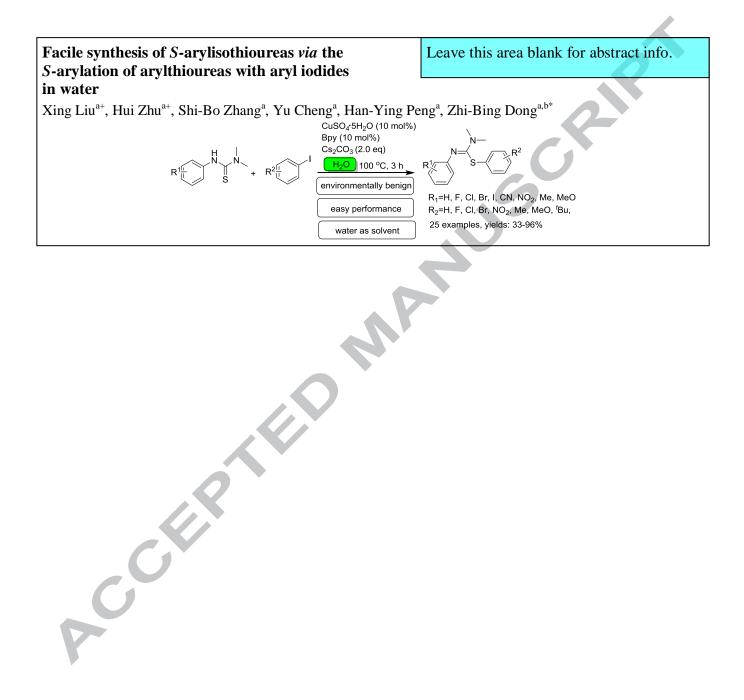

Accepted Manuscript

Facile synthesis of S-arylisothioureas via the S-arylation of arylthioureas with aryl iodides in water

Xing Liu, Hui Zhu, Shi-Bo Zhang, Yu Cheng, Han-Ying Peng, Zhi-Bing Dong

PII:	S0040-4039(18)30862-1
DOI:	https://doi.org/10.1016/j.tetlet.2018.07.012
Reference:	TETL 50121
To appear in:	Tetrahedron Letters
Received Date:	23 May 2018
Revised Date:	24 June 2018
Accepted Date:	2 July 2018


Please cite this article as: Liu, X., Zhu, H., Zhang, S-B., Cheng, Y., Peng, H-Y., Dong, Z-B., Facile synthesis of *S*-arylisothioureas *via* the *S*-arylation of arylthioureas with aryl iodides in water, *Tetrahedron Letters* (2018), doi: https://doi.org/10.1016/j.tetlet.2018.07.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahedron Letters

journal homepage: www.elsevier.com

Facile synthesis of *S*-arylisothioureas *via* the *S*-arylation of arylthioureas with aryl iodides in water

Xing Liu^{a+}, Hui Zhu^{a+}, Shi-Bo Zhang^a, Yu Cheng^a, Han-Ying Peng^a, Zhi-Bing Dong^{a,b}

^aSchool of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China. ^bDepartment of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany. Email: <u>dzb04982@wit.edu.cn</u> ⁺These authors contribute equally to this work

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted

Keywords: S-arylisothiourea arylthiourea synthesis copper water

Available online

1. Introduction

Isothioureas are an important class of bioactive and industrially organic compounds with broad applications as antivirals,^[1] antihistamines,^[2] insecticides,^[3] acaricides,^[4] and herbicides.^[5] *S*-arylisothioureas also show very interesting biological effects, such as antiviral and antianginal^[6] activities. In recent years, increasing numbers of *S*-arylisothioureas have been designed and synthesized for biological evaluation, including HIV-1 inhibitors (**A**), anti-infective agent (**B**), central system agents (**C**), and valosine containing protein inhibitor (**D**) (**Figure 1**).^[7] Therefore the preparation of *S*-arylisothioureas has received increased attention from synthetic organic chemists and biologists.

