The Novel Formation of Metalloporphyrin-Oxo Species in Singlet Oxygen Oxidation of Adamantylideneadamantane

Takeshi Akasaka, Masayuki Haranaka, and Wataru Ando*

University of Tsukuba Department of Chemistry Tsukuba, Ibaraki 305, Japan

Received February 4, 1993

Oxygen-containing complexes of some metalloporphyrins related to cytochrome P-450 have recently become the subject of great interest and intensitve investigation.¹ A variety of chemical oxidants such as peracids,² alkyl hydroperoxides,³ iodosylbenzene (PhIO),⁴ hypochlorite,⁵ and a persulfoxide intermediate generated in singlet oxygen $({}^{1}O_{2})$ oxidation of sulfide⁶ have been used as oxygen donors to form the metal-oxo species (M=O); on the other hand, O_2 has been an oxygen atom source by modeling of the reductive dioxygen activation.⁷ Meanwhile, it is well known that ${}^{1}O_{2}$ oxidation of olefin results in the formation of allylic hydroperoxide via a perepoxide intermediate.⁸ In ${}^{1}O_{2}$ oxidation of adamantylideneadamantane (Ad=Ad), affording the corresponding dioxetane in high yield,9 a perepoxide intermediate was trapped by sulfoxide,¹⁰ sulfur dioxide,¹¹ and phosphite¹² to give sulfone, sulfur trioxide, and phosphate, respectively. To our knowledge, no interaction between a perepoxide and a metal ion, however, has been known. We describe here a novel oxygen-transfer system from ${}^{1}O_{2}$ to a hydrocarbon via perepoxide and metal-oxo species intermediates owing to the catalytic role of the porphyrin-metal complex.

In a typical experiment, a benzene solution of Ad=Ad (1.9 \times 10⁻² M) and adamantane (17 equiv) was photoirradiated at 20 °C with tetraphenylporphin (TPP, 3.5 \times 10⁻⁴ M) as sensitizer under an oxygen flow (flow rate; 2 mL/min) in the presence of Mn(TPP)Cl (3.2 \times 10⁻⁴ M).¹³ The resulting mixture was submitted to analytical GLC and GC-MS. Both adamantan-1-ol and adamantan-2-ol were apparently produced in 62% and 17% yields, respectively, together with adamantylideneadamantane oxide (84%) and dioxetane (11%) (Table I, run 1). All

yields were based on Ad—Ad consumed. Very similar results were also obtained with cyclohexane (Table I, runs 2, 4, 6). Control reactions reveal that all of the components, Ad—Ad, ${}^{1}O_{2}$, 14 and metal porphyrin, are essential for hydroxylation. No degradation of the catalyst was observed. An oxygen acceptor such as cyclohexane, adamantane, or norbornene is inert toward singlet oxygen. The results are summarized in Table I.

Both PhIO/Mn(TPP)Cl¹³ and our Ad=Ad/¹O₂/Mn(TPP)-Cl system give similar kinetic isotope effects in the hydroxylation of a mixture of cyclohexane- d_{12} and cyclohexane ($k_{\rm H}/k_{\rm D}$ = 8.8 and 8.6, respectively). These observations suggest the intermediacy of the same metal-oxo species (Mn=O(TPP)Cl).

In order to know the character of the active oxidizing species, the steric effects of both an added olefin and a catalyst have been investigated. Mn=O(TPP)Cl has a stronger ability for hydroxylation compared with Fe=O(TPP)Cl (Table I, runs 1–4, 10, 11).^{16,17} Moreover, Table I (runs 10,11) reveals that norbornene as a less sterically hindered olefin is more easily oxidized to epoxide compared with Ad=Ad.¹⁶ Compared with the PhIO system, a large steric effect was observed for epoxidation of norbornene using a series of iron porphyrins with sterically protected pockets in the Ad=Ad/¹⁰2 system. The observed selectivity depends on the size of the substituents on the porphyrin ring (Table II).^{5a} These results with the sterically crowded Ad=Ad perepoxide intermediate suggest that the slow step in the mechanism is the formation of the metal-oxo species.

