Vibrational analysis of 1-halo-1,3-pentadiynes $CH_3 - C \equiv C - C \equiv C - X(X = Cl, Br and I)$. Coriolis coefficients of 1-chloro, 1-bromoand of unsubstituted 1,3-pentadiyne

LEIF BENESTAD, ELSE AUGDAHL and ELSE KLOSTER-JENSEN Department of Chemistry, University of Oslo, Oslo 3, Norway

(Received 21 October 1974)

Abstract—The i.r. and Raman spectra of the series CH_3 — $C\equiv=C-Z\equiv C-X$ (X = Cl, Br and I) were examined in solution (4000–50 cm⁻¹) and as solids at low temperature. Infrared vapour spectra were recorded (4000–350 cm⁻¹) and Coriolis coefficients were determined for CH_3 — $C\equiv C$ —C = C - X (X = H, Cl and Br). The syntheses of the compounds are reported.

INTRODUCTION

This paper presents the vibrational analyses of the three 1-halo-1,3-pentadiynes

$$CH_3 - C = C - C = C - X$$

(X = Cl, Br and I). The molecules will hereafter be called (Cl), (Br) and (I), respectively. Vibrational assignments were further made for the parent compound CH_3 — $\text{C}\equiv\text{C}$ — $\text{C}\equiv\text{C}$ —H(H). After completion of the present work, however, results for the latter molecule have been published [1]. Good agreement was found to exist between these two independent studies. We also examined the resolved rotational structure of the perpendicular CH_3 bands and calculated Coriolis constant ζ_i for (H), (Cl) and (Br). In a recent paper we have published force constants, mean amplitudes and ζ_i values as derived from the force field [2]. Furthermore, the syntheses of the CH_3 — $\text{C}\equiv\text{C}$ — $\text{C}\equiv\text{C}$ —Xseries is reported in detail.

Vibrational analyses of the 1-halopropynes

$$CH_3 - C \equiv C - X$$

(X = Cl, Br, I) [3, 4] as well as previous work on monohalodiacetylenes

$$\mathbf{H} - \mathbf{C} = \mathbf{C} - \mathbf{C} = \mathbf{C} - \mathbf{X}$$

(X = Cl, Br, I) [5, 6] were useful in making the assignments.

EXPERIMENTAL

Chemicals

A general procedure was followed as described [7]. The reactions were performed in an atmosphere of nitrogen. MS-pure samples of the products in minor quantities have been obtained in earlier preparations [8]. All m.p.'s are uncorrected.

1,3-Pentadiyne [9] was prepared as follows: Freshly prepared and resublimed butadiyne [10] (6.02 g, 0.12 mole) was dissolved in dry ether (25 ml) and added dropwise to lithium amide (from 0.85 g met. Li) in liquid ammonia (150 ml) under stirring at -40° . After stirring for another 10 min methyl iodide (20 g, 0.14 mole) in ether (15 ml) was added in a dropwise manner and strirring was continued for 10 min. Most of the ammonia was allowed to evaporate through a cellophane membrane overnight, ether (150 ml) was added, followed by a saturated aqueous solution of ammonium chloride under stirring at -50° . The ether phase was removed, and extraction under stirring with ether (50 ml) was repeated four times. The combined ether extracts, dried over sodium sulfate were subjected to fractional distillation at $-45^{\circ}/10$ torr. The product concentrated in the last fraction $(-45^{\circ}-room$ temp.; 15 ml) which after gas liquid chromatography at 65° yielded 2.39 g (31%) 1,3-pentadiyne of purity ca. 97%. A second GLC yielded a highly pure product, m.p. -31.5-30.5°, vapour pressure $27 \cdot 5 \text{ torr}/0^{\circ}$.

Residual solids were sublimed into a vacuum tube, dissolved in ether and gas chromatographed once, yielding 350 mg of MS pure 2,4-hexadiyne [10-12].

1-Chloro-1,3-pentadiyne. 1,3-pentadiyne (500 mg, 7.8 m-mole, 1x GLC) in dry ether (10 ml) was added dropwise to butyl lithium (7.8 m mole) in ether (50 ml) at -30° . A ca. 15% solution of molecular chlorine in Freon-11 (distilled over P_2O_5) was added at -40° until the reaction was no longer basic. Fractional distillation of the reaction mixture at $-45^{\circ}/10$ torr and GLC of the last fraction (8 ml) at 65° (retention time 28 min) gave 455 mg (59.4%) of 1-chloro-1,3-pentadiyne. A second GLC yielded 400 mg and a third GLC at 50° (retention time 51 min) furnished 350 mg of highly pure product, m.p. -9 to -8° .

1-Bromo-1,3-pentadiyne [13–15]. 1,3-Pentadiyne (300 mg 4.7 m-mole) in 10 ml of dry ether was added to phenyl lithium (4.7 m-mole) in dry ether (50 ml) at -50° . A weighed amount of bromine (0.76 g, 4.7 m-mole) was added until neutral reaction (almost quantitatively). Working up as for 1-chloro-1,3-pentadiyne and GLC at 105° (retention time 25 min) yielded 240 mg (35.7%) of 1-bromo-1,3-pentadiyne, which after a second GLC gave 145 mg of product, m.p. $16.5-17.0^{\circ}$ (5.1° [13]).