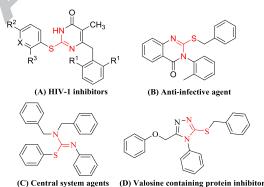


Figure 1. Some biologically active *S*-arylisothioureas.

Conventionally, S-aryisothioureas have been synthesized via the cross-coupling reactions of mercaptothioureas with aryl

An environmentally benign, simple and highly efficient protocol for the synthesis of *S*-arylisothiourea derivatives has been achieved in good to excellent yields by reacting a series of aryl iodides with arylthioureas, using inexpensive $CuSO_45H_2O$ as catalyst in water without PTC (phase transfer catalyst). The protocol features easy performance, good to excellent yields, good tolerance towards a variety of functional groups, which could be useful for the preparation of some biologically active compounds.

2009 Elsevier Ltd. All rights reserved.

halides^[8] or aryl boronic acids,^[9] or the nucleophilic attack of arylthiols.^[10] Although these methods are suitable for certain synthesis, there somehow exist some drawbacks such as long reaction time, expensive reagents, low yields of products, high catalyst loading, and large amounts of solid supports, which would eventually result in the generation of a large amount of toxic waste. Several other methods are available for the synthesis of *S*-arylisothioureas, including the *S*-arylation of *N*-phenylthioureas with diazonium salts,^[11] the reaction of benzotriazolecarboximidamides with aromatic thiols,^[12] and the metathesis exchange reaction between isothioureas and aryl isocyanates.^[13] Although significant progress has been achieved towards the synthesis of *S*-arylisothioureas is still highly desirable.

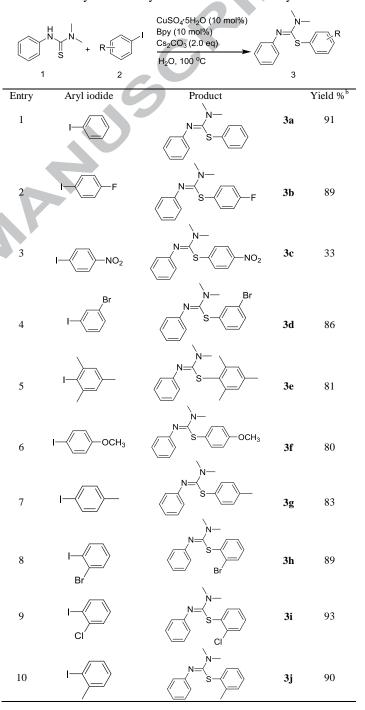
In recent decades, the development of environmentally friendly reaction medium, especially water, has been paid much attention because water is nontoxic, low price and widely available.^[14] On the other side, significant progress has been made towards the development of copper-catalyzed C-S coupling reactions in water recently.^[15] However, PTC (phase transfer catalyst) are normally added in most of the reported protocols.^[15] Lately, our group developed protocols for the synthesis of *S*-arylisothioureas in organic phase, as well as the synthesis of the substituted 2-mercaptobenzoheterocycles in water without PTC.^[16] For the continuous interest in the C-S coupling reaction,^[17] we present here the *S*-arylisothioureas with aryl iodides in water, furnishing the *S*-arylisothioureas by C-S coupling.