Thianthrene 5-oxide was used as a useful chemical monitor for clarifying the electrophilic character of the oxygen-transfer agent.^{6a,18} The perepoxide intermediate derived from the ¹O₂ oxidation of Ad=Ad acted completely as a nucleophile ($X_{Nu} \approx 1$)(Table III, run 1).^{10,12} As expected, the metal-oxo species M=O(TPP)Cl derived from the M(TPP)Cl/PhIO system gave an essentially electrophilic attack ($X_{Nu} 0.42-0.53$)(Table III, runs 2-4).^{1,7} In the ¹O₂ oxidation of Ad=Ad in the presence of M(TPP)Cl, a less nucleophilic oxygen-transfer reaction occurred toward thianthrene 5-oxide ($X_{Nu} 0.88-0.96$)(Table III, runs 5-7). These results apparently suggest that the oxidant, together with the nucleophilic perepoxide intermediate, produced in the ¹O₂

Table I. Oxidation of Alkanes with Perepoxide or PhIO Catalyzed by Metal Tetraphenylporphyrin

			products, yield ^b (%)							
run	oxidation system ^a	substrate	Q-Q ^c Ad-Ad	Ad-Ad	Ad — Ad—OH ^d	1-AD-OH	2-Ad-OH	2-Ad=00	cyclohexanol	catalyst ^e turnover
1	Ad=Ad/ ¹ O ₂ / Mn(TPP)Cl	adamantane	11	84	trace	62	17	۲_		23
2	• •	cyclohexane	35	65					40	13
3	Ad=Ad/1O ₂ / Fe(TPP)Cl	adamantane	26	72	trace	38	5	٦_		12
4		cyclohexane	9	84					11	3
5	$Ad = Ad/1O_2$	adamantane	94	6		nds	nd	٦_		
6	· · · -	cyclohexane	95	5					nd	
7	$^{1}O_{2}/Mn(TPP)Cl$	adamantane				nd	nd	nd		
8	$\frac{\text{olefin}^{\hbar}}{Mn(\text{TPP})Cl}$	adamantane	12	88		58	15	10		21(24')
9	PhIO/ Mn(TPP)CV	adamantane				56 [*]	17*	9 ^k		18(20')
10	PhIO/ Mn(TPP)Cl [/]	Ad=Ad/ norbornene		1	8m	exo-nor	exo-norbornene oxide 57 ⁿ			
11	PhIO/ Fe(TPP)Cl ¹	Ad=Ad/ norbornene		2	3m	exo-nor	bornene oxide	14"		

^a The reaction conditions were as follows: adamantane/olefin/metalloporphyrin = 1000/60/1 in benzene, [metalloporphyrin] = 3.2×10^{-4} M; cyclohexane/olefin/metalloporphyrin = 6000/60/1 in benzene, [metalloporphyrin] = 6.4×10^{-4} M. ^b Yields were based on Ad=Ad consumed. 50% of Ad=Ad was converted in all cases. ^c In the presence of metalloporphyrin, dioxetane did not decompose under the experimental conditions. ^d Adamantylideneadamantan-4-01. ^e Alcohols produced/porphyrin used. ^f Since the dioxetane was decomposed under GC analysis, yield of adamantan-2-one was not determined. ^s Not detected. ^h Biscyclo[3.3.1]nonylidenebiscyclo[3.3.1]nonane. ⁱ Alcohols and ketone produced/porphyrin used. ^f Adamante/PhIO/metalloporphyrin = 1000/25/1 in benzene. ^k Yields were based on PhIO consumed. ^f The reaction conditions were as follows: norbornene/Ad=Ad/PhIO/metalloporphyrin = 30/30/10/1 in CH₂Cl₂, [metalloporphyrin] = 1.4×10^{-3} M. ^m Other possible products were the hydroxylated Ad=Ad. ^a Traces of the *endo*-epoxide, norcamphor, and 3-cyclohexene-1-carboxaldehyde were also detected.

Table II. Relative Rates of Catalytic Epoxidation of Norbornene Using Iron Porphyrin

		Iron Porphyrin	· · · · · · · · · · · · · · · · · · ·
oxidation system	Fe(TMP)Cl	Fe(TPP)Cl	Fe(OEP)Cl
$\frac{\text{Ad}=\text{Ad}/^1\text{O}_2^a}{\text{PhIO}^c}$	0.57 ^b 0.83 ^b	1.0 ^b 1.0 ^b	3.0 ^b 0.77 ^b

^a The reaction conditions were as follows: norbornene/Ad=Ad/metalloporphyrin = 7000/60/1 in CH₂Cl₂, [metalloporphyrin] = 6×10^{-4} M, [TPP] = 3.5×10^4 M. ^b Relative rates were calculated on the basis of the yields of norbornene oxide produced at the stage of 50% conversion of Ad=Ad. ^c Norbornene/PhIO/metalloporphyrin = 7000/30/1, [metalloporphyrin] = 6×10^{-4} M. ^d Relative rates were calculated on the basis of the yields of norbornene oxide produced at the complete consumption of PhIO.

