ester group; i.e., such a group can adopt any position, from the least to the most sterically demanding position. 60,61

For the SG1 derivatives, the plot $E_{\rm a}(\rm C-ON)$ vs BDE-(C-H) (Figure 1) suggests clearly that the polar, radical stabilization and steric effects due to the leaving alkyl radical are strongly intertwined, each one acting significantly. As for TEMPO derivatives, all of the possible linear regression combinations with $\sigma_{\rm RS}$, $\sigma_{\rm U}$, and v were tested and are collected in Table 4. As expected from Figure 1 and eqs 7 and 8, $\log k_d$ can be correlated to $\sigma_{\rm RS}$, $\sigma_{\rm U}$, and v neither individually (eqs 25-27) nor dually (eqs 28-30), even by removing some deviating data whereas the R^2 value was lower than 0.2 when the 19 data were used. In contrast, the correlation with three parameters (eq 31 and Figure 5) exhibits significantly improved R^2 and F-test values. Equation 31 confirms the assumptions done from Figure 1 about the effects influencing the C-ON bond homolysis. Here also 2f lies clearly far from the regression line. That behavior is certainly due to the reasons mentioned above for the TEMPO series. The scattering of the SG1 derivatives looks worse than that of TEMPO derivatives because the multiple parameter regression cannot account for the different \bar{k}_{d} of the diastereoisomers.

Radical Hammett Constant σ **.** As mentioned above, only Afanas'ev⁵⁷ has developed a general σ ***** scale based either on kinetic measurements or on the hyperfine coupling constant of the β hydrogen of the alkyl radical MeXHC• (eq 32).

$$\sigma' = 5.16 - 0.192a_{\rm H\beta}(\rm G) \tag{32}$$

That σ^{\bullet} scale is highly correlated to our $\sigma_{\rm RS}$ ($R^2 = 0.80$), and therefore the statistical data listed in Tables 5 and 6 and Tables 3 and 4 are similar. Nevertheless, the correlations are clearly better when $\sigma_{\rm RS}$ values are used instead σ^{\bullet} values due to (i) $\sigma_{\rm RS}$ (see eqs 14–17) is more

Figure 5. Log k_d at 120 °C for the C–ON bond homolysis in alkoxyamines based on the nitroxyl fragments **2** vs linear combination of molecular descriptor (radical stabilization constant σ_{RS} , universal electrical Hammett constant σ_{U} , and steric constant v) for eq 31 (structures shown in Scheme 3).

general than σ^{\bullet} , i.e., almost any $\sigma_{\rm RS}$ of alkyl radical can be estimated; (ii) $\sigma_{\rm RS}$ values are based on RSE values and only correlated to hyperfine coupling constants of α or β hydrogen of alkyl-centered radical;⁵⁵ (iii) such values should be mainly free of ground-state effects;^{51–55} (iv) some discrepancies (see Table 2) were observed between the values of $\sigma_{\rm RS}$ and σ^{\bullet} , e.g., $\sigma^{\bullet}(\rm CMe_2CN) < \sigma^{\bullet}(t\text{-Bu}) \dots$

Discussion

We³⁴ showed that, for the SG1-alkoxyamines (Figure 1 and eqs 3a,b), the leaving alkyl radical carrying a polar group bound to the radical center cleaves faster contrary to the TEMPO derivatives for which no influence of the polarity was observed, e.g., $k_{\rm d}({\bf 2h}) \approx k_{\rm d}({\bf 2b})$. As expected, the values of E_a for 2t (t being a polar group) lie close to the straight line corresponding to polar leaving alkyl radicals. The large gap between $E_{\rm a}$ for **2s** and the straight line ascribed to the polar leaving alkyl radicals confirms our previous assumption³⁴ about the behavior of 2q. That is, besides a polar effect acting on k_d , there is also a steric effect involved. In Figure 1, the gaps between E_a of 2q and E_a of 2s and the lines representing eqs 7 and 8-18 and 20 kJ/mol, respectively-are quite similar, which suggests that the steric effect acts similarly in both series. Then, when a "polar" nitroxyl radical is used, one needs to draw four different correlations (polar and nonpolar primary plus secondary, and the same for tertiary alkyl fragments) to take into account the major effects involved in the C-ON bond homolysis. Consequently, plotting $E_{\rm a}$ vs BDE-(C-H) is not the best tool to predict values of k_d easily and accurately or to determine and analyze the effects influencing the C-ON bond cleavage. In fact, BDE-(C-H) is composed of various effects involved in the stability of the molecule in the ground state.^{27–33}