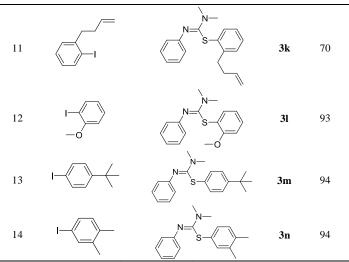
2

ACCEPTED MANUSCRIPT

2. Results and discussions

Initially, we carried out a set of experiments using Nphenylthioureas (1a) and iodobenzene (2a) as model substrates in water under air using Cu(II) salts as the catalyst for optimizing the reaction conditions, and the results are summarized in Table 1. First, bases were screened by using 10 mol% of CuCl₂ as the catalyst, 20 mol% of 2,2'-Bipyridine (Bpy) as the ligand, and H_2O as the solvent (entries 1-5). Cs_2CO_3 as the base provided the highest yield of the product at 91% (entry 1). Several copper catalysts were then investigated (entries 6-10), and CuSO₄:5H₂O was selected to be the most effective catalyst for the current reaction (entry 10). No reaction could be detected with no catalyst loading (entry 11). When copper salt is replaced by iron salt, no product (3a) was obtained (entry 12). Among the ligands tested, N.N'-dimethylethylenediamine (DMEDA) showed almost no help for reaction, whereas other ligands, such as 1,10phenantroline, L-proline and pyridine all showed good effect (entries 13-16). 10 mol% of the ligand loading did not affect the yield of the product (entry 17), while the yield of the product was reduced to 81% when 5 mol% of CuSO₄·5H₂O was used (entry 18). The screening of the base loading showed that 2 equiv of Cs_2CO_3 was optimal (entries 17, 19-20). In addition, the product vield dropped to 62% when the temperature was reduced to 90 °C (entries 17, 21-22). The later control experiments showed that the Cu(I) was also suitable for the reaction, but less reactive (entry 23). Thus, the optimal reaction conditions were set and were summarized in entry 21 (10 mol% of CuSO₄·5H₂O, 10 mol% of 2,2'-bipyridine, 2 equiv. of Cs₂CO₃ in water, heating at 100 °C for 3 hours).

