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ABSTRACT: In-depth characterization of reaction kinetics often requires a considerable amount of experimental results under
various conditions. Recent advances in data-rich experimentation enable the collection of sufficient data to investigate reactions with
only a limited number of experiments. In this study, we developed a cost-efficient, robust approach by utilizing data-rich
experimentation to characterize propionyl phosphate hydrolysis reaction kinetics. Specifically, an Fourier transform infrared (FTIR)-
based process analytical technology (PAT) and off-line NMR calibration allowed the establishment of a quantitative FTIR
multivariant model. This PAT was then integrated with repeated temperature scanning (RTS) to generate a massive database in a
single experiment. The data were subsequently used for kinetic analysis, and two key characteristic reaction parameters (the
activation energy and pre-exponential factor) were determined on the basis of the assumption of first-order kinetics. We envision
that the integrative platform developed in this study can be broadly applied to investigations of the kinetics of a wide range of similar
liquid-phase reactions.
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1. INTRODUCTION

Recent years have witnessed the rapid development and
application of enzyme-catalyzed reactions in the pharmaceut-
ical industry, as they offer benefits of unparalleled selectivity,
increased atom economy, tunability, and improved safety.1

These enzyme-based reactions have been widely used in
syntheses of high-value products, such as nucleoside-based
drugs for the treatment of different viral infections.2,3

Adenosine-5′-triphosphate (ATP)-dependent enzymatic re-
actions are ubiquitous in nature and have been extensively
employed for organic synthesis. In such enzymatic reactions,
ATP needs to be used in catalytic amounts and regenerated in
situ to minimize expense and simplify isolation of the products.
ATP regeneration from adenosine-5′-diphosphate (ADP),
adenosine-5′-monophosphate (AMP), or adenosine by using
inexpensive phosphate donors has been explored in the past4−7

and provides high longevity, compatibility, and robustness
under process conditions. Common phosphate donors include
acetyl phosphate (AcP), phosphoenolpyruvate (PEP), and
methoxycarbonyl phosphate [CH3OC(O)OPO3

2−, MCP].8,9

For practical-scale organic synthesis, there are currently three
different procedures for enzymatic ATP regeneration.8,9 The
first procedure uses AcP as the phosphorylating agent and
acetate kinase as the catalyst; the second uses PEP and
pyruvate kinase; and the third uses MCP and acetate kinase.
To better understand the enzymatic phosphorylation

reaction, it is necessary to know the reaction mechanism and
chemical stability of the phosphate donor as one key raw
material for in situ ATP regeneration. AcP is one of most
commonly used phosphate donors for a wide range of
enzymatic reactions, and its hydrolysis mechanism and
associated reaction kinetics have been widely studied.10−12

AcP degradation was reported to follow first-order kinetics in
many cases studied by the Koshland group,10 including those
involving various pH conditions and the presence of a metal
ion (magnesium) and a nucleophilic reagent (pyridine). It was
also found that the hydrolysis rate is relatively unaffected by
changes in pH in the near-neutrality region (pH 5−9),
although it is greatly accelerated in strongly acidic or strongly
basic environments.10 Also, there have been studies investigat-
ing the specific location of the oxygen bond broken during the
hydrolysis reaction of AcP. For example, the acid- and base-
catalyzed hydrolysis of AcP reactions have been shown to take
place by cleavage of the C−O bonds, while the uncatalyzed
reaction and the pyridine-catalyzed reaction proceed by O−P
bond splitting.13

In one drug development project at Merck & Co., Inc.
(Kenilworth, NJ, USA), enzymatic phosphorylation is used as
an important step for the synthesis of an active pharmaceutical
ingredient. Propionyl phosphate (PrP) was chosen as the
phosphate donor because of the benefits for the downstream
biocatalytic process. However, the degradation kinetics of PrP
has not been extensively reported before. Without appropriate
process control, PrP hydrolysis in aqueous solution can be a
non-negligible reaction that competes with the desired
enzymatic reaction. Understanding of the PrP degradation
kinetics is of great importance for risk mitigation during scale-
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up process development. In particular, the time duration in a
large-scale process can easily be an order of magnitude higher
in than the lab process. Any unplanned event can significantly
extend the process of charging key reagents/enzymes to the
reaction vessel and delay triggering of the desired enzymatic
reaction. This can subsequently result in degradation of the
phosphate donor PrP, which eventually leads to incomplete
reaction, increased impurities, and poor yields.
The temperature-dependent hydrolysis reaction cannot be

