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ABSTRACT: A combined Lewis acid/photoredox catalyst
system enabled the intramolecular umpolung addition of ketyl
radicals to vinylogous carbonates in the synthesis of 2,6-
dioxabicyclo[3.3.0]octan-3-ones. This reaction proceeded on
a variety of aromatic ketones to provide THF rings in good
yield (up to 95%). Although diastereoselectivity was found to
be modest (1.4−5:1) for the C-C bond forming reaction, the minor diastereomers were converted to 2,6-dioxabicyclo[3.3.0]-
octan-3-ones by an efficient Lewis acid-mediated epimerization cascade in up to 90% yield.

Tetrahydrofuran fused γ-lactones, specifically 2,6-
dioxabicyclo[3.3.0]octan-3-ones (1), are a prevailing

structural feature in a number of biologically active natural
products (Figure 1). For instance, the plakortones are a large
family of natural products with applications in cardiac
arrhythmia, and it is hypothesized that the oxabicylic “head” is
central to its function.1 More highly substituted forms have been

found as key components of other natural products such as the
pallambins2 and the rubriflordilactones.3 Of particular interest is
the presence of this moiety in both polyketide and terpenoid
natural products. The prevalence and congested complexity of
this core structure call for efficient methods for its construction.
The most common method for the synthesis of these bicyclic
structures is by conjugate addition of a pendant alcohol to an
already constructed unsaturated γ-lactone.4−11 Other assemblies
of this moiety include palladium-catalyzed carbonylative
oxidation,12−16 iodolactonization of a dihydrofuran,17 and by
ionic rearrangement cascades.18,19 These methods focus
primarily on the formation of C-O bonds in the core structure;
methods that center around C-C bond formation remain
lacking.
Although these methods provide access to the key oxabicyclic

structure, they require at least one stereocenter of the ring fusion
to be established prior to construction of the ring system. We
anticipated that the simultaneous construction of the ring-fusion
C-C and the lactone C-O bonds of the bicyclo[3.3.0]octane
would greatly simplify their synthesis by generating both of these
stereocenters in a single step (Figure 1). Stereoselectivity would
then be under reagent control, and it would allow for
deconstruction to a highly simplified linear precursor that is
readily available from β-hydroxy ketones. We hoped to employ
the intramolecular umpolung addition of a ketyl radical from a
linear vinylogous carbonate (2) to achieve the direct synthesis of
the ring-fusion C-C bond. Ketyls are powerful nucleophilic
radical intermediates that have been used widely in C-C bond
forming processes.20,21 However, the challenging single electron
reduction of ketones has made ketyl radical chemistry difficult to
render catalytic. To date, addition of ketyl radicals to vinylogous
carbonates has been limited to tin hydride,22−24 or samarium-
(II) mediated processes.25−27 These reagents can be toxic or
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Figure 1. Example of bioactive natural products bearing 2,6-
dioxabicyclo[3.3.0]octan-3-one cores.
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highly sensitive to adventitious water and O2, further reducing
their practical use. Although samarium(II) is a convenient
reagent for this transformation, reduction of samarium(III) to
the active samarium(II) is rare in catalysis.28−31 We aimed to
effect this transformation with mild, catalytic conditions that
would avoid toxic intermediates or stoichiometric transition
metals.
Photoredox catalysis has enabled a growing and powerful

family of reactions that harvest visible light to achieve often-
challenging electron transfer reactions.32−34 The combination of
photoredox catalysts such as Ru(bpy)3

+2 and Ir(ppy)3 with acids
has enabled the mild reduction of carbonyl derivatives to the
corresponding ketyl. Recent reports by Knowles,35−37 Ruep-
ing,38−40 and others41−43 have shown that activated carbonyl
compounds can accept an electron from the reduced form of the
photocatalyst. These catalyst systems provide an exciting
opportunity for the reductive umpolung reactivity of ketones
and aldehydes in C-C bond forming reactions. In these systems,
a Brønsted or Lewis acidic cocatalyst lowers the effective
reduction potential of the carbonyl, enabling electron transfer
from photoexcited transition metal complexes.44,45 This
approach could serve as a general catalytic strategy for the
reductive umpolung reactions of carbonyls in place of systems
requiring full equivalents of transition metal.
Inspired by these recent studies, we were interested in their

application to the cyclization of γ-ketovinylogous carbonates
(2). We anticipated some additional challenges for the proposed
substrates relative to previously reported reactions. The
sensitivity of the vinylogous carbonate to hydrolysis under
acidic conditions were of primary concern. Additionally,
vinylogous carbonates are much more sluggish electrophiles
than α,β-unsaturated esters. In light of these two considerations,
a full re-evaluation of the reaction conditions was warranted.
The proposed catalytic cycle for the synthesis of furan-fused

lactones 1 involves cooperation between an acid and a transition
metal photocatalyst (Scheme 1). In this cycle, photoexcited
Ru(bpy)3