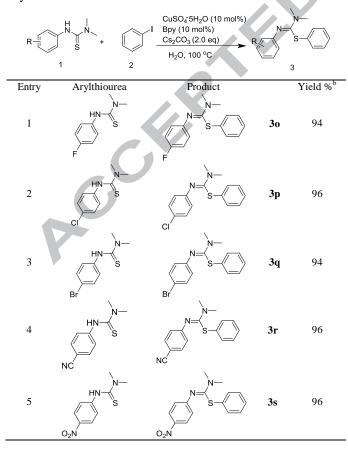

Table 1. Screening of the reaction conditions.^a

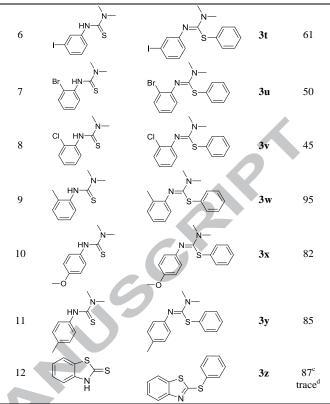

1a 2a 3a Entry Catalyst Base Ligand T (°C) Yield (%) ^b 1 CuCl ₂ Cs ₂ CO ₃ Bpy 120 91 2 CuCl ₂ K ₂ CO ₃ Bpy 120 84 3 CuCl ₂ KOH Bpy 120 89 4 CuCl ₂ K ₃ PO ₄ Bpy 120 84 6 Cu(OAc) ₂ Cs ₂ CO ₃ Bpy 120 83 7 Cu(OTf) ₂ Cs ₂ CO ₃ Bpy 120 88 8 CuBr ₂ Cs ₂ CO ₃ Bpy 120 89 10 CuSqt3H ₂ O Cs ₂ CO ₃ Bpy 120 92 9 CuCl ₂ 2H ₂ O Cs ₂ CO ₃ Bpy 120 89 10 CuSq ₄ 5H ₂ O Cs ₂ CO ₃ Bpy 120 93 11 -4 Cs ₂ CO ₃ Bpy 120 0 12 FeCl ₃ 6H ₂ O Cs ₂ CO ₃ Lpr			+	cat., ligand base, H ₂ O		S S
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1a	2a			3a 🧹
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Entry	Catalyst	Base	Ligand	T (°C)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-				$(\%)^{b}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	CuCl ₂	Cs ₂ CO ₃	Bpy	120	91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$CuCl_2$	K_2CO_3		120	84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$CuCl_2$	KOH	Bpy	120	89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$CuCl_2$	K_3PO_4	Вру	120	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	$CuCl_2$	NaOH	Вру	120	84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$Cu(OAc)_2$	Cs ₂ CO ₃	Bpy	120	83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	Cu(OTf) ₂	Cs ₂ CO ₃	Вру	120	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$CuBr_2$	Cs ₂ CO ₃	Bpy	120	92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	CuCl ₂ ·2H ₂ O	Cs ₂ CO ₃	Bpy	120	89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	CuSO ₄ ·5H ₂ O	Cs_2CO_3	Bpy	120	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11		Cs ₂ CO ₃		120	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	FeCl ₃ ^{·6} H ₂ O		Bpy	120	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	CuSO4 ^{·5} H ₂ O	Cs_2CO_3	1,10-Phen	120	93
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	CuSO ₄ ·5H ₂ O	Cs_2CO_3	L-proline	120	84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15		Cs_2CO_3	Py	120	89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	CuSO ₄ ·5H ₂ O	Cs_2CO_3	DMEDA	120	trace
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 ^c	CuSO ₄ ·5H ₂ O	Cs_2CO_3	Bpy	120	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18^{d}	CuSO4 ^{·5} H ₂ O	Cs_2CO_3		120	81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 ^e		Cs_2CO_3		120	85
21 ^g CuSO ₄ ·5H ₂ O Cs ₂ CO ₃ Bpy 100 91 22 CuSO ₄ ·5H ₂ O Cs ₂ CO ₃ Bpy 90 62	20^{f}	CuSO ₄ ·5H ₂ O	Cs_2CO_3		120	80
22 CuSO ₄ ·5H ₂ O Cs ₂ CO ₃ Bpy 90 62	21 ^g	CuSO ₄ 5H ₂ O	Cs ₂ CO ₃		100	91
	22	CuSO ₄ 5H ₂ O	Cs_2CO_3		90	62
	23	CuI	Cs_2CO_3	Вру	100	82

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.6 mmol), Catalyst (10 mol %), ligand (20 mol %), base (2.0 equiv), and H₂O (2 mL) in a sealed tube at 90-120 ^{\Box}C for 3 h. ^{*b*}Isolated yield. ^cIn the presence of CuSO₄·5H₂O (10 mol %) and 1,10-phenanthroline (10 mol %). ^{*d*}In the presence of CuSO₄·5H₂O (5 mol %) and 1,10-phenanthroline (10 mol %). ^{*c*}In the presence of Cs₂CO₃ (1.5 equiv). ^{*f*}In the presence of Cs₂CO₃ (1.0 equiv). ^{*s*}The optimal reaction conditions: 10 mol% of CuSO₄·5H₂O, 10 mol% of 2,2²-bipyridine, 2 equiv. of Cs₂CO₃ in water, heating at 100 °C for 3 hours.

Tetrahedron Letters With the above mentioned optimized conditions in hand, we made the investigation of *S*-arylation of arylthiourea by reacting with different aryl iodides and the results are summarized in Table 2. Different aryl iodides reacted with arylthiourea to give the corresponding *S*-arylisothioureas. Electron-withdrawing substituents resulted in good yields. Halide groups such as F, Cl, and Br yielded the desired products in 86-93% yield (entries 2, 4, 8, 9), while strongly electron-withdrawing group (NO₂) gave lower yields (entry 3). For the electron-donating alkyl or methoxy groups, general good yields were obtained. (entries 5-7, 10, 12, 13-14). Due to the possible steric hindrance reason,

compound **3k** was obtained in a moderate yield (70%, entry 11). **Table 2.** *S*-arylation of arylthiourea with various aryl iodides.^{*a*}





^{*a*}Reaction conditions: **1** (0.5 mmol), **2** (0.6 mmol), $CuSO_4$ 5H₂O (10 mol %), 2,2'-bipyridine (10 mol %), Cs_2CO_3 (2.0 equiv), H₂O (2 mL), 100 °C. ^{*b*}Isolated yield.