stopped easily, therefore making it challenging to use
traditional off-line analytical tools, such as HPLC, to capture
the accurate real-time concentration profiles. In the past few
years, the concept of process analytical technology (PAT) has
been promoted by the U.S. Food and Drug Administration to
design, analyze, and control manufacturing through timely
measurements of critical quality and performance attributes of
intermediate and output materials.14 The goal of PAT is to
enhance understanding and control of the pharmaceutical
manufacturing process. The PAT framework primarily
comprises efficient process analyzers and control tools as
well as multivariate tools for design, data acquisition, and data
analysis. The gained information can be used to develop first-
principles models and elevate process understanding. Fourier
transform infrared (FTIR) spectroscopy is a robust analytical
method popularly used as PAT. FTIR spectra are determined
by the molecular structure on the basis of the energies of
chemical bond vibrations,15 and recording a spectrum typically
takes only a few seconds, making this method well-suited for
monitoring real-time chemical changes in the reaction mixture.
Consequently, it provides an exceptional analytical option to
efficiently characterize reaction behavior. Notably, FTIR
spectroscopy has already been demonstrated for the
quantitative monitoring of hydrolysis reactions in situ.16,17

To study reaction kinetics, people traditionally rely on
multiple isothermal reaction experiments at a number of
different temperatures to develop an Arrhenius relationship for
the observed rate constants in liquid or multiphase reactions.
The activation energy (Ea) of the reaction is then calculated
from the slope of the “fitted” straight line through a limited
number of data points. In comparison, isoconversional
methods for the kinetic analysis of non-isothermal data, mainly
including the Ozawa−Flynn−Wall,18 Kissinger−Akahira−
Sunose,19 and Friedman−Ozawa20 methods, have been applied
to give meaningful and highly reliable kinetic parameters in a
wide range of circumstances. However, multiple experimental
runs are still needed for the isoconversional methods, which
could be time- and resource-consuming and sometimes require
extra expensive materials. In 2000, Ozawa21 proposed and
demonstrated the feasibility of the “repeated temperature
scanning” (RTS) method (also called the “quasi-isoconver-
sional” method) to obtain kinetic parameters from a single
time-saving and data-rich experiment. The mode of temper-
ature change is neither necessarily uniform nor controlled
precisely, so there is sufficient flexibility in experimental
execution. This method was further introduced in the form of a
temperature scanning reactor by Wojciechowski,22 primarily
for studying gas-phase flow reactions in the petrochemical
industry. To date, assisted by various powerful in situ reaction
monitoring tools, this method has been used in batch23,24 and
flow reaction studies.25,26

In this study, we adopted the RTS experimental method to
study the hydrolysis of PrP. Combined with in situ FTIR
monitoring of the reaction extent and DynoChem modeling

software, RTS was utilized for kinetic analysis of the PrP
hydrolysis reaction in a rapid, efficient, and robust manner.
The findings of this work show that this approach was highly
effective and provided considerable amounts of data using a
single well-designed experimental run. Thus, this work
demonstrates the potential of our approach for wide
application to similar reactions.

2. EXPERIMENTAL SECTION
2.1. Materials and Methods. Bis-Tris buffer (50 mM, pH

8) was prepared by dissolving Bis-Tris free base (Sigma-
Aldrich, lot no. SLBZ8488) in water (Thermo Scientific, lot
no. 191946), titrated with propionic acid (ThermoFisher
Scientific, lot no. R07F026) to pH ∼8, and kept at 4 °C until
being used. The Bis-Tris buffer was used as the solvent for the
hydrolysis reaction of propionyl phosphate monoammonium
(PrP mono) to mimic the enzymatic reaction conditions.
An EasyMax 102 advanced thermostat system was used to