For a better insight into the factors influencing the C–ON bond homolysis, we plotted E_a vs RSE (radical stabilization energy)^{51–55} for TEMPO (Figure 2) and SG1 (Figure 3) derivatives. For TEMPO–alkoxyamines, the three straight lines in Figure 2 show that the radical stabilization is the major effect involved in the C–ON cleavage. The scattered plot for the secondary and tertiary alkyl radicals suggests that the size of the leaving alkyl radical has an influence. In contrast, with SG1 derivatives, although two parallel lines for primary

and secondary alkyl radicals were drawn (Figure 3, but with poor statistical tests), the scattered plots exemplify unambiguously that the radical stabilization does not have a major influence on the C-ON bond cleavage, as expected from Figure 1. Indeed, for both series, a multiple parameter approach³⁵ (eqs 21-24 and 28-31) turned out to be very powerful because the values of $k_{\rm d}$ were correlated with three parameters: $\sigma_{\rm U}$ (Hammett constants for the universal electrical effect, i.e., localized electrical or polar inductive/field effect), $^{36-41,58,59}$ $\sigma_{\rm RS}$ (Hammett constants for the radical stabilization effect), and v (constants for the steric effect).^{42,43,61} For the TEMPO-alkoxyamine series, good correlations were obtained with one ($\sigma_{\rm RS}$, eq 18) or two ($\sigma_{\rm RS}$ and v, eq 22) parameters, but the three-parameter linear regression (eq 24) gave even better results that can be compared to the results obtained with the SG1-alkoxyamine series.

Using eqs 41 and 42,⁶⁵ with X_i the value of the parameter X for the *i*th data, \overline{X} the arithmetic mean of the X parameter, *n* the number of data, ν the number of degree of freedom, α_X the weighting coefficient, and C_X the coefficient of the X parameter, it was possible to estimate the weight of the various effects in each series.

0

$$a_X = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\nu}}$$
 (41)

$$\% X = 100 \times \frac{\alpha_X C_X}{\sum \alpha_{X_i} C_{X_i}}$$
(42)

Entry 1 (Table 7) reveals that, in TEMPO series, radical stabilization (44%) and steric (40%) demands are the main effects involved in the C–ON bond homolysis. Indeed, the polar field/inductive effect (16%) is weak but not negligible. Those results are in good agreement with what was observed in Figure 2 and earlier works.^{13,25,26} In contrast, in SG1 series (entry 2, Table 7), the absence of major effects of the leaving alkyl radicals-radical stabilization effect: 34%; steric effect: 31%; and the polar (universal electrical) effect: 35%-confirms the remarks made about Figure 3 (no main influence of radical stabilization) and about Figure 1 (four correlations to explain the results). Although SG1 is bulkier than TEMPO, its size has a smaller influence than TEMPO's (35% for TEMPO against 31% for SG1). Moreover, the radical stabilization effect is lower in the SG1-alkoxyamine series (34%) than in the TEMPOalkoxyamine series (44%). Conversely, the influence of the electrical effect $(\sigma_{\rm U})$ is 2 times higher in the SG1alkoxyamine series (35%) than in TEMPO-alkoxyamine series (16%), which suggests that the leaving alkyl radical is highly sensitive to the polarity of the nitroxyl moiety.

All of these results are accounted for by changes in the transition state (TS), ground state (GS), and final state (FS) and are sketched in Figure 6 for nonpolar leaving alkyl radicals. For both the nitroxyl and alkyl moieties, an increase of k_d with the increasing steric demand is a feature of a destabilization in GS. Otherwise, in the TS increasing steric demand involves a smaller ΔS^{\ddagger} ; thus, a larger ΔG^{\ddagger} and consequently k_d is smaller. With respect to the Hammond principle,⁶⁶ one $\mathbf{2}$

Table 5. Correlations of log $k_{\rm d}$ at 120 °C with Various Molecular Descriptors (Radical Stabilization Constant σ , Universal Electrical Hammett Constant σ_{U} , and Steric Constant v) for Alkoxyamines Based on the Nitroxyl Fragment 1

					-			-	-
eq	$\log k_{ m d,0}$	$ ho^{ullet}$	$ ho_{ m U}$	δ	N^a	s^b	R^{2c}	t^d	F^e
33 34	$-7.9(\pm 1.2) \\ -9.7(\pm 1.1)$	$\begin{array}{c} 2.7 \ (\pm 0.8) \\ 2.9 \ (\pm 0.6) \end{array}$	23.0 (±8.0)		13 13	$2.2 \\ 1.7$	0.49 0.72	99.30 99.90 ^f 98.32g	99.84^{h}
35	$-13.1(\pm 1.6)$	$2.3(\pm 0.6)$		$6.0(\pm 1.6)$	13	1.5	0.79	99.52° 99.77^{f} 99.63^{i}	99.86 ^j
36	$-13.8(\pm 0.9)$	2.5 (±0.3)	18.9 (±4.0)	$5.2(\pm 0.9)$	13	0.8	0.94	99.99^{f} 99.89^{g} 99.97^{i}	99.99^{k}

^a Number of data. ^b Standard deviation. ^c Square of the coefficient of the linear regression. ^d Student t-test given in percent. ^e F-test given in percent. f t-test on ρ . g t-test on ρ_{U} . h F-test value is 13. j F-test value is 19. t t-test on δ . k F-test value is 47.