1-iodo-1,3-pentadiyne [9]. Iodine (2.08 g, 8.2 mmole) was introduced in portions into liquid ammonia (ca. 40 ml) at -50° . 1,3-Pentadiyne (525 mg, 8.2 m-mole) in dry ether (10 ml) was added under stirring during 15 min. Stirring was continued for another 30 min, at which time the reaction mixture turned water clear. Most of the ammonia was evaporated through a cellophane membrane, ether (50 ml) was added, followed by water (50 ml) under vigorous stirring. The ether phase was removed and the aqueous layer was extracted by thorough stirring with ether $(4 \times 30 \text{ ml})$. The dried, combined ether extracts were fractionated as above, and the solid colourless residue was sublimed at $20^{\circ}/10^{-2}$ torr into a vacuum tube cooled in liquid nitrogen. Fraction 1 (1.57 g) contained some ether and was refractionated leaving 0.90 g colourless residue. Fraction 2 (0.64 g) was resublimed over phosphorus pentoxide into vacuum tubes cooled at -80° . After a first fraction of 0.22 g, the second fraction of 0.42 g 1-iodo-1,3-pentadiyne showed m.p. 34·8-35·2° (34-35° [9]), yield ca. 95%.

Preparation of this compound according to [9] from 1.4-di-chloro-2-butyne, 3 equivalents of sodium amide, and further methyliodide and iodine, furnished a product slightly contaminated with 2,4-hexadiyne. Attempts on GLC of 1-iodo-1,3-pentadiyne were unsuccessful.

Instrumental

The i.r. spectra were recorded with a Perkin-Elmer model 225 spectrometer calibrated against standard lines of various gases [16, 17]. Far i.r. spectra were obtained with a Perkin-Elmer/ Hitachi FIS spectrometer. A Cary 81 Raman spectrometer equipped with a Spectra Physics model 125 He-Ne laser was employed for recordings of solutions (standard capillary tubes and the 180° illumination mode). The Raman solid spectra were obtained using a CRL 52 G argon-ion laser, 5145 Å and 90° illumination.

A 10 cm cell with CsI windows and a 1 m cell equipped with KRS-5 windows were used in the recordings of the vapour spectra. Infrared spectra were also obtained from ca. 20% solutions in CCl₄ and CS₂ using KBr cells of thickness 0.1 mm. In the far i.r. ca. 10% pentane solutions were studied in 0.5 mm polyethylene cells. Vapour spectra were not available in this region. Ca. 40% solutions in CCl_4 or C_6H_6 were employed for the Raman recordings. All solutions were prepared by distilling the sample into the precooled solvent on a vacuum line. Discolouration of all the solutions took place at ambient temperature, and spurious bands were observed in the i.r. spectra of (Br) and (I). Therefore the compounds were also examined at low temperatures. For this purpose samples were vacuum transferred to a CsI window (i.r.) or a copper tip (Raman) [18] in a cryostat cooled with liquid nitrogen.

SYMMETRY

The symmetry point group C_{3v} was assumed for these molecules which possess fourteen normal vibrations all allowed in both the i.r. and the Raman spectra. Of these seven will belong to species a_1 , giving rise to parallel bands in the i.r. and polarized bands in the Raman effect. The remaining seven fundamentals will be of species e, appearing as perpendicular bands in the i.r. and depolarized bands in the Raman spectrum.

RESULTS AND DISCUSSION

A microwave investigation of (H) had shown this molecule to be a symmetric top with a value of 0.0679 cm^{-1} for B'', the smaller of the two rotational constants [19]. The following structural parameters were employed to calculate A'' and B''for the 1-halo derivatives: (C-H), 1.097 Å; \angle HCC, 108·23° [20]; (C-C), 1·458 Å, (C=C), 1.207 Å [21]; (=C-C=), 1.375 Å; (C-C), 1.635 Å, (C—Br) 1.793 Å and (C—I), 1.991 Å [5]. The resulting values of B'', 0.025 cm^{-1} (Cl), 0.018 cm^{-1} (Br) and 0.015 cm^{-1} (I) together with the A'' value of 5.29 cm⁻¹ were used to calculate ζ_i and A' for the perpenducular CH_3 vibrations and to estimate the band contours and P-R separations of the parallel bands [22, 23]. The Q branch of the latter should be too weak to be observed, as verified by the experiments. The following P-Rseparations were predicted: 7 cm^{-1} (Cl), 6 cm^{-1} (Br) and 5 cm⁻¹ (I). A resolved rotational structure might be expected for the e-type CH₃ fundamentals

Table 1. Infrared and Raman	n spectral data for	1-chloro-1,3-pentadiyne.
-----------------------------	---------------------	--------------------------