carry out the reaction. To a 100 mL EasyMax vessel (preset
jacket temperature Tj = 5 °C) was charged 20 mL of the
prepared 50 mM Bis-Tris (pH 8) followed by 3.0454 g of solid
PrP mono (Shanghai SynTheAll, lot no. CR-C19041282-
B219001, 91.3% purity), and the solution was flushed with
another 10 mL of 50 mM Bis-Tris (pH 8). The pH of the
resulting PrP mono solution was around 3.6 because of the
acidity of PrP mono salt. The solution pH was adjusted to
∼8.2 by addition of ∼2.6 mL of 37% KOH (Fisher, lot no.
166546 SP226-1). The stirring speed was set at 500 rpm. The
initial PrP mono concentration was around 0.49 mol/L. The
RTS experiment was designed and applied to this hydrolysis
reaction. The reactor internal temperature (Tr) was pro-
grammed to increase from 5 to 40 °C over 5 h and then
decrease from 40 to 5 °C over 5 h. The same cycle was
repeated four times, including a few temperature holding
stages. The detailed temperature profiles are shown in Figure
3a.
The pH meter and thermocouple were inserted into the

reactor in order to monitor the reaction parameters. The
reaction extent was monitored by FTIR spectroscopy (Mettler-
Toledo Fiber MultiplexIR) in real time. The IR probe
(Mettler-Toledo DiComp) was immersed in the reaction
medium, and the spectra were collected at 1 min intervals over
the entire reaction course. The spectral range was 2500−650
cm−1 and the spectral resolution was 8 cm−1. iControl software
was paired with the EasyMax system to control the
experiments and also enabled scientists to gain an in-depth
understanding of the reaction data.
Seven off-line samples were taken during the reaction and

subjected to quantitative 31P NMR analysis on a Bruker 500
MHz NMR spectrometer to determine the concentrations of
the starting material (PrP mono) and the product (free
phosphate). For NMR tests, approximately 300 μL of reaction
solution was added into ∼1 mL of D2O (CAS no. 7789-20-0,
Acros Organics, lot no. B0758205, 99.8 atom %) with ∼40 mg
of tetraphenylphosphonium chloride ((C6H5)4PCl, (CAS no.
2001-45-8, Sigma-Aldrich, 98 wt %) as an internal P standard.
The NMR spectra were analyzed using MestReNova Chemists
software to determine the concentrations of off-line samples,
which were integrated with the on-line IR data to establish the
multivariate model. (A representative 31P NMR spectrum is
shown in Figure S1).
The concentration profiles obtained by FTIR spectroscopy

were fit to a first-order reaction kinetics model and the
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Arrhenius equation using DynoChem modeling software to
obtain Ea and the reference rate constant (kref) at the reference
temperature (Tref) of 33 °C (the pre-exponential factor A can
be obtained from kref). The theory behind the kinetic analysis
is presented in the following section.
2.2. Theory. 2.2.1. The Hydrolysis Reaction. The overall

hydrolysis of PrP mono can be represented as shown in
Scheme 1.
Typically, the hydrolysis reaction mechanism includes three

steps: addition, elimination, and proton transfer.11,24 As the
addition step is usually the rate-controlling step, the overall
rate can be written as

C
t

k C C
d
d

A
A B− = ′

(1)

where CA is the concentration of PrP mono and CB is the
concentration of water. Under conditions with an excess of
water, a pseudo-first-order reaction can be assumed, and eq 1
simplifies to

C
t

kC
d
d

A
A− =

(2)