Table 6. Correlations of log $k_{\rm d}$ at 120 °C with Various Molecular Descriptors (Radical Stabilization Constant σ , Universal Electrical Hammett Constant σ_{U} , and Steric Constant v) for Alkoxyamines Based on the Nitroxyl Fragment 2

eq	$\log k_{ m d,0}$	$ ho^{ullet}$	$ ho_{ m U}$	δ	N^a	s^b	R^{2c}	t^d	F^e
37 38	$-5.0.(\pm 1.0)$ -6.9(+1.0)	$1.5 (\pm 0.8)$ 2.0 (±0.7)	16.0(+5.3)		19 19	1.7 1.4	$0.17 \\ 0.47$	91.70 98.67^{f}	99.37^{h}
39	$-7.5(\pm 2.3)$	1.6 (±0.8)	1010 (1010)	2.9 (±2.3)	19	1.7	0.24	99.20^{g} 93.27^{f}	88.67 ^j
40	$-12.7(\pm 1.7)$	$2.3(\pm 0.5)$	21.9 (±4.2)	$5.9(\pm 1.6)$	19	1.0	0.73	76.40^{i} 99.34^{f}	99.84^{k}
								99.99^{g} 99.82^{h}	

^a Number of data. ^b Standard deviation. ^c Square of the coefficient of the linear regression. ^d Student t-test given in percent. ^e F-test given in percent. f t-test on ρ^{\bullet} . g t-test on ρ_{U} . h F-test value is 7. i t-test on δ . j F-test value is 3. h F-test value is 13.

31

Table 7. Weighting Coefficients for Eqs 24 and 31							
entry	$\%\sigma_{ m RS}$	$\%\sigma_{ m U}$	%v				
1	44	16	40				

35

34

can assume a late transition state, i.e., resembling FS. Therefore, any stabilization of both nitroxyl and alkyl radicals (FS) stabilizes TS and thus decreases $E_{\rm a}$ (increasing k_d). Oddly, an increase of k_d with the increasing polar effect was not expected because the electron-withdrawing groups destabilize both the nitroxyl and alkyl moieties in TS. Indeed, one of us has recently showed that electron-withdrawing groups on the nitroxyl radical destabilize FS (the form B is not stabilized by electron-withdrawing groups, Scheme 5) and therefore TS; i.e., the more electron-withdrawing the groups are, the smaller the values of $k_{\rm d}$ are.^{13,56} Moreover, previous works suggest the presence of a partial positive charge on the carbon of the C-ON bond in TS.¹³ One expects, a priori, a destabilization of TS with the increasing polarity of the alkyl moiety. Against these expectations, $k_{\rm d}$ is enhanced by electron-withdrawing groups on both moieties.

All of these effects caused by the polarity of both the nitroxyl and alkyl moieties are due to the polar groundstate effect (PGSE) described by Nau.⁶⁷ Moreover, in a previous work, one of the authors has already pointed out the influence of PGSE on the C-ON bond homolysis in para-substituted 1b derivatives.¹³ Such effect is very well-known for aromatic compounds,³³ recently²⁹⁻³³ extended to any molecules, and it should account for our observations. Briefly, Pauling⁶⁸ has shown that BDE includes a polar term (ionic resonance energy E_i) which depends on the difference of electronegativity χ for the atoms or groups of the cleaved bond. From these grounds, Nau⁶⁷ has shown that BDE of the XR-Z molecule is described by eq 43.

$$BDE(XR-Z) = \frac{1}{_{2}BDE(XR-RX)} + \frac{1}{_{2}BDE(Z-Z)} + \frac{23(\chi_{XR} - \chi_{Z})^{2} + \sum E_{relax}}{(43)}$$

 $\Sigma E_{\rm relax}$ covers the contribution of $E_{\rm i}$ for all bonds in XRZ except for the cleaved XR-Z bond, and it increments the value of E_i positively or negatively. Thus, Nau⁶⁷ has established that the PGSE between a molecule reference HR–Z and a homologue XR–Z is roughly described by eq 44.

$$PGSE \equiv 23[(\chi_{HR} - \chi_Z)^2 - (\chi_{XR} - \chi_Z)^2] - \Delta \Sigma E_{relax}$$
(44)

A consequence of that approach is that the more mismatched the γ values are, the stronger the bond is. Assuming that eq 44 is also true when Z is a group of atoms and HR or XR is not merely a benzylic-type group, and setting, thus, O-TEMP(1) or O-SG(2) for Z and HR for nonpolar groups (NPG) and XR for polar groups (PG), eqs 45a and 45c describe the PGSE for the TEMPO and SG1 families, respectively.