	Infrared		Rar	man		
Gas	Solution (CCl ₄)	Solid	Solution [†]	Solid	Interpret	tation*
	101 s‡		199 57507		$v_{14}(e)$ fund $2v_{14} = 202$	$A \rightarrow E$
~238 m	241 m	249 s	242 s D	247 s	$v_{12}(e)$ fund	m1 + 12
		305 w	296 vw	305 w	$3v_{14} = 303$	$A_1 + A_2 + 2E$
		333 w, sh				
339 m	339 s	343 vs	340 w	342 m	$v_{12}(e)$ fund	
$374 \\ 381 m \parallel$					$v_{11} - v_{14} = 356$	$A_1 + A_2 + E$
425 m	437 w	444 m	435 w, sh	443 w, sh	$v_7(a_1)$ fund	
	457 w	458 w	458 vs D	457 vs 478 w	$v_{11}(e)$ fund	
485 w	500 w	508 m	498 w, sh	503 w	$2v_{18} = 482$	$A_1 + E$
			520 vw			-
$543 \\ 549 m \parallel$	547 w, sh				$v_{11} + v_{14} = 558$	$A_1 + A_2 + E$
$565 \\ 572 m \parallel$	579 s	588 s		589 w	$v_{12} + v_{13} = 580$	$A_1 + A_2 + E$
,	655 vw	663 vw	657 vvw	662 vw	$v_{11} + 2v_{14} = 659$	$A_1 + A_2 + 2E$
690 w	682 m	692 m			$v_7 + v_{13} = 678$	E
			∼690 vw	692 w	$v_{11} + v_{13} = 698$	$A_1 + A_2 + E$
748 w			734 vw			
$\binom{794}{801}$ m	791 m§	795 m	795 vvw	796 vw	$v_{11} + v_{12} = 796$	$A_1 + A_2 + E$
0 50)	809 w, sh	804 w, sh				
859 865) ^s	859 vs	858 vs		862 vw	$\nu_6(a_1)$ fund	
		884 vw			$2\nu_{7} = 874$	A_1
	000	914 vw		910 w, sh	$2v_{11} = 914$	$A_1 + E$
	920 W	922 w	922 vw	926 w	$2\nu_{12} + \nu_{13} = 919$	$A_1 + A_2 + 2E$
1029 w 1	1023 m	1099 -	1099 1	945 VW	$v_{11} + 2v_{13} = 939$	$A_1 + A_2 + 2K$
1020 # _ "	1020 111	1022 s 1102 w bd	1022 w	1020 m 1103 vw	$v_{10}(e)$ rund $v_{10}(e) = 1100$	F?
	1220 w, sh	1220 w, sh		1100 VW	hot band	19
1224 1232 s	1231 vs	1234 vs	1232 w	1238 m	$v_{\delta}(a_1)$ fund	
,	1262 w	1268 w			$v_{10} + v_{10} = 1264$	$A_1 + A_2 + E$
	1292 vw	1301 w			$v_{e} + v_{z} = 1296$	A_1
	1362 m	1363 m	1363 vw, sh	1364 w, sh	$v_{10} + v_{12} = 1362$	$A_{1} + A_{3} + E$
1378 1384	1378 в		1378 s P	1377 s	$v_4(a_1)$ fund	- · - ·
1446́s <u>⊥</u> ∥	1433 s, bd	1431 s	1438 w	1432 m	$v_{g}(e)$ fund	
	1481 vw, sh	1478 vw			$v_{10} + v_{11} = 1480$	$A_1 + A_2 + E$
	1670 vw, bd				$v_5 + v_7 = 1668$	A_1
	1734 w, bd					
	1775 vw				$v_9 + v_{12} = 1772$	$A_1 + A_2 + E$
2049)	1839 VVW				$v_4 + v_{11} = 1835$	Ľ
2049 w	2037 m	2032 w	2038 vw		$2v_{10} = 2046$	$A_1 + E$
2074 2080 w	2077 m	2074 m	2075 vw	2079 w	$v_5 + v_6 = 2090$	A_1
	2128 vw, sh	2117 w		2110 w		

* Combination frequencies and overtones are calc. from i.r. solution data. s, m, w = strong, medium, weak, v = very, bd = broad, sh = shoulder, var = variable, P, D = polarized, depolarized. $\parallel = parallel$ and $\perp = parallel$ perpendicular contours.

 $^{+}$ C₉H₆ solution below 1000 cm⁻¹, CCl₄ solution above 1000 cm⁻¹. $\ddagger n$ -pentane solution.

§ CS₂ solution. $\| v_0$ calculated from K fine structure.

Table 1. (continued)

	Infrared		R	aman		
Gas	Solution (CCl ₄)	Solid	Solution†	Solid	Interpretation*	
~2152 w, sh	2149 m	2148 m	2145 vw	2145 w	hot band or ¹³ C	
2175 s	2170 vs	2168 s	2170 w	2170 m	$r_{3}(a_1)$ fund	
$2238 \\ 2244 w \parallel$	~ 2234 w	2232 w		\sim 2235 m, sh	$v_4 + v_6 = 2237$	A_1
	∼2248 w			2244 m, sh	${{{\left({{{{ { } } _{5} + {{ { } } _{10} = 2254} } ight.} ight.} } } { m{(hot band or {{} ^{13}C})}}}$	E
	2257 w	2255 w	2257 vs P	2257 vs	$v_2(a_1)$ fund	
	2334 vw			2331 w		
	2358 vw	0204				TT.
	2390 VW 9448 xxx ch	2394 VW			$v_4 + v_{10} = 2401$	Ľ
	2460 w		2460 w	2467 s	$2v_{-} = 2462$	A.
2611 vw	2607 w	2611 vw	P100 H	2607 vw	$v_4 - v_8 = 2609$	A_1
	2624 vvw				• • •	•
2656 vw	2665 vw				$v_5 + v_9 = 2664$	E
				2702 w	$v_2 + v_7 = 2694$	A_1
$2746 \\ 2753 w \parallel$	2732 m	2728 vw			$2v_4 = 2756$	A_1
$2855 \\ 2862 m \parallel$	2845 s	2837 w	2847 vw	$2841 \mathrm{m}$	$2 \nu_{9} = 2866$	$A_1 + E$
2002)	$\sim 2874 \text{ vvw}$		2882 vw	2891 vw, sh		
$2931 \\ 2938 $ s	2918 s	2916 m	2917 m P	2914 s	$\nu_1(a_1)$ fund	
2977 s ⊥∥	2963 m	2960 w	2963 w	2962 s	$\nu_{s}(e)$ fund	
	3039 vw, bd					
0104	3094 w, sh	0110			0110	
3124 VW	3112 m 3150 yyr	3113 W			$v_2 + v_6 = 3116$	A
3415 vw	3405 m 3933 vw	34 05 w			$v_8 + v_{11} = 3420$ $v_1 + v_{10} = 3941$	$\frac{A_1}{E} + \frac{A_2}{E} + \frac{E}{E}$