Studies on the scope of the coupling reactions with respect to a wide array of electronically and structurally diverse thioureas were summarized in Table 3. As expected, the reaction showed good functional compatibility. Substrates bearing *ortho* Br or Cl group resulted in moderate yield (entries 7-8). To further illustrate our protocol in the organic synthesis, we explored the benzo-heterocycle substrate (entry 12). It is a pity that the benzo[*d*]thiazole-2(3H)-thione could not be converted to the desired product 3z under the standard conditions. While the reaction could be proceeded smoothly when TBAB (tetrabutylammonium bromide, 5 mol %) was added.

Table 3. *S*-Arylation of aryl iodide with various arylthioureas.^{*a*}

^aReaction conditions: **1** (0.5 mmol), **2** (0.6 mmol), CuSO₄·5H₂O (10 mol %), 2,2'-bipyridine (10 mol %), Cs₂CO₃ (2.0 equiv), H₂O (2 mL), 100 °C. ^bIsolated yield. ^cIn the presence of TBAB (tetrabutylammonium bromide, 5 mol %). ^dWithout TBAB.

A control experiment was conducted in a N_2 atmosphere, and the model reaction gave only trace of the product, indicating that the oxygen in the air serves as oxidant in the reaction. Although the reaction mechanism is not clear so far, we speculate that the reaction proceeds through an oxidative addition–reductive elimination mechanism via an unstable Cu^{III} intermediate,^[18] which is energetically more feasible than other possible mechanisms. The further details and the related applications are still under research in our lab.

3. Conclusion

In summary, we have developed a simple and effective method for the synthesis of a series of S-arylisothiourea derivatives by using $CuSO_4$ ·5H₂O as a catalyst, the reaction was conducted under PTC-free (PTC: phase transfer catalyst) conditions in an aqueous medium. The experimental simplicity, good to excellent yields and environmental friendliness of this protocol, is expected to be useful for the preparation of some biologically active compounds.

Acknowledgments

We thank the foundation support from National Natural Science Foundation of China (21302150), foundation of Chen-Guang program from Hubei Association for Science and Technology, foundation of Chutian distinguished fellow from Hubei Provincial Department of Education, foundation of Highend Talent Cultivation Program from Wuhan Institute of Technology. Z.-B. D. acknowledges the Humboldt Foundation and China Scholarship Council for a fellowship. X. L. thanks the support of Postgraduate Innovation Foundation (CX2017088) from Wuhan Institute of Technology.

ACCEPTED MANUSCRIPT

Experimental

Tetrahedron Letters

All starting materials were purchased from commercial suppliers and used without further purification unless otherwise stated. Yields refer to isolated compounds estimated to be >95% pure as determined by ¹H NMR and capillary GC analysis. NMR spectra were recorded on a Bruker AM400 NMR instrument in CDCl₃ using TMS as an internal standard. Chemical shifts are given in ppm and coupling constants (J) are given in Hz. All melting points were determined on a RY-1G melting point instrument without correction. High-resolution mass spectra (HRMS) were recorded on a Finnigan MAT 95Q or Finnigan 90 mass instrument (ESI). TLC was performed using aluminum plates coated with SiO₂ (Merck 60, F-254) and visualized with UV light at 254 nm. Column chromatography was performed on silica gel (200-300 mesh) with PE-EtOAc as eluent.