$$PGSE^{1} = 23[(\chi_{NPG} - \chi_{OTEMP})^{2} - (\chi_{PG} - \chi_{OTEMP})^{2}] - \Delta\Sigma E_{relax}^{1} (45a)$$

$$\Delta \Sigma E_{\text{relax}}^{1} = 23(\chi_{\text{PG}} - \chi_{\text{NPG}})(\chi_{\text{NPG}} - \chi_{\text{PG}} - 2\chi_{\text{TEMP}})$$
(45b)

$$PGSE^{2} = 23[(\chi_{NPG} - \chi_{OSG})^{2} - (\chi_{PG} - \chi_{OSG})^{2}] - \Delta\Sigma E_{relax}^{2} (45c)$$

$$\Delta \Sigma E_{\text{relax}}^{2} = 23(\chi_{\text{PG}} - \chi_{\text{NPG}})(\chi_{\text{NPG}} - \chi_{\text{PG}} - 2\chi_{\text{SG}}) \quad (45\text{d})$$

When eqs 45a and 45c are combined to give eq 46a, it is obvious that the larger the difference of χ between **1** and **2** is, the stronger the $\triangle PGSE$ is and the more sensitive to the polar effect the C–ON bond is.

$$\begin{split} \Delta \mathrm{PGSE} &= 46(\chi_{\mathrm{OSG}} - \chi_{\mathrm{OTEMP}})(\chi_{\mathrm{NPG}} - \chi_{\mathrm{PG}}) - \\ & \Delta \Delta \Sigma E_{\mathrm{relax}} \ (46a) \\ \Delta \Delta \Sigma E_{\mathrm{relax}} &= 46(\chi_{\mathrm{PG}} - \chi_{\mathrm{NPG}})(\chi_{\mathrm{SG}} - \chi_{\mathrm{TEMP}}) \quad (46b) \end{split}$$

Figure 6. Influence of the steric (SD) and radical stabilization (RSD) demand on the ground state (GS), transition state (TS), and final state (FS) of alkoxyamines based on the nitroxyl fragments 1 and 2 and carrying nonpolar alkyl moieties. Bold and dotted arrows are for alkyl and nitroxyl moieties, respectively.

The EPR nitrogen hyperfine coupling constants and the multiparametric approach of the effect of the nitroxyl moiety on the value of $k_{\rm d}$ support the view of radical 2 being more polar than radical 1. Then, it is not surprising to observe a stronger PGSE in the SG1alkoxyamine series than in the TEMPO-alkoxyamine series. It is worthwhile to point out that the difference in energy between polar and nonpolar groups due to the PGSE is roughly of 15 kJ/mol, which is probably the highest value observed for such effect. In general, for bond homolysis such a value is assumed around 5-10kJ/mol.^{67,69} The PGSE for the alkoxyamine **2** family is depicted in Scheme 6.67 One can assume a polar $C^{\delta+-}$ δ -ON bond, and thus any electron-withdrawing group (EWG) destabilizes the ground state (Scheme 6a), and reversely for electron-donating groups (EDG) (Scheme 6b).

Hence, to predict a value of k_d from the structure of the alkoxyamine, the nitroxyl moiety has to be divided in two families, one polar and one nonpolar. In a recent work,⁵⁶ it has been shown that the polarity of the nitroxyl moiety is estimated with eq 47.

$$\sigma_{\rm U} = \sum_{i=1}^{6} \sigma_{{\rm U},i} \tag{47}$$

The difference (\approx 9.0 kJ mol⁻¹) of E_a between **3e** and **3b** is close to the difference observed between **1e** and **1b** (8.9 kJ mol⁻¹) rather than the one between **2e** and **2b** (4.0–6.3 kJ mol⁻¹), which implies **3** (Scheme 7) belongs to the nonpolar nitroxyl family (see footnotes of Table 8). On the other hand, the difference²⁵ (6.5 kJ mol⁻¹) of E_a between **5e** and **5b** is close to the difference observed between **2e** and **2b** (4.0–6.3 kJ mol⁻¹) rather than the one between **1e** and **1b** (\approx 9.0 kJ mol⁻¹), which implies **5** (Scheme 7) belongs to the polar nitroxyl

fragment family (see footnotes of Table 8). Therefore, in first approximation, the nitroxyl moieties belonging to the nonpolar family should exhibit $\sigma_{\rm U}$ values (polar effect) smaller than 0.10, and those belonging to the polar family $\sigma_{\rm U}$ values larger than 0.10. Assuming that the coefficients ($\rho_{\rm U}$, $\rho_{\rm RS}$, and δ) determined for the nonpolar or polar nitroxyl fragment family can be applied respectively to any nitroxyl fragments belonging to one of the two families, thus the difference in influence of the nonpolar or polar nitroxyl fragment is contained in the constant term log $k_{d,0}$, i.e., the y-intercept which accounts for all effects due to the substituents of the nitroxyl fragment. Hence, the constant terms log $k_{d,0}$ for a few current nitroxyl fragments are given in Table 8 considering they belong either to the nonpolar or to the polar nitroxyl fragment family. Because of their $\sigma_{\rm U}$ values, the nitroxyl radicals 1, 3, and 4 belong to the nonpolar nitroxyl fragment family, but estimates of their constant terms $\log k_{d,0}$ (values in italics) are also given in Table 8 considering the coefficients ($\rho_{\rm U}$, $\rho_{\rm RS}$, and δ) for the polar nitroxyl fragment. Similarly, because of their σ_U values, nitroxyl radicals 2, 5, and 6 belong to the polar nitroxyl fragment family, but estimates of their constant terms $\log k_{d,0}$ (values in italics) are also given in Table 8 considering the coefficients (ρ_U , ρ_{RS} , and δ) for the nonpolar nitroxyl fragment family. Then, it is possible to estimate $k_{\rm d}$ values for alkoxyamines containing various nitroxyl fragments.