The rate constant k is expressed by the Arrhenius equation as

k A
E

RT
exp ai

k
jjj

y
{
zzz= −

(3)

in which Ea is the activation energy, A is the pre-exponential
factor, R is the universal gas constant, and T is the absolute
temperature.
2.2.2. Kinetic Parameter Evaluation. The reaction kinetic

parameters of this work were obtained using the RTS
experiment and DynoChem model analysis. Specifically, the
reaction temperature was controlled to go through the
designed heating and cooling steps in repeated cycles, as
shown in Figure 3a. The experimental data, including the time
(t), temperature (T), and conversion (α), were used for
analysis. Importantly, the Arrhenius equation was considered
to be valid for the entire temperature change process.
Also, is was assumed that the rate of the process, dα/dt, is

dependent on T and α and can be expressed as a product of
two independent functions, an α-dependent function A′(α)
and a T-dependent function g(T), as shown in eq 4:

t
F T A

E
RT

f A g T
d
d

( , ) ( ) exp ( ) ( ) ( )ai
k
jjj

y
{
zzz

α α α α α= = − = ′

(4)

where A′(α) = A(α)f(α) and g(T) = exp(−Ea/RT). The
function f(α) reflects the mechanism/reaction model of the
process.
Unlike the previous studies using the Ozawa−Friedman plot

to obtain Ea and A, this work used DynoChem to calculate
these kinetic parameters. Specifically, the collected α, t, and T
experimental data were fed into the model described by eq 4 to
solve for Ea and A using a numerical method as described in
section 2.3.2.
2.3. Modeling. 2.3.1. Quantitative IR Models. FTIR

models of the analyte of interest were developed by univariate

and multivariate modeling approaches. A univariate model can
be calculated via linear regression by relating the absorbance
values at a single wavenumber to the concentrations
determined by 31P NMR spectroscopy.
Principal component analysis (PCA) and interval partial-

least-squares regression (iPLS) were used to build multivariate
qualitative and quantitative models. PCA is an unsupervised
variable reduction technique used to construct new variables,
known as principal components (PCs). The principle of iPLS
is to split the spectra into a given number of equidistant
subintervals and develop a PLS regression model for each
subinterval.27,28 Cross-validation was performed for each of
these models, and the subinterval that provided the lowest
cross-validation modeling error was selected. The model
computation was achieved using MATLAB (R2015a)
equipped with PLS_Toolbox (version 8.7). The multivariate
model performance was assessed using the root-mean-square
error of cross-validation (RMSECV) and root-mean-square
error of calibration (RMSEC), which is calculated as

y y

n m
RMSEC

( )

1
i
n

i i1 ,pred ,ref
2

=
∑ ̂ −

− −
=

(5)

where n is the sample size, m is the number of latent variables
included in the iPLS model, ŷi,pred is the concentration of the
ith sample predicted by the iPLS model, and yi,ref is the
concentration of the ith sample determined by 31P NMR
spectroscopy. Both univariate and multivariate models were
subsequently used to provide real-time concentration profiles
of PrP mono and phosphate.

2.3.2. DynoChem Model. The limited number of
concentration data points from NMR analysis of the seven
off-line samples is not sufficient to establish a reliable
DynoChem model. Instead, the limited NMR data were used
to calibrate an in situ FTIR dataset of up to ∼3000 data points.
To determine the optimum sampling from this large data set
for the estimation of the kinetic parameters, different numbers
of data points were tested in the regression of the DynoChem
model.
The thermodynamic parameters of the reaction in section

2.2.1, namely, the reference pseudo-first-order rate constant
(kref) and the associated activation energy (Ea), were regressed
using DynoChem 5 process modeling software. This regression
is a maximum-likelihood estimation that can be represented as
the maximization of the log likelihood as expressed in eq 6:

L N

y y

ln( ) 2 ln(2 )
1
2

ln( )

1
2

( )

j

n

i

n

ij

j

n

i

n
ij ij k

ij

1 1

2

1 1

exp 2

2

j i

j i

∑ ∑

∑ ∑

π σ

θ

σ

− = +

+
[ − ]

= =

= = (6)

where L is the likelihood of an observation, N is the number of
observations, σij is the standard deviation of the normal
distribution of the measurement error, yij

exp is the experimental
measurement, and yij(θk) is the corresponding model
prediction depending on k model parameters θ.