Typical procedure for the preparation of aryl-isothioureas (3a)

Aryl thiourea (1, 0.5 mmol), aryl iodide (2, 0.6 mmol), CuSO₄:5H₂O (0.05 mmol), Cs₂CO₃ (2.0 equiv), 2,2'-bypyridine (0.05 mmol) were added in sealed tube equipped with a septum and magnetic stirring bar, H₂O (2.0 mL) was then added. The mixture was stirred at 100 °C and checked by TLC until the starting material was finished (about 3h). The reaction was terminated with sat. NH₄Cl solution (3 mL) and then extracted with ethyl acetate. The crude solution was dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by flash column chromatography to afford the desired product **3a**.

References and notes

- 1. Mertens A, Koenig B, Leser U. DE4325741. 1995.
- Ganellin CR, Fkyerat A, Hosseini SK, Khalaf YS, Piripitsi A, Tertiuk W, Arrang JM, Garbarg M, Ligneau X, Schwartz JC. J. Pharm. Belg. 1995; 50: 179-187.
- 3. Drabek J, Boeger M, Ehrenfreund J, Stamm E, Steinemann A, Alder A, Burckhardt U. Recent Advances in the Chemistry of Insect Control II. 1990; 79: 170-183.
- 4. Pascual A, Rindlisbacher A. Pest Manag. Sci. 1994; 42: 253-263.
- 5. Kogan M, Dinizo SE, Fancher LW. BR8602373A. 1987.
- 6. Atwal K. EP450415. 1991.
- (a) Ma C, Wu A, Wu Y, Ren X, Cheng M. Arch. Pharm. 2013; 346: 891-900. (b) Mugnaini C, Manetti F, Este JA, Clotet-Codina I, Maga G, Cancio R, Botta M, Corelli F. Bioorg. Med. Chem. Lett. 2006; 16: 3541-3544. (c) Srivastava VK, Kumar P, Agarwal JC, Vrat S, Dhawan KN, Shanker K. Die Pharmazie. 1981; 36: 441-441. (d) Rogovoy B, Vvedenskiy V, Cai X, Chassaing C, Katritzky AR, Forood B. WO 2003095396, 2003.
- (a) Wu WY, Wang JC, Tsai FY. *Green Chem.* 2009; 11: 326-329. (b) Lan MT, Wu WY, Huang SH, Luo KL, Tsai FY. *RSC Adv.* 2011; 1:

1751-1755. (c) Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880-2883. (d) Feng YS, Li YY, Tang L, Wu W, Xu HJ. Tetrahedron Lett. 2010; 51: 2489-2492. (e) He G, Huang Y, Tong Y, Zhang J, Zhao D, Zhou S, Han S. Tetrahedron Lett. 2014; 45: 5318-5321. (f) Ku X, Huang H, Jiang H, Liu H. J. Comb. Chem. 2009; 40: 338-340. (g) Lee OS, Lee HK, Kim H, Shin H, Sohn JH. Tetrahedron. 2015; 71: 2936-2944. (h) Liu Y, Zhou L, Hui X, Dong Z, Zhu H, Shao Y, Li Y. RSC Adv. 2014; 4: 48980-48985. (i) Lv X, Bao W. J. Org. Chem. 2007; 72: 3863-3867. (j) Niu LF, Cai Y, Liang C, Hui XP, Xu PF. Tetrahedron. 2011; 67: 2878-2881. (k) Sekar R, Srinivasan M, Marcelis ATM, Sambandam A. Tetrahedron Lett. 2011; 52: 3347-3352. (l) Tan YH, Teo YC. Tetrahedron. 2016; 72: 6646-6653. (m) Yavari I, Nematpour M, Damghani T. Tetrahedron Lett. 2014; 55: 1323-1325.