Conclusion

We have shown that the multiparameter approach provides a better and deeper insight into the effects (polar, steric, and radical stabilization demands) ruling the C–ON bond homolysis in alkoxyamines than any other approaches (BDE(C–H), RSE, or monoparametric correlations). Hence, we were able to disentangle the various intertwined effects (polar, steric, and radical stabilization effects), and we pointed out that the presence and the strength of each effect is dependent on the structure of the nitroxyl radical counterpart. It was shown that the polar effect depends strongly on the structure of the nitroxyl fragment; that is, for the

Scheme 7

Table 8. Values of log $k_{d,0}$ for Some Useful Nitroxyl Fragments^a

	1	3^b	4 ^c	5^d	6 ^e	2
σ_{U}^{f}	-0,06	-0.06	0.08	0.10	0.33	0.28
$\log k_{ m d,0}$						
nonpolar	-14.9^{g}	-13.2^{g}	-14.0	-13.8^{g}	-13.5	-13.3^{g}
polar	-16.0^{g}	-14.5^{g}	-15.2	-15.0^{g}	-14.7	-14.4^{g}

^a Estimated from eq 24 (nonpolar family) and eq 31 (polar family). Values in italics are for the estimation in the opposite family; see text. ^b DBNO is di-*tert*-butyl-*N*-oxyl radical. **3b**: $A = 2.2 \times 10^{14} \, \text{s}^{-1}$, $E_a = 121.8 \, \text{kJ} \, \text{mol}^{-1}$. **3e**: $A = 1.2 \times 10^{14} \, \text{s}^{-1}$, $E_a = 128.2 \, \text{kJ} \, \text{mol}^{-1}$. See ref 26. With $A = 2.4 \times 10^{14} \, \text{s}^{-1}$, $E_a(3\mathbf{b}) = 122.1 \, \text{kJ} \, \text{mol}^{-1}$ and $E_a(3\mathbf{e}) = 130.4 \, \text{kJ} \, \text{mol}^{-1}$. ^c **4b**: $A = 2.4 \times 10^{14} \, \text{s}^{-1}$, $E_a = 128.0 \, \text{kJ} \, \text{mol}^{-1}$. See ref 56. ^d TIPNO is 2,2,5,5-tetramethyl-4-phenyl-3-azahexane-3-oxyl radical. **5b**: $A = 5.6 \times 10^{14} \, \text{s}^{-1}$, $E_a = 129.6 \, \text{kJ} \, \text{mol}^{-1}$, see ref 26. **5e**: $A = 2.4 \times 10^{14} \, \text{s}^{-1}$, $E_a = 133.4 \, \text{kJ} \, \text{mol}^{-1}$, see ref 25. With $A = 2.4 \times 10^{14} \, \text{s}^{-1}$, $E_a(5\mathbf{b}) = 126.9 \, \text{kJ} \, \text{mol}^{-1}$. ^e **6b**: $A = 2.4 \times 10^{14} \, \text{s}^{-1}$, $E_a = 124.2 \, \text{kJ} \, \text{mol}^{-1}$. See ref 56. ^f Estimated with eq 47. ^g Averaged value of the **b** and **e** derivatives.

weakly polar nitroxyl fragment, the influence of the polarity of the leaving alkyl group on the homolysis is weak, whereas for the polar nitroxyl fragment, the influence of the polarity of the leaving alkyl group on the homolysis is strong. Moreover, combining eqs 24 and 31 and eq 8 ($\log(k_d/s^{-1}) = 3.07\sigma_I - 0.88E_s - 5.88$) of Marque⁵⁶ gives a powerful tool to predict accurate rate

constants k_d with only a short glance to the structure of the alkoxyamine considered. Such system of equations should quickly turn out to be indispensable to design new alkoxyamines and to tune NMP experiments.

ò•

6

Acknowledgment. We thank Arkema Co., CNRS, and University of Provence for financial support. S.M. is deeply grateful to Professors M. Charton and C. Rüchardt for helpful and fruitful discussions and comments.