Scheme 1. Balanced Chemical Equation for the Hydrolysis of PrP Mono
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The maximization of the log likelihood can be simplified by
minimization of the third term in eq 6, simplified as the χ2

expression as shown in eq 7:

y y ( )

j

n

i

n
ij ij k

ij

2

1 1

exp 2

2

j i

∑ ∑χ
θ

σ
=

[ − ]

= = (7)

The DynoChem solver minimizes the χ2 value, or SSQ, by
manipulating yij

exp through the parameters of the model θk =
[kref, Ea] with the gradient-based Levenberg−Marquardt
routine.29,30 The individual iterations are evaluations of the
model performed with the DynoChem simulator, which uses a
Rosenbrock integration method to solve the mass balance
differential and algebraic equations associated with the reaction
in section 2.2.1. The model values yij(θk) that are selected from
these equations for simulation and fitting are the concen-
trations of the substrate (PrP mono) and the product (free
phosphate).
For all regressions in this work, the variance of the

measurement error is estimated by a relative weighting method
as expressed in eq 8:

n

n
yij

j
j

2

T

2

,max
2i

k
jjjjj

y
{
zzzzzσ =

(8)

where nj is the number of points in component series j, nT is
the total number of points in the experiment, and yj,max

2 is the
square of the maximum measured value of component j. The
first factor in this expression normalizes the weight of each
component for regressions where there are multiple
components with potentially distinct numbers of data
points.We consider this model suitable to estimate the
measurement error because we reasonably expect the absolute
measurement error to increase with the magnitude of the
measurement.
As described in section 2.2.1, the rate law for the reaction of

interest can be simplified as shown in eq 2, where CA is the
concentration of PrP mono. The rate constant k in eq 2 at any
given temperature is evaluated in DynoChem using the
following modified Arrhenius expression:

k T k T
E
R T T

ln( ( )) ln( ( ))
1 1

j ref ref
ref j

a
i

k
jjjjjj

y

{
zzzzzz= − −

(9)

in which k(Tj) is the apparent rate constant of the reaction at
temperature Tj and kref is the reference rate constant at the
reference temperature Tref. The two independent parameters
used for fitting in the DynoChem regression are kref (where the
choice of Tref may vary depending on the reaction model and
experiment) and Ea. Equation 9 is optimal for regression of the
kinetics because collinearity between the apparent rate
constant and activation energy is often minimized with an
appropriate choice of reference temperature.
In a traditional regression of kinetic data for reactions

collected under isothermal conditions, integration of the rate
law in eq 2 for each experiment can be conducted with a single
evaluation of k(T). However, in this work we present a
methodology by which non-isothermal data are used to regress
the kinetic parameters of this reaction. In this case, DynoChem
dynamically evaluates the rate constant k(T) according to eq 9
on the basis of the temperature data collected in the
experiments and linear interpolations of those data where
necessary. All of the temperature profiles used in these

experiments were linear in nature, so those interpolations did
not contribute to error.

3. RESULTS AND DISCUSSION
3.1. IR Spectra and Model Development. Significant

spectral changes can be found in the raw FTIR spectra shown
in Figure 1a. The 1000−1200 cm−1 spectral region presents

more evident changes associated with variation of the
concentration. As can be seen in Figure 1b, the absorbance
at 1074 cm−1 increases as the reaction progresses, indicating
the formation of the product phosphate, while there is a
decrease in the absorbance at 1122 cm−1, which is associated
with the disappearance of the starting material PrP mono. The
identified regions were subsequently used to develop univariate
linear regression models, as described by eqs 10 and 11:

y x1.097 0.471 1= − (10)

y x2.075 0.992 2= − (11)

where x1 and x2 are the FTIR absorbances at 1122 and 1074
cm−1, respectively, and y1 and y2 are the predicted
concentrations of PrP mono and phosphate, respectively.
The univariate models of PrP mono and phosphate give
RMSEC values of 0.022 and 0.036 mol/L, respectively.

Figure 1. (a) Selected representative raw IR spectra of the reaction.
(b) IR spectra of off-line NMR samples in the 1000−1200 cm−1

region.

Organic Process Research & Development pubs.acs.org/OPRD Article

https://dx.doi.org/10.1021/acs.oprd.0c00451
Org. Process Res. Dev. 2021, 25, 507−515

510

https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig1&ref=pdf
pubs.acs.org/OPRD?ref=pdf
https://dx.doi.org/10.1021/acs.oprd.0c00451?ref=pdf


Although the result of the model fitting shown in Figure 2a
suggests reasonable linearity, Figure 2b shows that the
prediction errors are quite significant and thus that the
model performance is not optimal.