from the calculated ζ_i values [2] and from previous observations in CH_3 — $C \equiv N$ [24] and

$$CH_3 - C \equiv C - X$$

(X = H, Cl, Br and I) [3, 4, 25]. Tables 1-4 contain the proposed assignments and the vibrational spectra are presented in Figs. 1-4.

VIBRATIONAL ASSIGNMENT

 $50-700 \text{ cm}^{-1}$

Five fundamentals were expected in this region, one of species a_1 and four of species e. The former, v_7 was readily assigned as the medium strong polarized Raman band at 357 cm^{-1} in (Br) and 310 cm^{-1} in (I). Force constant calculations based on the initial force field suggested the weak shoulder at 435 cm^{-1} as v_7 in (Cl). Similar calculations carried out for (Br) and (I) added support to this assignment by giving values very close to those observed. A possible alternative for v_7 in (Cl) would be the medium strong vapour band at 378 cm^{-1} showing parallel contour. However, this frequency may also be explained as the difference $v_{11} - v_{14}$, since the gas phase value of v_{14} is likely to be shifted down by 10-20 cm⁻¹ from the solution value at 101 cm⁻¹. The stronger band at 546 cm⁻¹, also having parallel contour, may be interpreted as the sum $v_{11} + v_{14}$. Similar features were observed in the vapour spectrum of (Br), where the weaker low lying band occurred at 387 cm⁻¹. This frequency is too high for v_7 as compared to the observed solution value 357 cm⁻¹. An analogous interpretation of 387 cm⁻¹ as $v_{11} - v_{14}$ and 546 cm⁻¹ as the corresponding sum seems reasonable and supports our assignments in (Cl).

Except for v_{12} in (Cl), the skeletal bending modes v_{11} , v_{12} and v_{13} were recognized as medium or strong depolarized Raman bands throughout the series. The former fundamental was identified as a strong i.r. band at 339 cm⁻¹, whereas the Raman intensity was rather weak. The lowest bending mode v_{14} appeared as strong i.r. solution bands near 100 cm⁻¹ in all three molecules. Apparent from Table 4, all the skeletal deformations are rather insensitive to changes in the mass of the halogen, as previously observed for linear halodiacetylenes [5].

