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Abstract: Reaction of 1,1,2,2-tetraanisylcyclopropane (la) with both thermally and photochemically generated 

singlet oxygen afforded the corresponding 1,2-dioxolane 2a quantitatively. Singlet oxygenation of two 

stereoisomeric l,2-dianisyl-l,2-ditolylcyclopropanes (lb and lc) gave a mixture of l,%~dioxolanes 2b and 2c 

via a non-stereospecific addition in botb cases. 

Singlet oxygen (19) undergoes several types of reactions wiih various electron-rich olefins, namely [2+2]- 

and [2+4]-cycloaddltlon and the enc. reaction, yielding 1,2-dioxctanes, endoperoxides and allylhydroperoxides, 

respectively.2 However, carboll-carbon and carbon-hydrogen o-bonds are usually inert toward 10,. To the 

best of our knowledge tbcrc arc only a few cxamplss indicating the cleavage. of rr-lbonds m the dye-sensitized 

oxygenation.3 Recently, we have provided evidences for dioxygen insertion into a silicon-silicon o-bond in the 

reaction of 10, with disilirane” and oxadisilirane. 5 Our interest in the photooxygenation reaction has led us to 

mttlate studies of singlet oxygenation of a cyclopropanc ring,6 which might be a superior candidate to gam an 

insight into the reactivity of 10, with a carbon-carbon o-bond. We now report here the results on the singlet 

oxygenation of I, l,2,2-terraarylcysloproparies (I) to alford the corresponding 1,2-dioxolanes 2 as dioxygen 

insertion products into a carbon-carbon D-bond. 

In a typical experiment, oxidation of 1,1,2,2-tetraanisylcyclopropane7 (la) with excess of 1,4-dimethyl- 

naphthalene endoperoxide* (3) which generates ‘0, at 40°C under argon in methylene chloride gave 3,3,5,5- 

tetraanisyl-1,2-dioxolane (2a) in 20% yield9 (conversion yield; lNI%)(Scherne 1). 2a was isolated by silica gel 

flash column chromatography and characterized by means of analytical and spectroscopic datd.‘O The oxidation 

was suppressed by addition of 1,4-diazabicyclo[2.2.2]octane (DABCO),” a known ‘0, quencher. 

When la (3.3 x lO-3M) was photooxygenated with tetraphenylporphinc (TPP, 3 x 10-5M) as sensitizer at 

-40°C in mcthylcnc chloride, 2a was obtained quantitatively, momtored by HPLC. Irradiation was carried out 

under oxygen with two 500-W tungsten-halogen lamps using a sodium nitrite filter solution (cutoff 4(X) nm).12 
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When the photolysis of la was carried out in the absence of a sensitizer or light, no reaction occurred, The 

photooxygenation was also inhibited by addition of DABCO. Addition of triphenylmethane,13 a free-radical 

scavenger, or 1,2,4,5-tctratncIhoxyl~e~~~e~~~~~4 an electron-transfer quencher, did not have any influence. The 

rale constant (kq = 8.2 x 106M-1s-’ for la) for the interaction of ‘0, with la was measured by quenching of IO, 

emission at 126X nm in methylene chloride .I5 These results make it probable that ‘02 is a primary oxidizing 

species. 

One plausible rationale for these observations is that the oxidation seems to involve electrophilic attack by 10, 

at 1111: edge of the cyclopropane4ss,‘h to give the adduct 4a followed by ring-closure yielding 2a’7 (path-a) or that 

rrr2+n*+o*]-cycloaddition ls affords the peroxide 5a and then collapses to 2a (path-b), similar to the case of 

formation of dioxetanes via rearrangement in the decomposition of endoperoxides19 (Scheme 2). 

Scheme 2 path-a 
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These results prompted us to examine the stereochemistry of the reaction of 10, with cyclopropane in order to 

elucidate the reaction mechanism. The obvious candidates are two stereoisomeric 1,2-dianisyl-l,2-dltolylcyclo- 

propanes2” (lb and 1~). The rate constants (kq = 1.1 x l@M~‘s- for lb and 1.4 x l@M-‘s-1 for lc) for the 

interaction of IO2 with lb and lc were obtained by the same procedure for la.15 Either lb or lc on treatment 

wirh thermochemically generated ‘0, afforded the corresponding 1,2-dioxolane@ (2b and 2~) in which the 

conflgurational integrity was lost; i.e., a 33:67 tiixture ** of 2b and 2c from lb or a 25:75 mixture22 of 2b and 

2s from lc. Very similar results were also obtained in the case of TPP-sensitized photooxygenation of lb and 

lc. Both 2b (26% and 33%) and 2c (53% and 55%) were isolated from lb and lc, respectively. The ‘H- 

NMR spectra of recovered cyclopropanes in the photooxygenation of lb and lc indicated that no isomerizanon 

occurred under the same conditions. 

Judging from the results on the stereochemical investigation, non-stereospecific addition of IO2 to lb and Ic 

might take place via path-b. The preferential formation of cis-product 2c may be explained in terms of a charge- 

tmnsfer mteraclion between two anisyl groups in 7.23.24 

Studies are underway to provide firmer evidence for the reaction mechanism. 

lb 1c 2b 
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