PCA was performed to probe the cause of the limited model
performance as well as to explore opportunities for model
improvement. The FTIR spectra were preprocessed by
standard normal variate (SNV) and mean centering. The
first and second principal components (PC1 and PC2) explain
83.7% and 14.1% of the spectra, respectively. In Figure 3a, the
scores on PC1 reflect the concentration change during the
reaction. On the other hand, the scores on PC2 exhibit a trend
nearly identical to the temperature profile. The loading plots of
PC1 and PC2 are displayed in Figure 3b and Figure 3c,
respectively. The higher weight values of PC1 at 1074 and
1122 cm−1 suggest that these regions have greater contribu-
tions to the overall concentration change, which justifies their
use in the development of univariate models. The scores on
PC2 are indicative of the temperature change. The higher
weight values between 1060 and 1170 cm−1 imply that this
spectrum range is highly susceptible to temperature. The PCA
results signify that the univariate models were not specific to
the quantification of the concentrations because the wave-
numbers used are substantially temperature-dependent (ex-

plained by PC2). Therefore, the univariate modeling approach
is not robust and cannot provide adequate prediction
performance for a system with considerable temperature
change. Nevertheless, it should be noted that differential
changes in the refractive indices of the FTIR diamond sensor
and reaction materials with temperature may cause temper-
ature-dependent variation. To this end, this study used a PLS
algorithm that maximizes the covariance between the
compound concentration and FTIR signal changes and is
therefore less susceptible to the temperature difference. On the
other hand, alternative analytical methods that are less
susceptible to the temperature variation, such as UV
transflectance, may provide a robust univariate model.
To improve the model performance and accuracy, multi-

variate models were developed by forward iPLS. The spectral
range of 1010−1454 cm−1 was included for building PrP mono
and phosphate models. One latent variable was sufficient for

Figure 2. (a) Fitting results for the phosphate and PrP mono
univariate models. (b) Real-time concentrations predicted by the
univariate models vs off-line measured concentrations.

Figure 3. (a) Reaction temperature profile and PCA scores. (b)
Loading plot of PC1. (c) Loading plot of PC2.
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both models. The PrP mono model has an RMSEC of 0.0058
mol/L and an RMSECV of 0.010 mol/L, whereas the RMSEC
and RMSECV of the phosphate model are 0.0085 and 0.017
mol/L, respectively. Multivariate modeling significantly
improved the model performance and accuracy, as indicated
by the better fitting results shown in Figure 4a and the

considerably reduced prediction errors shown in Figure 4b.
The real-time predictions by the iPLS model, displayed in
Figure 5, are robust against the temperature variation.
Next, the real-time PrP mono and free phosphate

concentrations predicted by the iPLS model along with
temperature profile are displayed in Figure 5. The PrP mono
conconcentration decreases and the free phosphate concen-
tration increases as the temperature Tr increases from 5 to 38
°C in the first half of the temperature scanning cycle. The first
derivative of the concentration, dC/dt, represents the reaction
rate. The slopes of both curves (i.e., the reaction rate) increase
with increasing Tr. At the maximum Tr of 38 °C, dC/dt
appears to be the highest, which is rationalized by the
Arrhenius equation. As Tr decreases from 38 to 5 °C in the
second half of the temperature scanning cycle, reaction rate
decreases, and the concentration shows no significant change.
During two temperature holding periods (relative reaction
time: 30−42 h and 52−70 h) at 5 °C, the concentrations of the
starting material and product remain nearly unchanged, likely
because of the fairly low reaction rate at such a low

temperature. Five repeated temperature scanning cycles were
applied to the reaction until the starting material (PrP mono)
was mostly depleted and converted to product free phosphate.
The measured pH value during the course of the dynamic
experiment (Figure S10) was between 6 and 8.5, which is
within the pH-independent region for such hydrolysis
kinetics.10