			r		,- <u>r</u>	
Con	Infrared	Salid	Ran	an Guli	т, ,	
Gas	Solution (CCI ₄)	sona	Solution	Solid	Interpret	ation •
	92 s‡				$v_{14}(e)$ fund	
	$223 m \ddagger$	236 m	225 s D	229 s	$\nu_{1,0}(e)$ fund	
332 m	333 s	337 vs	334 m D	335 w	$v_{1,0}(e)$ fund	
	356 vw‡	358 m	357 m P	357 m	$v_{7}(a_{1})$ fund	
~384) "						
~391∫ ^m ∥					$v_{11} - v_{14} = 368$	$A_1 + A_2 + E$
	46 0 m	~461 m	459 vs D	461 vs	$v_{11}(e)$ fund	
543)	FE0 -	F70 -	FF0 -		$(v_{11} + v_{14} = 552)$	$A_1 + A_2 + E$
548) ^s II	999 S	570 S	998 VW	573 VW	$v_{12} + v_{13} = 556$	$A_1 + A_2 + E$
	662 w	656 m			$2\nu_{12} = 666$	$A_1 + E$
	670 vw	673 w	669 w	675 w	$v_{11} + v_{13} = 683$	$A_1 + A_2 + E$
	695 vw§	698 vw	683 w	691 w	$v_7 + v_{12} = 689$	\boldsymbol{E}
780)m	780 s 8	782 s		785 101	a a - 702	4 1 4 I F
785) 1	100 03	102 5		100 VW	$\nu_{11} + \nu_{12} = 795$	$A_1 + A_2 + B$
		798 w	801 vw			
812 310/m	813 s \$	813 s	814 w	814 w	$v_{1}(a_{1})$ fund	
818) "	050	0.20 2	011 (011 W		
	859 vw	850 w				
1000	1001	922 m	924 w	926 w	$2v_{11} = 920$	$A_1 + E$
1029 W 1 4	1021 m	1021 s	1021 w	1025 m	$v_{10}(e)$ fund	
1910	1075 Var 1919 -	1019 -	1010	1015	Impurity	
1210 w	1212 8 1961 war	1213 8	1210 m	1215 m	$\nu_5(a_1)$ fund	
	1201 Var 1955 m	1201 m		10701	Impurity	
1991	1000 m 1977 a	1971	1975 D	1356 w, sh	$v_{10} + v_{12} = 1354$	$A_1 + A_2 + E$
	1077 S	1071 III 1497 s	13/3 8 1	1370 8	$v_4(a_1)$ fund	
1410 5 1 1	1450 S, Du 1480 yw sh	1427 8	1432 W	1429 11	$v_{9}(e)$ iuna	A A T
	1600 vw, su	1404 W			$v_{10} + v_{11} = 1481$	$A_1 + A_2 + E$
	1713 177				$v_4 + v_{13} = 1000$	E T
	1730 w				$v_4 + v_{12} = 1710$	
	1755 vw				$v_4 + v_7 = 1755$	A_1
			1984 vw8	1993 vw	$v_{9} + v_{12} - 1100$	$n_1 + n_2 + \mu$
			2019 vw 8	1000 11	$v_{r} + v_{s} = 2025$	<i>A</i> .
2040)	2007					~1
2047 m	2035 m	$2031 \mathrm{m}$		2024 vw	$2\nu_{10} = 2042$	$A_1 + E$
,				2068 vw		
	2114 vw, sh	2114 vw		2118 vw, sh)		
		2126 w		· · }	hot bands	
	2134 m	2135 s 🔶	2133 vw, sh	J	or ¹³ U	
~2155)	9146 wa	9145 200	9144	9159 -		
2161) ⁵ "	2110 13	2140 VS	2144 W	2102 8	$v_{3}(a_1)$ runa	
	2158 w, sh	2154 w, sh	2154 vw, sh			
	2188 vw	2184 vw	2188 v w §	2187 w	$v_4 + v_6 = 2190$	A_1
				2222 m, sh	$\nu_5 + \nu_{10} = 2233$	E
	2232 w, sh	200.0		2232 m, sh)	hot bands	
2250	2237 w, sh	2238 vw	2239 m, sh	1	or ¹⁸ C	
~2236 ₩	zz44 m	2240 S	2244 vs P	2248 vs	$v_2(a_1)$ fund	
	9491	2393 VW	0417	2380 w	$v_4 + v_{10} = 2398$	E
	2421 W 9455	2424 W	2415 W	Z428 S	$2\nu_{5} = 2424$	A_1
	2400 VW	9504		0500 -	$v_0 + v_{10} = 2454$	$A_1 + A_2 + E$
	2000 VW	2004 VW		2009 W	$v_3 + v_7 = 2502$	A_1
	2600 w	2084 VW		2084 VW	$\nu_2 + \nu_7 = 2600$	A_1
	2739 m	9730	9790	2008 W 9790	$v_3 + v_{11} = 2606$	LU A
	2790 vw sh	2790 vm ah	2120 VW 8	4128 W	$2v_4 = 2754$	A_1
~ 2866 ₩	2843 s	2833 m	2840 w	2836 m	9n - 9866	A 1 F
				2000 111		41 + 4

Table 2. Infrared and Raman spectral data for 1-bromo-1.3-pentadivne

Footnotes: see Table 1.

2916 s

2964 s

3051 m

3695 vw

3348 vw, sh 3362 w

3610 vw, bd

2913 m

2959 m

3051 m

3357 w

2913 s P

2911 vs

2962 m

3053 vw

 $v_1(a_1)$ fund

 $\nu_8(e)$ fund

 $v_2 + v_6 = 3057$ $v_3 + v_5 = 3358$

 $v_1 + v_{11} = 3376$ $v_2 + v_4 = 3621$

2930 2936}s ∥

2975́s ⊥∥

 $A_1 + E$

 $\begin{array}{c} A_1 \\ A_1 \\ A_1 + A_2 + E \end{array}$

 A_1

 A_1

Table 3. Infrared and Raman spectral data for 1-iodo-1,3-pentadiyne.