References and Notes

ò

5

TIPNO

- US Patent 4,581,429; Eur. Pat. Appl. 135280. Solomon, D. H.; Rizzardo, E.; Cacioli, P. Chem. Abstr. 1985, 102, 221335q.
- (2) Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules **1993**, 26, 2987–2988.
- Hawker, C. J. Acc. Chem. Res. 1997, 30, 373-382. Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661-3668 and references therein. Tunca, U.; Ozyurek, Z.; Erdogan, T.; Hizal, G. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 4228-4236. Gillies, E. R.; Fréchet, J. M. J. J. Am. Chem. Soc. 2002, 124, 14137-14146. Schierholz, K.; Givehchi, M.; Fabre, P.; Nallet, F.; Papon, E.; Guerret, O.; Gnanou, Y. Macromolecules 2003, 36, 5995-5999.
- (4) Fischer, H. J. Am. Chem. Soc. 1986, 108, 3925-3927.
- (5) Daikh, B. E.; Finke, R. G. J. Am. Chem. Soc. 1992, 114, 2938– 2943.

- (6) Fischer, H. Macromolecules 1997, 303, 55666-5672.
- (7) Kothe, T.; Marque, S.; Martschke, R.; Popov, M.; Fischer, H. J. Chem. Soc., Perkin Trans. 2 1998, 1553–1559.
- (8) Fischer, H. Chem. Rev. 2001, 101, 3581-3610 and references therein.
- (9) Fischer, H. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 1885–1901. Souaille, M.; Fischer, H. Macromolecules 2000, 33, 7378-7394. Souaille, M.; Fischer, H. Macromolecules 2001, 34, 2830-2838.
- (10) For k_d values: Bertin, D.; Chauvin, F.; Marque, S.; Tordo, P. Macromolecules 2002, 35, 3790-3791
- (11) Fischer, H.; Souaille, M. Chimia 2001, 55, 109-113. Fischer, H.; Souaille, M. Macromol. Symp. 2001, 174, 231-240.
- (12) Studer, A. Angew. Chem., Int. Ed. 2000, 36, 1108-1111. Leroi, C.; Fenet, B.; Couturier, J. L.; Guerret, O.; Ciufolini, M. A. Org. Lett. 2003, 5, 1079–1081. Leroi, C.; Bertin, D.; Dufils, P.-E.; Gigmes, D.; Marque, S.; Tordo, P.; Couturier, J. L.; Guerret, O.; Ciufolini, M. A. Org. Lett. 2003, 26, 4943-4945
- (13) Marque, S.; Fischer, H.; Baier, E.; Studer, A. J. Org. Chem. **2001**, 66, 1146-1156.
- Allen, A. D.; Cheng, B.; Fenwick, M. H.; Givehchi, B.; Henry-(14)Riyad, H.; Nikolaev, V. A.; Shikhova, E. A.; Tahmassebi, D.; Tidwell, T. T.; Wang, S. J. Org. Chem. **2001**, 66, 2611-2617. Allen, A. D.; Fenwick, M. H.; Henry-Riyad, H.; Tidwell, T. T. J. Org. Chem. 2001, 66, 5759-5765. Henry-Riyad, H.; Tidwell, T. T. Can. J. Chem. 2003, 81, 697-704. Henry-Riyad, H.; Tidwell, T. T. J. Phys. Org. Chem. 2003, 16, 559-563.
- (15) Moad, G.; Rizzardo, E. Macromolecules 1995, 28, 8722-8728.
- (16) Goto, A.; Tomoya, T.; Fukuda, T.; Miyamoto, T. Macromol. Rapid Commun. 1997, 673–681.
- (17) Goto, A.; Fukuda, T. Macromol. Rapid Commun. 1997, 683-
- (18) Skene, W. G.; Belt, S. T.; Connolly, T. J.; Hahn, P.; Scaiano, J. C. Macromolecules 1998, 31, 9103–9105.
- (19)Ohno, K.; Tsujii, Y.; Miyamoto, T.; Fukuda, T.; Goto, M.; Kobayashi, K.; Akaike, T. Macromolecules 1998, 31, 1064-1069.
- (20) Bon, S. A. F.; Chambard, G.; German, A. L. Macromolecules 1999, 32, 8269-8276.
- (21) Le Mercier, C.; Lutz, J.-F.; Marque, S.; Le Moigne, F.; Tordo, P.; Lacroix-Desmazes, P.; Boutevin, B.; Couturier, J. L.; Guerret, O.; Martschke, R.; Sobek, J.; Fischer, H. ACS Symp. Ser. 2000, Chapter 8, 108–122.
- (22) Goto, A.; Fukuda, T. Macromol. Chem. Phys. 2000, 201, 2138 - 2142.
- (23) Benoit, D.; Grimaldi, S.; Robin, S.; Finet, J. P.; Tordo, P.; Gnanou, Y. J. Am. Chem. Soc. 2000, 122, 5929-5939.
- Ciriano, M. V.; Korth, H.-G.; Van Scheppingen, W. B.; Mulder, P. J. Am. Chem. Soc. 1999, 121, 6375-6381.
- (25) Le Mercier, C.; Acerbis, S.; Bertin, D.; Chauvin, F.; Gigmes, D.; Guerret, O.; Lansalot, M.; Marque, S.; Le Moigne, F.; Fischer, H.; Tordo, P. Macromol. Symp. 2002, 182, 225-247.
- (26) Marque, S.; Le Mercier, C.; Tordo, P.; Fischer, H. Macromolecules 2000, 33, 4403-4410.
- (27) Rüchardt, C. Angew. Chem., Int. Ed. Engl. 1970, 9, 830-843.
- (28) Cherkasov, A. R.; Jonsson, M.; Galkin, V. I.; Cherkasov, R. A. Russ. Chem. Rev. 2001, 70, 1–22 and references therein.
- (29) Ingold, K. U.; Wright, J. S. J. Chem. Educ. 2000, 77, 1062-1064
- (30) Zavitsas, A. A. J. Chem. Educ. 2001, 78, 417-419.
- (31) Coote, M. L.; Pross, A.; Radom, L. Org. Lett. 2003, 5, 4689-4692.
- (32)Matsunaga, N.; Rogers, D. W.; Zavitsas, A. A. J. Org. Chem. **2003**, 68, 3158-3172.
- (33) Pratt, D. A.; DiLabio, G. A.; Mulder, P.; Ingold, K. U. Acc. Chem. Res. 2004, 37, 334-340 and references cited herein.
- (34) Bertin, D.; Gigmes, D.; Le Mercier, C.; Marque, S. R. A.; Tordo, P. J. Org. Chem. 2004, 69, 4925-4930.
- Shorter, J. In Correlation Analysis of Organic Reactivity; J. (35)Wiley & Sons: New York, 1982; pp 9-25.
- (36) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195 and references therein.
- (37) Exner, O. J. Phys. Org. Chem. 1999, 12, 265-274.
- (38) Galkin, V. I. J. Phys. Org. Chem. 1999, 12, 283-288.
- (39) Charton, M. J. Phys. Org. Chem. 1999, 12, 275–282.
 (40) Exner, O.; Charton, M.; Galkin, V. J. Phys. Org. Chem. 1999, 12, 289.
- (41) Charton, M.; Charton, B. I. J. Phys. Org. Chem. 2001, 14, 832-838.