3.2. Kinetic Model Fitting. 3.2.1. Obtaining the
Activation Energy and Reference Rate Constant. In this
section, the full 3102 data sets of PrP mono/free phosphate
concentration from IR monitoring (section 3.1) and the
temperature (from iControl) along with the corresponding
relative reaction times were applied to the kinetic model fitting
to obtain two important kinetics parameters, i.e., Ea and kref at
Tref. The kinetic model was established on the basis of the
pseudo-first-order PrP mono hydrolysis kinetics assumption
and the theory of the RTS method (sections 2.2 and 2.3.2).
As shown in Figure 6, the dotted lines are the PrP mono

(orange) and free phosphate (blue) concentrations obtained
from FTIR spectroscopy calibrated by off-line NMR analysis

Figure 4. (a) Multivariate model fitting results for phosphate and PrP
mono. (b) Comparison of IR predictions by the univariate and iPLS
models.

Figure 5. Time profiles of the real-time FTIR predictions of the
concentrations by iPLS models and the reaction temperature change.

Figure 6. Concentration profiles of phosphate and PrP mono
estimated by IR (dotted lines) vs predictions of the DynoChem
model (solid lines).

Organic Process Research & Development pubs.acs.org/OPRD Article

https://dx.doi.org/10.1021/acs.oprd.0c00451
Org. Process Res. Dev. 2021, 25, 507−515

512

http://pubs.acs.org/doi/suppl/10.1021/acs.oprd.0c00451/suppl_file/op0c00451_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.oprd.0c00451?fig=fig6&ref=pdf
pubs.acs.org/OPRD?ref=pdf
https://dx.doi.org/10.1021/acs.oprd.0c00451?ref=pdf


(section 3.1), while the solid curves represent the predicted
concentration profiles after fitting to the kinetic model. The
empty gap near 50 h in the IR profiles was due to data
collection fouling. The confidence level was selected as 95% for
fitting in DynoChem. The confidence intervals of both
parameters obtained through pseudo-first-order kinetics
model fitting are <10%, which is indicative of a suitable fit.
Under the assumption that the fitting errors are normally
distributed, the goodness of fit statistic (Q) is reported as
0.533, which is considered fairly good, as it suggests that the
remaining model residuals are likely a factor of random
measurement error. The obtained activation energy Ea and
reference rate constant kref (at Tref = 33 °C) are listed in Table
1. Those parameters are comparable to those for acetyl

phosphate hydrolysis reported previously.12 It is worth
mentioning that the model established in this study is based
on the assumption that pseudo-first-order reaction kinetics
holds true at near-neutral pH, as reported previously.10 The
pH monitored during dynamic experiments is between 6 and
8.5 (Figure S10). For other reaction systems with pH-
dependent kinetics, the designed temperature ramping may
change the system pH and reaction mechanism, making
method re-evaluation necessary.
3.2.2. Effect of Number of Data Points on the Estimation

of the Reaction Kinetics. With the application of in situ PAT
and lab automation, such as with the ReactIR system employed
in these experiments, it is possible to collect enormous datasets
with several thousand data points per experiment. Although
this technology represents a tremendous advancement for the
collection and analysis of kinetic data, it presents a challenge
for model-based regression of kinetic parameters in software
such as DynoChem. Since the solver is required to accurately
evaluate the system of equations at each data point to evaluate
the model residuals in a regression, several thousand data
points can lead to even more numerous model iterations,
which can severely increase the processing time required to
obtain a suitable parameter fit.
The quality of the parameter models can be preserved with a

potentially smaller number of data points using appropriate
data reduction algorithms. For this work, the large FTIR
composition data sets were reduced to various sizes using the
algorithm reported by Visvalingam and Whyatt.31 This
algorithm is often used for the reduction of visual and
graphical data, such as for the compression of maps and
images,32 by nature of its design to preserve the appearance of
complex shapes with the minimal number of required data
points. In a similar way, in this work the algorithm was used to
reduce the amount of kinetic profile data while preserving the
key features of the curvature.
In brief, the algorithm of Visvalingam and Whyatt removes