	Infrared		Ran	nan		
Gas	Solution (CCl_4)	Solid	Solution †	Solid	Interprets	ation*
	~90 s‡			93 w	$v_{14}(e)$ fund	A . A . T
	919 m ⁺	995 m	914 g D	110 W	$v_{12} - v_{13} = 119$	$A_1 + A_2 + E$
	$\frac{212}{302}$ w +	220 m	214 S D	223 VS	$v_{13}(e)$ rund $v_{13}(e) = 304$	4 . L 4 . L R
	002 W+	305 s	310 m P	305 s	$v_{13} + v_{14} = 50 + v_{14}$	$n_1 + n_2 + n_2$
328)					, y(u) / lunu	
332	333 s	334 vs	333 m	333 m	$v_{12}(e)$ fund	
,		398 vw			$v_7 + v_{14} = 400$	E
	∼433 vw		434 vw		$2v_{13} = 428$	$A_1 + E$
	465 m	464 m	465 s D	464 vs	$v_{11}(e)$ fund	
543	545 s	554 m	540 vw	558 w	$v_{12} + v_{13} = 547$	$A_1 + A_2 + E$
548j "	- 698	612		619	$(v_{11} + v_{14} = 555)$	$A_1 + A_2 + E$
	\sim 020 VW	013 VW		640 yw	$2v_7 = 0.20$	
	662 vw	662 vw		010 010	$v_7 = v_{12} = 040$ $2v_{10} = 666$	$A_1 + E$
		670 vw	671 vw	669 w	$\nu_{11} + \nu_{12} = 679$	$A_1 + A_2 + E$
	680 vw§	676 vw		684 w	$v_{10} - v_{12} = 688$	$A_{1} + A_{2} + E$
	700 vw §				$2v_7 + v_{14} = 710$	E
	767 w§	765 w		769 w	$v_7 + v_{11} = 775$	E
	793 w, sh§				$v_{11} + v_{12} = 798$	$A_1 + A_2 + E$
813	809 m \$	808 w	811 w	808 w	$v_{a}(a_{1})$ fund	
818) "	5	001	L			
	- 965	821 VW, S	n		a a a	965
	~000 VW	803 V W			$v_7 + v_{11} + v_{14} = 0$	$A_1 + A_2 + E$
			899 vw		$v_{1} + v_{1} = 899$	E E E
	935 vw	934 w	935 vw	936 w	$2v_{11} = 930$	$\overline{A}_1 + E$
	1021 m	1019 s	1022 m	1024 s	$v_{10}(e)$ fund	- 1
	~1068 var	1069 vw		1071 vw	impurity	
		1099 vw		1111 vw	$v_{10} + v_{14} = 1111$	$A_1 + A_2 + E$
	1198 m	1199 m	1198 m	1200 s	$v_5(a_1)$ fund	
	1230 vw	1239 vw			$\nu_{10} + \nu_{13} = 1235$	$A_1 + A_2 + E$
	1260 var	1261 W	10ኛን «ኩ	1955	impurity	4 . 4 . 177
- 1390	1302 m 1374 g	1302 m 1373 m	1303 VW, Sn 1975 a D	1333 w, sn	$v_{10} + v_{12} \approx 1354$	$A_1 + A_2 + L$
~ 1300	1432 s. bd	1426 vs	1430 w '	1427 m	$v_4(a_1)$ rund $v_2(e)$ fund	
· •••••• T."	1484 w	1480 w	1100 1	1141 14	$v_{10} + v_{11} = 1486$	$A_1 + A_2 + E$
				1586 vw	$v_4 + v_{13} = 1588$	E
		1652 vw		1663 vw	$v_5 + v_{11} = 1663$	\boldsymbol{E}
	1766 vw	1760 vw			$\nu_9 + \nu_{12} = 1765$	$A_1 + A_2 + E$
	1900 vw				$v_9 + v_{11} = 1897$	$A_1 + A_2 + E$
	1958 w	1952 w	1957 w	1957 w	$v_9 + v_7 + v_{13} =$	$A_1 + A_2 + E$
				2002	1900 9007	4
	2032 m	2028 m		2002 VW 2032 VW	$v_5 + v_6 = 2007$ $2v_5 - 2042$	$A_1 + E$
	2085 vw. sh	2020 m 2087 vw		2092 m	2010 - 2012	11 1 12
~ 2155	2116 s	2116 s	2117 s P	2120 s	$v_{2}(a_{1})$ fund	
	2140 w, sh	2133 m	2136 w, sh §	2136 m	$v_2 - v_{14} = 2144$	E
				2180 w, sh	$v_4 + v_6 = 2183$	A_1
		2201 vw		2201 m	$v_3 + v_{14} = 2206$	E
	2227 m, sh				hot band or ¹³ C	
~ 2240	2234 vs	2235 vs	2233 vs P	2233 vs	$v_2(a_1)$ fund	
		2206 VW		2201 W, Sh 9205 w sh		
	2315 yrs			2000 W, SII	$v_{2} + v_{1} = 2394$	E
	2331 vw				$v_{2} + v_{14} = 2324$ $v_{2} + v_{15} = 2330$	\tilde{E}
	2378 vw. sh			2374 w	$v_4 + v_{10} = 2395$	\boldsymbol{E}
	2395 m	2396 m	2396 m P	2396 в	$2 \nu_5 = 2396$	A_1
				2428 m	$v_3 + v_7 = 2426$	A_1
	2446 vw	2443 w		2452 vw	$v_2 + v_{13} = 2448$	E
			2535 vw	2542 w	$\nu_2 + \nu_7 = 2544$	A ₁

Tabl	le 3.	(continued)
------	-------	-------------

	Infrared		Ra	man		
Gas	Solution (CCl_4)	Solid	$Solution \dagger$	Solid	Interpret	ation*
·····	2571 w	2566 w		2566 vw	$\begin{cases} v_2 + v_{12} = 2567 \\ v_4 + v_5 = 2572 \end{cases}$	
			2671 vw	2704 vw. sh	$v_3 + v_{11} = 2699$	E
	2731 w			2729 w	$2\nu_{\star} = 2748$	A_1
~2865	2841 в		2841 w	2832 m	$2\nu_{0} = 2864$	$A_1 + E$
	2915 vs	2908 m	2913 s P	2908 s	$v_1(a_1)$ fund	
~2975 ⊥∥	2960 m	2956 m		2957 в	$\nu_{s}(e)$ fund	
	2996 vw	2995 w		2995 w	$v_1 + v_{14} = 3005$	E
	3025 w 3152 vw	3026 w			$v_2 + v_6 = 3043$	A_1
		3249 vw				
	3312 w	3315 w				
	3410 vw	3413 vw				

Footnotes: see Table 1.