- (42) Charton, M. Top. Curr. Chem. 1983, 114, 57-91.
- (43) Charton, M. In The Chemistry of Dienes and Polyenes; Rappoport, Z., Ed.; John Wiley & Sons Ltd.: 1997; Vol. 1, pp 683 - 732.
- (44) $\sigma_{\rm RS}$ is a new Hammett constant defined later in that paper.
- (45) Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals; 5th ed.; Butterworth Heinemann: Amsterdam, 2003
- (46) Matyjaszewski, K.; Woodworth, B. E.; Zhang, X.; Gaynor, S.; Metzner, Z. Macromolecules 1998, 31, 5955-5957.
- (47) Stipa, P.; Greci, L.; Carloni, P.; Damiani, E. Polym. Degrad. Stab. 1997, 55, 323–327.
- (48) Korolev, G. V.; Berezin, M. P.; Bakova, G. M.; Kochneva, I. S. J. Polym. Sci., Ser. B 2000, 42, 339-344.
- (49) Kovtun, G. A.; Aleksandrov, A. L.; Golubev, V. A. Bull. Acad. Chim. USSR, Div. Chem. 1974, 10, 2115-2121.
- (50) Howard, J. A.; Tait, J. C. J. Org. Chem. 1978, 43, 4279-4283
- (51) Beckhaus, H.-D.; Rüchardt, C. Chem. Ber. 1977, 110, 878-895
- (52) Rüchardt, C. Top. Curr. Chem. 1980, 88, 1-32.
- (53) Rüchardt, C.; Beckhaus, H.-D. Top. Curr. Chem. 1985, 1-22.
- (54) Birkhofer, H.; Beckhaus, H.-D.; Rüchardt, C. In Substituent Effects in Radical Chemistry; Viehe, H. G., Janousek, Z., Meréniy, R., Eds.; NATO ASI Series C; Kluiwert Academy Press: Dordrecht, The Netherlands, 1986; Vol. 189, pp 199 218.
- (55) Brocks, J. J.; Beckhaus, H.-D.; Beckwith, A. L. J.; Rüchardt, C. J. Org. Chem. 1998, 63, 1935-1943.
- (56) Marque, S. J. Org. Chem. 2003, 68, 7582-7590.
- (57) Afanas'ev, I. B. Int. J. Chem. Kinet. 1975, 7, 857-877.
- (58) Charton, M. Prog. Phys. Org. Chem. 1981, 13, 119–251.
 Charton, M. Prog. Phys. Org. Chem. 1987, 16, 287–315.
- Charton, M. Adv. Quant. Struct. Prop. Relat. 1996, 1, 171-(59)219
- (60) Kutter, E.; Hansch, C. J. Med. Chem. 1969, 12, 7-652. Fujita, T.; Takayama, C.; Nakajima, M. J. Org. Chem. **1973**, 38, 1623–1631. Unger, S. H.; Hansch, C. Prog. Phys. Org. Chem. 1976, 12, 91-118. MacPhee, J. A.; Panaye, A.; Dubois, J.-E. Tetrahedron 1978, 34, 3553–3562. Fujita, T. Pure Appl. Chem. 1978, 50, 987–994. Hansch, C.; Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology; John Wiley & Sons: New York, 1979; pp 1-167. Dubois, J.-E.; MacPhee, J. A.; Panaye, A. Tetrahefron **1980**, *36*, 919– 928. Fujita, T.; Iwamura, H. Top. Curr. Chem. **1983**, *114*, 119 - 157.
- (61) Charton, M. Stud. Org. Chem. 1991, 42, 629-692.
- (62) Le Mercier, C.; Acerbis, S.; Gigmes, D.; Marque, S.; Bertin, D.; Siri, D.; Tordo, P., to be published.
- (63) Creary, X. J. Org. Chem. 1980, 45, 280-284. Dust, J. M.; Arnold, D. R. J. Am. Chem. Soc. 1983, 105, 1221-1227, 6531. Arnold, D. R.; Nicholas, A. M. D. P.; Snow, M. S. Can. J. Chem. 1985, 63, 1150-1155. Arnold, D. R. In Substituent Effects in Radical Chemistry; Viehe, H. G., Janousek, Z., Meréniy, R., Eds.; Kluiwert Academy Press: Dordrecht, The Netherlands, 1986; Vol. 189, pp 171–188. Creary, X. *Ibid.*, pp 245–262. Jackson, A. R. *Ibid.*, pp 325–328. Creary, X.; Mehrsheikh-Mohammadi, M. E.; McDonald, S. J. Org, Chem. 1987, 52, 3254-3263. Nau, W. M.; Harrer, H. M.; Adam, W. J. Am. Chem. Soc. 1994, 116, 10972-10982. Jackson, R. A.; Sharifi, M. J. Chem. Soc., Perkin Trans. 2 1996, 775–778. Jiang, X.-K. Acc. Chem. Res. 1997, 30, 283–289. Adam, W.; Harrer, H. M.; Kita, F.; Korth, H.-G.; Nau, W. M. J. Org. Chem. 1997, 62, 1419-1426. Creary, X.; Engel, P. S.; Kavaluskas, N.; Pan, L.; Wolf, A. J. Org. Chem. 1999, 64, 5634 - 5643
- (64) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994, 98, 2744-2765.
- (65) Shorter, J. In Correlation Analysis of Organic Reactivity; J. Wiley & Sons: New York, 1982; pp 73-126.
- (66) Smith, M. B.; March, J. In Advanced Organic Chemistry, 5th ed.; John Wiley & Sons: New York, 2001; p 284.
- (67) Nau, W. J. Phys. Org. Chem. 1997, 10, 445-455.
- (68) Pauling, L. *The Nature of the Chemical Bond;* Cornell University Press: Ithaca, NY, 1960.
- (69) Pratt, D. A.; Wright, J. S.; Ingold, K. U. J. Am. Chem. Soc. **1999**, 121, 4877-4882.
- (70) Bertin, D.; Gigmes, D.; Marque, S.; Tordo, P. *e-Polym.* **2003**, paper 2.
- Anantchenko, G. S.; Souaille, M.; Le Mercier, C.; Tordo, P.; (71)Fischer, H. J. Polym. Sci., Part A: Polym. Chem. 2002, 4, 3264 - 3283.