Table III.	Nucleophilic	Character	(X_{Nu}) of	Oxygen-Transfer	Agents D	Derived with	Thianthrene	5-Oxide
------------	--------------	-----------	---------------	-----------------	----------	--------------	-------------	---------

run	oxygen-transfer reactions ^a	total yields (%)	SSO_2, n_{Nu}	SOSO, n _{E1}	$SOSO_2, n_{Nu}, n_{E1}$	X_{Nu}^{c}
1	$Ad=Ad/1O_2/CH_2Cl_2/20$ °C	3.7	3.53			1.00
2	$Fe(TPP)Cl/Ad=Ad/1O_2/CH_2Cl_2/20$ °C	2.6	2.37	0.11	trace	0.96
3	$Fe(TPFP)Cl/Ad=Ad/1O_2/CH_2Cl_2/20$ °C	2.5	2.05	0.20	0.09	0.88
4	$Mn(TPP)Cl/Ad = Ad/1O_2/CH_2Cl_2/20 °C$	9.0	7.43	0.54	0.54	0.88
5	Mn(TPP)Cl/PhIO/CH ₂ Cl ₂ /20 °C	15.3	8.95	3.36	2.22	0.53
6	Fe(TPP)Cl/PhIO/CH ₂ Cl ₂ /20 °C	9.7	2.88	4.36	1.97	0.43
7	Fe(TPFP)Ċl/PhIO/CH ₂ Cl ₂ /20 °C	13.9	3.53	6.17	3.44	0.42

^a A trace of oxidized products of thianthrene 5-oxide was obtained in PhIO/CH₂Cl₂/20 °C, ¹O₂/CH₂Cl₂/20 °C, and Fe(TPFP)Cl/¹O₂/CH₂Cl₂/20 °C systems. ^b The typical ratio of reactants, thianthrene 5-oxide/Ad=Ad/PhIO/porphyrin, is 80/30/20/1, [porphyrin] = 1.2 × 10⁻⁴. Amount of conversion of thianthrene 5-oxide into SSO2, SOSO, and SOSO2 products determined by GLC. Mole fraction of amount of nucleophilic attack, i.e., $n_{Nu}/(n_{Nu} + n_{Ei})$; SOSO₂ represents double oxygen-transfer product either via the sequence SSO OX_{N} SOSO₂ or SSO OX_{N} SOSO₂ or SSO OX_{N} SOSO₂ or SSO OX_{N} SOSO₂, so that the yield of SOSO₂ is equally added to n_{Nu} and to n_{El} .

Scheme I

oxidation of Ad=Ad in the presence of M(TPP)Cl should have an essentially electrophilic character.

On the basis of these observations, the primary perepoxide intermediate is likely to transfer an outer oxygen atom to M(porph)Cl to afford M=O(porph)Cl, which can oxidize

(1) For review, see: Meunier, B. Chem. Rev. 1992, 92, 1411.

 (1) 101 Groves, J. T.; Watanabe, Y. Inorg. Chem. 1987, 26, 785.
 (b) Groves, J. T.; Watanabe, Y. Ibid. 1986, 25, 4808.
 (c) Watanabe, Y.; Yamaguchi, K.; Morishima, I.; Takehira, K.; Shimizu, M.; Hayakawa, T.; Orita, H. Ibid. 1991, 30, 2581.