+2 would be reduced by a terminal reductant to provide
the super-reductant Ru(bpy)3

+. This complex would then
transfer an electron to a ketone that has been activated by

coordination to a Lewis acid (4) or by protonation by a Brønsted
acid. The resulting ketyl radical (5) would add to the pendant
vinylogous carbonate to provide THF 6 followed by H atom
transfer from a terminal reductant such as Hantzsch ester
(HEH) to provide 3-hydroxytetrahydrofurans such as 7. Syn-
THF 7 could cycl ize to the corresponding 2,6-
dioxabicyclo[3.3.0]octan-3-one.
Vinylogous carbonate 3a was chosen for the optimization of

THF synthesis (Table 1). Initial studies began by investigating

proton-coupled electron transfer (PCET) to β-keto vinylogous
carbonate 3a. Under the conditions reported by Knowles,
cyclization to 8/9a was observed in low yield (entry 1).4 It was
found that 2,3-dihydro-2-phenylbenzothiazole was too active as
a terminal reductant, and the predominant side product was the
direct reduction of the ketone to the alcohol. Changing to
Hantzsch ester (HEH) was found to reduce this undesired
reactivity (entry 2). Although changing reductants did not
significantly impact the yield, the mass balance in this case was
now found to be predominantly unreacted 3a. Ru(bpy)3

+2

proved to be the optimal photoredox catalyst for this process
(entry 3). Increasing the amount of Hantzsch ester and acid
catalyst dramatically improved the yield (entry 4). After a survey
of protic acids, it was found that Lewis acids provided superior
conversion, with SnCl2 and La(OTf)3 having the best perform-
ance (entries 5−7). Acetonitrile was determined to be the
optimal solvent (entries 8 and 9). Ultimately, 2 mol % of
photocatalyst, combined with 40 mol % of Lewis acidic
La(OTf)3 in acetonitrile with 3 equiv Hantzsch ester irradiated
with blue LED light proved to be the optimal conditions (entry
7). Control experiments proved that the combined action of the
photocatalyst, Lewis acid, and light to be necessary for sufficient
reactivity (entries 10−12). Interestingly, in the absence of
photocatalyst, a small amount of cyclization was observed (entry
12). It is thought that the photoexcited state of Hantzsch ester
(ca. −2.0 V) could directly reduce activated complex 4, albeit at
a reduced rate than photoexcited Ru(bpy)3

+2.46 Although it was
anticipated that Lewis acids might preferentially template a

Scheme 1. Proposed Dual-Catalytic Cycle

Table 1. Discovery and Optimization of THF Synthesisa

entry photocat acid (mol %) solvent yieldb (%) drc 8a:9a

1d Ir(ppy)3 p-TSA (10) THF 28 2.2:1
2e Ir(ppy)3 p-TSA (10) THF 22 1.4:1
3e Ru(bpy)3 p-TSA (10) THF 21 1.4:1
4 Ru(bpy)3 p-TSA (20) THF 41 1.7:1
5 Ru(bpy)3 p-TSA (20) MeCN 44 1.7:1
6 Ru(bpy)3 SnCl2 (20) MeCN 51 2.1:1
7 Ru(bpy)3 La(OTf)3 (40) MeCN 75 2.4:1
8 Ru(bpy)3 La(OTf)3 (40) DCM 49 2.1:1
9 Ru(bpy)3 La(OTf)3 (40) DMF 59 2.4:1
10 Ru(bpy)3 MeCN trace ndg

11f Ru(bpy)3 La(OTf)3 (40) MeCN trace ndg

12 La(OTf)3 (40) MeCN 21 ndg

a0.2 mmol 3a, 2 mol % photocatalyst, 3 equiv HEH, [3a] = 0.05 M.
bCombined yield of 8a and 9a after chromatography. cDetermined by
relative yields of isolated material after chromatography. d2,3-
Dihydro-2-phenylbenzothiazole (1.5 equiv) used in place of HEH.
e1.5 equiv of HEH. fConducted in the absence of light. gNot
determined.
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single diastereomeric transition state, no experimental con-
ditions were found that significantly improved the diaster-
eoselectivity of the C-C bond formation.
In general, we found vinylogous carbonates 3 to be sluggish to

react compared to other α,β-unsaturated carbonyl electrophiles.
These substrates therefore required up to 48 h to achieve full
consumption of starting material. However, the vinylogous
carbonates were surprisingly stable to the reaction conditions,
with no byproducts of carbonate hydrolysis observed, and
predominantly starting material (3) was recovered from slow
reactions. Additives that have been found to be beneficial for
combined photoredox/Lewis acid catalysts, such as 2,2′-
bipyridyl,41 had little effect on reactivity in our case. Although
it is possible that the enhanced reactivity of Lewis acids when
compared to Brønsted acids is due to additional Lewis acid
activation of the vinylogous carbonate, we have no additional
evidence to support this hypothesis.
A number of vinylogous carbonates were investigated in this