Table 4. Observed fundamental vibrations for CH_3 -C=C-C=C-X (X=H, Cl, Br, I)*

Spe	ecies	н	Spe	cies	CI	Br	I†	Approx. motion
$\overline{a_1}$	v,	3333						≡C-H stretch
•	v2	2935	a_1	<i>v</i> ₁	2935	2933	2915	CH ₃ sym. stretch
	v_{a}	2239	_	v 2	2257†	2256	2234	C=C sym. stretch
	V.	2071		v_3	2175	2158	2116	C=C asym. stretch
	νs	1385		v	1381	1381	1374	CH, sym. def.
	ve	1150		v	1228	1210	1198	C-C asym. stretch
	v 7	696		Ve	862	815	809	C-C sym. stretch
	•			ν_7	437†	356†	310	C-X stretch
e	VR	2977	e	va	2977	2975	2960	CH ₂ asym. stretch
	v.	1446		v	1446	1446	1432	CH, asym. def.
	¥10	1029		¥10	1029	1029	1021	CH _a rock
	v_{11}	614						C=C-H bend
	v12	484		V11	457	460	465	asym. skeletal bend
	v13	324^{+}		ν_{12}	339	332	333	sym. skeletal bend
				v 18	241^{+}	223†	212	$C \equiv C - X$ bend
	v_{14}	150†		v 14	101†	92†	90	skeletal bend

* Frequencies from vapour phase unless otherwise indicated.

† Solution frequencies.

Fig. 1. Infrared spectrum of CH₃-C=C-C-Cl. (a) CCl₄, (b) CS₂ and (c) pentane solutions.

Fig. 2. Infrared spectrum of CH_3 —C=C—C-Br. (a) CCl_4 , (b) CS_2 and (c) pentane solutions. Bands marked with * result from impurities.

Fig. 3. Infrared spectrum of CH_3 —C=C—C=C. (a) CCl_4 , (b) CS_2 and (c) pentane solutions. Bands marked with * result from impurities.

Fig. 4. Raman spectrum of CH₃–C=C–C=Br. CCl₄ solution: 4000–1000 cm⁻¹, C₆H₆ solution: 1000–50 cm⁻¹.

$700-1500 \text{ cm}^{-1}$

The two C-C stretching vibrations, the CH₃ rocking mode and the two CH₃ deformations were expected in this region. Of these fundamentals the two former occurred as medium or strong i.r. bands in the regions 800-860 and 1200-1240 cm⁻¹. Since both vibrations belong to the same species further assignment of the two bands to the symmetric and antisymmetric mode, respectively, was based on the normal coordinates. These were calculated using a published computer program [26] in a modified form [27]. A constant position for the CH₃ rocking motion in all the three molecules was indicated by the force constant calculations. Identification of this mode near 1030 cm^{-1} was aided by the resolved fine structure observed for (H) and (Cl).

$1900-2300 \text{ cm}^{-1}$

The two C==C stretches gave rise to a very strong Raman band (2230-2260 cm⁻¹) and a weaker band (2110-2180 cm⁻¹), suggesting the former frequency as the symmetric mode. In (Cl) and (Br) the lower frequency was associated with the stronger i.r. band, as expected for the antisymmetric mode, whereas the intensities were reversed in (I). The assignment indicated by the Raman intensities was supported by the calculated normal coordinates. Also the linear halodiacetylenes

$$\mathbf{H} - \mathbf{C} = \mathbf{C} - \mathbf{C} = \mathbf{C} - \mathbf{X}$$

(X = Cl, Br and I) have been found to have the symmetric mode at the higher frequency [6].

2300-3000 cm⁻¹

Three medium or strong i.r. bands occurred near 2860, 2930 and 2970 cm⁻¹ in the vapour. The latter showed resolved rotational structure indicative of the degenerate CH_3 stretching mode, whereas the former was ascribed to an overtone $2\nu_9$ in weak Fermi resonance with the symmetric mode at 2930 cm⁻¹ [28].

ROTATIONAL STRUCTURE OF PERPENDICULAR BANDS

The resolved rotational structure of the *e*-type CH_3 stretching and bending vibrations, v_8 and v_9 , were examined in (H), (Cl), (Br) and (I). The weaker bands associated with v_{10} , the CH_3 rocking motion, could not be studied in the less volatile compounds (Br) and (I) at the maximum path length of 1 m. The Q branches of the sub-bands

that arise from the $\Delta K = \pm 1$, $\Delta J = 0$ transitions are given by the expression [25]:

$$\begin{aligned} v_0^{\mathrm{sub}} &= v_0 + [A'(1-\zeta_i)^2 - B'] \\ &\pm 2[A'(1-\zeta_i) - B']K \\ &+ [(A'-A'') - (B'-B'')K^2] \end{aligned}$$