- (72) Berndt, A. *Landolt-Börnstein*; Fisher, H., Hellweg, K.-H., Eds.; Springer-Verlag: Berlin, 1977; Vol. II/9, Part b, p 452.
- (73) Berndt, A. Landolt-Börnstein; Fisher, H., Hellweg, K.-H., Eds.; Springer-Verlag: Berlin, 1977; Vol. II/9, Part b, p 430.
- (74) Fischer, H.; Paul, P. Landolt-Börnstein; Fisher, H., Hellweg, K.-H., Eds.; Springer-Verlag: Berlin, 1977; Vol. II/9, Part b, p 189.
- (75) Fischer, H.; Paul, P. Landolt-Börnstein; Fisher, H., Hellweg, K.-H., Eds.; Springer-Verlag: Berlin, 1977; Vol. II/9, Part b, p 93.
- (76) McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493–532.
- (77) Zytowski, T.; Fischer, H. J. Am. Chem. Soc. **1997**, 119, 12869–12878.
- (78) King, K. D.; Goddard, R. D. J. Phys. Chem. 1976, 80, 546– 552.

- (79) Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L. J. Phys. Chem. A 2001, 105, 6750–6756.
- (80) Ananchenko, G. S.; Fischer, H. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 3604–3621.
- (81) Ananchenko, G. S.; Marque, S.; Gigmes, D.; Bertin, D.; Tordo, P. Org. Biomol. Chem. 2004, 2, 709-714.
- (82) Bertin, D.; Gigmes, D.; Marque, S. A. R.; Maurin, R.; Tordo, P. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 3504– 3515.
- (83) Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press: Boca Raton, FL, 2003; p 66.
- (84) Knühl, B.; Marque, S.; Fischer, H. Helv. Chim. Acta 2001, 84, 2290–2299.

MA050004U