THF synthesis (Table 2). The reaction could be scaled to 1
mmol of 3a without a significant impact on overall yield (entry
1). Aromatic substitution did not dramatically impact the yield
or selectivity of cyclization, and the reaction was tolerant of

electron-donating and electron-withdrawing aromatic substitu-
ents (entries 2−4). α-Substituted ketones proved to be excellent
substrates for this reaction (entries 5−8), providing the highest
yields of cyclized products 8 and 9. Interestingly, these
substituents also had an effect on the diastereoselectivity of
the reaction. Larger substituents increasingly favored the anti-
diastereomer, with benzyl substrate 3g completely inverting the
selectivity. Furthermore, the diastereoselectivity relative to the
4-position was typically high, with only small amounts of other
diastereomers visible by 1H NMR. The alkene and aromatic
functionality of 3f and 3g were also well-tolerated (entries 7 and
8), and no products of radical addition to these functional
groups were observed. Tetralone derivative 3h provided
tetracyclic products 8h and 9h in good yield. Salicylate-derived
vinylogous carbonate was also cyclized, however the product
readily aromatized under the acidic conditions to provide
benzofuran 10 (entry 9). It is also important to note the general
stability of the resulting 3° benzylic alcohol products to the
reaction conditions, which underscores their mild nature.
Overall, substituted tetrahydrofurans could be obtained in
good yields from a variety of linear vinylogous carbonates.
Although the diastereoselectivities of the C-C bond formation

remained modest, a strategy for converting the minor
diastereomer to the desired lactone was developed (Scheme
2). It was initially proposed that epimerization could proceed

through β-elimination of the THF oxygen atom, attempts to
epimerize 9a under basic conditions were met with only
moderate success.47 It was eventually found that Lewis acids
were capable of mediating the desired transformation, with
SnCl2 performing the best. Under the optimized conditions, 9a
was converted to 2,6-dioxabicyclo[3.3.0]octan-3-one 8a in the
presence of SnCl2 and 5 Å molecular sieves in high yield. The
Lewis acid likely ionizes the alcohol to generate a benzylic
cation, ablating the C3 stereocenter, or the stereocenter is
inverted by anchimeric assistance from the neighboring ester
(i.e., 11). Lactone 8 would then be generated either by
lactonization of an epimerized alcohol or by loss of ethanol from
11. Sequestration of ethanol by molecular sieves then drives the
equilibrium to 2,6-dioxabicyclo[3.3.0]octan-3-one 8.

Table 2. Scope of Ketyl Cyclizationa

a0.20 mmol 3, 2 mol % Ru(bpy)3(PF6)2, 40 mol % La(OTf)3, 3 equiv
HEH, [3] = 0.05 M, 48 h. bDetermined by relative yields of isolated
material after chromatography. c1 mmol 3a. dConfiguration of major
4-substituent diastereomer determined by 1D NOE analysis of 8g and
9g, others assigned by analogy. eRatio of 8:4-epi-8:9:4-epi-9

Scheme 2. Epimerization of Tetrahydrofurans 9 to Lactones 8
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This epimerization approach proved to be general for the
conversion of the anti cyclization diastereomer (9) to the
corresponding 2,6-dioxabicyclo[3.3.0]octan-3-one in good
yield. Furthermore, diastereomeric mixtures of 9 could be
converted to a single isomer of 8 using these conditions.
Although electronic substitution of the aromatic ring affected
the rate, the yield did not suffer. Overall, this two-step process
renders this synthesis of 2,6-dioxabicyclo[3.3.0]octan-3-ones
from vinylogous carbonates 3 to be highly diastereoselective.
In conclusion, a new dual Lewis acid/photoredox catalyst

system has been developed for the umpolung reactivity of
ketones. This method has been specifically applied to the
intramolecular addition to vinylogous carbonates to provide
polysubstituted tetrahydrofurans in good yield. Although the
diastereoselectivity of the C-C bond formation was modest, a
strategy to convert the minor anti diastereomer to the bicyclic
lactone product was implemented. Overall, this two-step
procedure provides ready access to 2,6-dioxabicyclo[3.3.0]-
octan-3-ones from a linear precursor where the relative
stereochemistry of the product can be controlled.
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