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ABSTRACT

The dehalogenation of alkyl iodides, as well as the chemoselective deoxygenation of a secondary alcohol in the presence of various alkyl and
aryl halides, can be accomplished employing a trialkylborane/air/water system.

Functional group interconversions involving deamination,
dehalogenation, deoxygenation, and other methods are
ubiquitous in synthetic chemistry, and many useful proce-
dures to accomplish these transformations have been devel-
oped.1 Recently, we,2 and others,3 described the application
of Lewis acid activated water as a hydrogen atom transfer
reagent. Efforts to expand the scope of our previously
disclosed radical deoxygenation reaction to dehalogenation
and the fortuitous manifestation of a chemoselective deoxy-
genation are presented herein.

Triethylborane has been applied to halogen atom abstrac-
tion reactions to mediate intermolecular radical additions to
alkenes and alkynes,4 oxygenation ofR-iodocarbonyl com-
pounds,5 carboazidation of olefins,6 as well as intramolecular
cyclization/atom transfer reactions.7 This precedent, coupled
with our desire to expand the application of organoboranes
to radical reactions,8 encouraged us to attempt the dehalo-
genation of alkyl halides.

Our initial deoxygenation studies using trialkylborane9/
water mixtures to reduce simple alkyl bromide substrates

were unsuccessful (Table 1, entries 2 and 3) but not
unexpected. Typical reactions of triethylborane with alkyl
bromides involveR-bromoesters,4a where a stabilizedR-car-
bonyl radical is formed after halogen atom abstraction.
However, given that examples of iodine atom abstraction
from simple alkyl iodides are prevalent in the literature,10

we next turned to the deiodination of alkyl iodides. In the
event, attempts to dehalogenate alkyl iodides using tribu-
tylborane and water proved fruitful. The deiodination of
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primary, secondary, and tertiary alkyl iodides proceeded in
good to excellent yields. Epoxides, acetals, and tosyl-
protected amines appear to be stable to the reaction condi-
tions. The lower yield in the case of primary iodide6 (entry
6) likely results from the reversibility of iodine atom
abstraction between the substrate and the alkyl radical.11

Likewise, the energetically unfavorable abstraction of an aryl
iodide by an alkyl radical was expected to render these
substrates inert to tin-free conditions.12 As predicted (entries
10-12), aryl iodides generally proved unreactive; however,
as illustrated by iodide9 (entry 9), deiodination could be
realized. The latter result is consistent with the observation
of Plesnicar and Dolenc who demonstrated that the combina-
tion of electron-withdrawing substituents and the release of

steric strain due to ortho substituents makes iodine abstraction
from aryl iodides by alkyl radicals more favorable.13 It is
noteworthy that the functional groups on the aryl iodides
were unaffected during the reaction. To confirm the radical
nature of this reaction, an inhibition study using galvinoxyl14

was performed and resulted in the quantitative recovery of
starting material (4). Additional control experiments per-
formed either in the absence of trialkylborane or under anhy-
drous conditions resulted in quantitative recovery of4 or
reduced yields of deiodinated products, respectively. The
latter is consistent with a recent report by Newcomb wherein
the rate of background hydrogen atom transfer from trieth-
ylborane was determined to be appoximately 5 times slower
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Table 1. Dehalogenation Results Using Various Alkyl and Aryl Halidesa

a See Supporting Information for experimental details.b Isolated yield unless otherwise specified.c No reaction.d Yield determined using gas chromatography.
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than hydrogen atom transfer from trialkylborane-complexed
water.15b

A brief exploration of various solvents demonstrated the
lack of any dramatic solvent effect on the reaction (Table
2). The mixed solvent systems (entries 5-7) were used due

to the very low solubility of the substrate in alcohols and
acetonitrile.

The observation that dehalogenation did not occur with
alkyl bromides and presumably would not occur with alkyl
chlorides15c prompted us to investigate the possibility of
selective deoxygenation in the presence of alkyl halides. A
literature search revealed only one method, developed by
Barton and co-workers, that allows for radical-mediated
deoxygenation in the presence of alkyl and aryl halides.16

Barton’s method utilizes phosphine-boranes to effect the
deoxygenation of a secondary xanthate in the presence of
various alkyl and aryl bromides and chlorides. To comple-
ment this chemoselective deoxygenation, we undertook a
similar study using our trialkylborane/water system.

Table 3 shows the results of our attempts at deoxygenating
the xanthate (14) derived from 2,3:5,6-D-O-isopropylidene-
R-D-mannofuranose17 in the presence of various alkyl and
aryl chlorides and bromides. Good yields of deoxygenated
product and excellent recovery of the respective halogenated
substrates were obtained in most cases using either trimethyl-
or tributylborane. GCMS analysis of the crude reaction
mixture as well as the purified products did not reveal the
presence of any dehalogenated materials.

In conclusion, we have demonstrated that a trialkylborane/
air/water system is an effective method for the dehalogena-
tion of alkyl iodides. The reaction proceeds with good to

excellent yields and is tolerant of various functional groups.
Additionally, these conditions were shown to allow for the
chemoselective deoxygenation of a xanthate-derived second-
ary alcohol in the presence of various alkyl and aryl bromides
and chlorides.
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Table 2. Deiodination in Various Solvents

entry solvent yield (%)a

1 PhH 96
2 PhMe 80
3 THF 85
4 Et2O 90
5 PhMe/MeOH (2:3) 94
6 PhMe/EtOH (2:3) 89
7 PhMe/CH3CN (1:3) 75

a Isolated yield.

Table 3. Deoxygenation in the Presence of Alkyl and Aryl
Halidesa

a See Supporting Information for experimental details.b Isolated yield
or recovery.

Org. Lett., Vol. 9, No. 22, 2007 4429