points from a series of data by considering the area of each
triangle created by three consecutive points in the series. The
point that lies in the center of the triangle of the lowest area is
removed, and the triangle areas are recalculated from the
remaining points. Points that create larger triangles, such as

where the response is changing significantly, are generally kept.
On the other hand, a point without change that lies very close
to its two neighbors will likely be removed. This procedure is
followed iteratively until the desired number of data points
remains. What we find is that this data reduction method
preserves important features of our kinetic data where there is
a steep slope or irregular/discontinuous shape. We expect that
these regions of our data are of the highest importance to our
model since they are expected to correlate with regions of high
reactivity or changes in reactivity, which we would expect to
confer high parameter sensitivity for regressions of good
quality.
Figure 7 displays the estimated kinetic parameters Ea and kref

as functions of the number of data points used for kinetic

model fitting. Evidently, consistent parameter estimations were
obtained when at least 250 data points were included in the
calculation. Such a large number of data points is extremely
difficult, if not impossible, to acquire using a traditional off-line
analytical method such as HPLC. Especially for cases like
hydrolysis reactions, which continue to proceed even during
HPLC off-line analysis under aqueous conditions, the
concentration determined may be deemed inaccurate. On
the contrary, PAT can readily generate sufficient data in situ
with minimum effort spent on sample preparation and analysis
without concern for sample stability. It is a powerful tool for
gaining process understanding in an efficient and cost-effective
way.

3.2.3. Simulation of Reaction Performance. As we are
confident about the parameters obtained from the reaction
performance analysis and modeling fitting, the degradation/
hydrolysis reactions at various temperatures were simulated
accordingly to help make predictions and further generate an
engineering control strategy for risk mitigation. The simulation
results in Figure 8 show that only 1% PrP mono was degraded
at 0 °C within 24 h, while contrarily most of the PrP mono
(98.7%) was degraded at 40 °C over the same period of time.
In the desired enzymatic ATP regeneration reaction system,
propionyl phosphate in this study is expected to be utilized as
the phosphorylating agent in the presence of the enzyme
acetate kinase to transfer phosphate group into ATP, which is

Table 1. Fitting Results of the Kinetic Model

final
value units

standard
error

confidence interval
(%)

kTref = 33 °C 0.0721 h−1 0.00019 3.32

Ea 107.2 kJ/mol 1.013 1.89

Figure 7. Values of the kinetic parameters (a) Ea and (b) kref (at Tref =
33 °C) estimated by DynoChem as functions of the number of data
points.
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further utilized as the target substrate to form the product.
However, at elevated temperature, the PrP hydrolysis side
reaction largely competes with the target enzymatic reaction.
From this kinetics modeling fitting/simulation study, we learn
that proper system temperature control (e.g., <4 °C) should be
put in place during and after PrP mono is charged to the vessel
in the scale-up process in order to minimize undesired
hydrolysis side reaction before other key raw materials and
enzymes are introduced to trigger the target reaction.

4. CONCLUSION
In this study, the hydrolysis reaction of propionyl phosphate
monoammonium salt was carried out with a modified repeated
temperature scanning experiment and closely monitored by
real-time IR spectroscopy calibrated to off-line NMR analysis
to obtain rich concentration data assisted by multivariate IR
modeling. The concentration and reaction temperature profiles
were fit to a first-order kinetic model with valid statistical
indications by the DynoChem model, reporting two key
kinetics parameters of PrP hydrolysis for the first time. The
activation energy of PrP mono hydrolysis at near-neutral pH
was evaluated to be 107.2 kJ/mol, and apparent rate constant
at 33 °C (kTref = 33 °C) was 0.0721 h−1. The work presented
herein demonstrates how the modified repeated temperature
scanning method combined with PAT in situ monitoring of
reaction performance can aid in efficiently producing
quantifiable reaction kinetics and process understanding.
This methodology allows scientists to use limited amounts of
expensive pharmaceutical intermediates and constrained time
and human resources to perform data-rich experiments for
building models and guiding scale-up control strategy. We also
anticipate that this method can be utilized for kinetic
exploration of similar first-order homogeneous reactions or
even other more complex reactions in synthetic chemistry.
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