- (a) Xu HJ, Zhao YQ, Feng T, Feng YS. J. Org. Chem. 2012; 77: 2878-2884.
 (b) Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2002; 4: 4309-4312.
 (c) Prokopcova H, Kappe CO. J. Org. Chem. 2007; 72: 4440-4448.
 (d) Pulakhandam SK, Katari NK, Manda RPR. J. Chem. Sci. 2017; 129: 203-210.
- 10. Egi M, Liebeskind LS. Org. Lett. 2003; 5: 801-802.
- 11. Khalili G. Mon. Chem. 2015; 146: 1891-1894.
- Katritzky AR, Rogovoy B, Klein C, Insuasty H, Vvedensky V, Insuasty B. J. Org. Chem. 2001; 66: 2854-2857.
- Katritzky AR, Cai X, Vvedensky VY. Heterocycles. 2002; 57: 1799-1806.
- Carril M, SanMartin R, Dominguez E. Chem. Soc. Rev. 2008; 37: 639-647.
- (a) Wang Y, Wu ZQ, Wang LX, Li ZK, Zhou XG. *Chem. Eur. J.* 2009;
 15: 8971-8974. (b) Li XF, Yang DS, Jiang YY, Fu H. *Green Chem.* 2010; 12: 1097-1105. (c) Wang DP, Zhang FX, Kuang DZ, Yu JX, Li JH. *Green Chem.* 2012; 14: 1268-1271. (d) Xu HJ, Zheng FY, Liang YF, Cai ZY, Feng YS, Che DQ. *Tetrahedron Lett.* 2010; 51: 669-671. (e) Jing LH, Wei JT, Zhou L, Huang ZY, Li ZK, Zhou XG. *Chem. Commun.* 2010; 46: 4767-4769.
- (a) Zhu H, Liu X, Chang CZ, Dong, ZB. *Synthesis* 2017; 49: 5211-5216.
 (b) Liu X, Liu M, Xu W, Zeng MT, Zhu H, Chang CZ, Dong ZB. *Green Chem.* 2017; 19: 5591-5598.
- (a) Xu W, Zeng MT, Liu M, Liu SS, Li YS, Dong ZB. Synthesis. 2017; 17. 49: 3084-3090. (b) Xu W, Zeng MT, Liu M, Liu X, Chang CZ, Zhu H, Li YS, Dong ZB. Chem. Lett. 2017; 46: 641-643. (c) Dong ZB, Wang M, Zhu H, Liu X, Chang CZ. Synthesis. 2017; 49: 5258-5262. (d) Liu M, Zeng MT, Xu W, Wu L, Dong ZB. Tetrahedron Lett. 2017; 58: 4352-4356. (e) Xu W, Zeng MT, Liu SS, Li YS, Dong ZB. Tetrahedron Lett. 2017; 58: 4289-4292. (f) Dong ZB, Liu X, Bolm C. Org. Lett. 2017; 19: 5916-5919. (g) Zeng MT, Xu W, Liu X, Chang CZ, Zhu H, Dong ZB. Eur. J. Org. Chem. 2017; 6060-6066. (h) Liu X, Cao Q, Xu W, Zeng MT, Dong ZB. Eur. J. Org. Chem. 2017; 5795-5799. (i) Zeng MT, Wang M, Peng HY, Cheng Y, Dong ZB, Synthesis. 2018; 50: 644-650. (j) Cheng Y, Liu X, Dong ZB. Eur. J. Org. Chem. 2018; 815-820. (k) Xu W, Gao F, Dong, ZB. Eur. J. Org. Chem. 2018; 821-828. (1) Cao Q, Peng HY, Cheng Y, Dong ZB. Synthesis. 2018; 50: 1527-1534. (m) Zhu H, Liu X, Cheng Y, Peng HY, Li YS, Dong ZB. Synthesis. 2018; 50: 2247-2254
- Soria-Castro SM, Andrada DM, Caminos DA, Arguello JE, Robert M, Penenory AB. J. Org. Chem. 2017; 82, 11464-11473.

4

ACCEPTED MANUSCRIPT

Highlights:

•25 S-arylisothiourea derivatives are synthesized in good to excellent yields.

•Inexpensive CuSO₄.5H₂O serve as catalyst, and water serve as solvent.

•No PTC (phase transfer catalyst) is needed.

Acctionter •The protocol features easy performance, good tolerance towards a variety of functional groups.