(3) (a) Mansuy, D.; Bartoli, J. F.; Chottard, J. C.; Lange, M. Angew. Chem., Int. Ed. Engl. 1980, 19, 909. (b) Mansuy, D.; Bartoli, J. F.; Momenteau, M. Tetrahedron Lett. 1982, 23, 2781. (c) Mansuy, D.; Battioni, P.; Renaud, J. P. J. Chem. Soc., Chem. Commun. 1984, 1255. (d) Traylor, T. G.; Fann, W. P.; Bandyopadhyay, D. J. Am. Chem. Soc. 1989, 111, 8009. (e) He, G.
 X.; Bruce, T. C. Ibid. 1991, 113, 2747.
 (4) (a) Groves, J. T.; Nemo, T. E.; Myers, R. S. J. Am. Chem. Soc. 1979, 101, 1032. (b) Hill, C. L.; Schardt, B. C. Ibid. 1980, 102, 6374. (c) Groves,

J. T.; Kruper, W. J.; Haushalter, R. C. *Ibid.* 1980, 102, 6375. (d) Groves, J. T.; Nemo, T. E. *Ibid.* 1983, 105, 5786.

(5) (a) Collman, J. P.; Brauman, J. I.; Meunier, B.; Hayashi, T.; Kodadek, T.; Raybuck, S. A. J. Am. Chem. Soc. 1985, 107, 2000. (b) Collman, J. P.; Kodadek, T.; Brauman, J. I. Ibid. 1986, 108, 2588.

(6) (a) Akasaka, T.; Haranaka, M.; Ando, W. J. Am. Chem. Soc. 1991, 113, 9898.
 (b) Akasaka, T.; Haranaka, M.; Ando, W. J. Am. Chem. Soc. 1991, 113, 9898.
 (c) Akasaka, T.; Ando, W. In Organic Peroxides; Ando, W., Ed.; Wiley: New York 1992; p 599.
 (f) (a) Tabushi, I.; Koga, N. J. Am. Chem. Soc. 1979, 101, 6456.
 (b) Particle Fouriet M.; Goudemer A. J. Chem. Soc. 1979, 101, 6456.

Perrée-Fauvet, M.; Gaudemer, A. J. Chem. Soc., Chem. Commun. 1981, 874.

hydrocarbon, olefin, and sulfide to alcohol, epoxide, and sulfoxide (Scheme I), respectively.

(8) (a) Baumstark, A. L. In Singlet O₂; Frimer, A. A., Ed.; CRC Press: Boca Raton, FL, 1985; Vol. 2, Chapter 1, p 1. (b) Frimer, A. A.; Stephenson, L. M. In Singlet O₂; Frimer, A. A., Ed.; CLC Press: Boca Raton, FL, 1985;

Vol. 2, Chapter 3, p 67.
(9) Wieringa, J. H.; Strating, J.; Wynberg, H.; Adam, W. Tetrahedron Lett. 1972, 13, 169.

(10) Schaap, A. P.; Recher, S. G.; Faler, G. R.; Villasenor, S. R. J. Am. Chem. Soc. 1983, 105, 1691.

(11) (a) Ando, W.; Sonobe, H.; Akasaka, T. Tetrahedron Lett. 1986, 27, 4473. (b) Ando, W.; Sonobe, H.; Akasaka, T. Chem. Lett. 1987, 335.

(12) Stratakis, M.; Orfanopoulos, M.; Foote, C. S. Tetrahedron Lett. 1991, 32, 863.

(13) TPP: tetraphenylporphyrinato. TMP: tetramesitylporphyrinato. OEP: octaethylporphyrinato. TPFP: tetrakis(pentafluorophenyl)porphyrinato.

(14) Proof for reagent ¹O₂ was obtained by testing oxygenation in the absence of a sensitizer, light, and by adding Dabco: Foote, C. S.; Peterson, E. R.; Lee, K.-W. J. Am. Chem. Soc. 1972, 94, 1032.

(15) Groves, J. T.; McClusky, G. A.; White, R. E.; Coon, M. J. Biochem. Biophys. Res. Commun. 1978, 81, 154.

(16) Traylor, T. G.; Miksztal, A. R. J. Am. Chem. Soc. 1989, 111, 7443-7448.

(17) Collman, J. P.; Kodadek, T.; Raybuck, S. A.; Meunier, P. Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 7039.
(18) (a) Adam, W.; Haas, W.; Sieker, G. J. Am. Chem. Soc. 1984, 106, 5020. (b) Adam, W.; Haas, W.; Lohray, B. B. Ibid. 1991, 113, 6202. (c) Oae, S.; Takata, T.; Kim, Y. H. Bull. Chem. Soc. Jpn. 1981, 54, 2712.