To determine ζ_i and v_0 from this equation we used the A'' and B'' values mentioned in a previous section. With the usual assumption that B' = B''it follows that (A' - A'') - (B' - B'') = A' - A''. By the method of least squares determination the observed frequencies have been fitted to equations of the type:

$$v^{Q} = a \pm bK + cK^{2}.$$

Due to the low intensities and inaccurate readings, (I) was omitted in these calculations. The derived values for v_0 , ζ_i and A' - A'' are listed in Table 8, which also contains the corresponding data for related molecules. The uncertainty in our reported frequencies is close to ± 0.1 cm⁻¹ for narrow bands and the resolution was estimated to ~ 0.8 , ~ 0.6 and ~ 0.4 cm⁻¹ respectively, in the regions near 3000, 1400 and 1000 cm⁻¹.

 v_8 arises from the antisymmetric CH₃ stretching vibration. As shown for (H) in Fig. 5 it is overlaid on the low frequency side by the parallel CH₃ band. The intensity distribution among the sub-bands permits a choice of either ~3010 or ~2980 cm⁻¹ for the K = 0 transition. That the latter is probably the correct assignment is shown by the position of the solution peak at ~2960 cm⁻¹. The observed Q branches for all the four molecules are listed in Table 5. A least squares fit gave the equations:

(H):
$$v^Q = 2981.9 \pm 9.56K - 0.03K^2$$

(standard error 0.5 cm^{-1})
(Cl): $v^Q = 2981.2 \pm 9.72K - 0.02K^2$

(standard error 0.3 cm^{-1})

(Br):
$$v^{Q} = 2979.6 \pm 9.82K - 0.00K^{2}$$

(standard error 0.5 cm⁻¹)

 v_9 , the antisymmetric CH₃ deformation is shown for (H) in Fig. 6 and the observed Q branches for all four molecules are given in Table 6. Since the solution value occurs at ~1435 cm⁻¹, the line at 1455 cm⁻¹ was chosen for R_{Q_0} , although it is slightly weaker than that at ~1414 cm⁻¹. This assignment is consistent with the expected direction of the phase shift.

The position and intensity distribution of the Q branches are far less regular than those in ν_8 .

Fig. 5. $v_2(a_1)$ and $v_8(e)$ bands of CH_3 —C=C-C=C-H.

V la		/11	 Βε	and positio	ons in em^{-1} .			(T) +
Po		Dha (H) Obs. cala	Oba	Obs. colo	Oha (Br) Oba aala	(1)
	ng _K		Obscale.				Obscale.	
9		~2895.7†						
8		2904 ·2	+0.1					
7		~13·4†						
6		•				$2920 \cdot 8$	+0.1	
5								
4								
3		$2952 \cdot 1$	-0.7	2951.5	-0.3	2950.3	+0.1	~ 2950.1
2		62.0	-0.5	$62 \cdot 1$	+0.4	59.7	-0.3	~ 60.3
1		$72 \cdot 1$	+0.0	71.6	+0.1	69 ·4	-0.4	~71.8
	0	$82 \cdot 2$	+0.5	81.2	-0.0	79.4	-0.5	\sim 78.9
	1	91.2	-0.0	90.8	-0.1	90·1	+0.6	~ 89.4
	2	3000.7	-0.0	3000.6	+ 0.1	99.9	+0.6	~99∙0
	3	10.3	+0.1	9.7	-0.4	3008.5	-0.6	\sim 3009 \cdot 0
	4	19.7	+0.1	19.5	-0.5	19·3	+0.4	
	5	$29 \cdot 2$	+0.1	29.3	+0.1	28.3	-0.2	
	6	38.7	+0.3	38.8	+0.2	38.7	+0.1	
	7	48.2	+0.4	48·3	+0.3			
	8	57.0	-0.1	57.5	+0.1			
	9	65.0	-0.2	66.4	-0.3			
	10	~75∙0†						
	11	~84·2†						
	12	$\sim 92.8^{+}$						
	13	\sim 3101·1†						

Table 5. v_8 of $CH_3 - C = C - X$ (X = H, Cl, Br, I)

* No polynomial is fitted to the sub-band frequencies. † Sub-bands omitted in the calculation.

Fig. 6. $v_{\mathfrak{g}}$ (e) band of CH_3 —C=C-C=C-H.

As previously shown in $CH_3 - C \equiv N$ [24] and CH3-C=C-H [25, 29] these anomalies probably arise from the presence of overlapping and perturbing bands. The least perturbed Q branches are fairly well fitted by the expressions:

(H):
$$\nu^{Q} = 1455 \cdot 5 \pm 14 \cdot 14K$$

(standard error 0.6 cm^{-1})
(Cl): $\nu^{Q} = 1455 \cdot 3 \pm 14 \cdot 02K$
(standard error 0.2 cm^{-1})

(Br): $v^Q = 1455 \cdot 4 \pm 14 \cdot 19K$

(standard error 0.6 cm^{-1})

The square terms in K were omitted because of the large uncertainties.

 v_{10} is associated with the CH₃ rocking motion. The band in (H) is shown in Fig. 7. and Table 7. lists the observed Q branches in (H) and in (Cl). The spacing is rather regular and the assignment of R_{Q_n} to the strongest line is supported by the solution value. An asymmetry or a shoulder appears on the low frequency side of the Qbranches, and in (H) the P_{Q_2} and P_{Q_3} bands are resolved into doublets. This sequence of weaker bands may arise from a hot transition as previously observed in CH_3 —C=C-H [32]. The Q branches of the main series are expressed by the following equations:

(H):
$$\nu^{Q} = 1030.5 \pm 6.30K + 0.02K^{2}$$

(standard error 0.3 cm^{-1})
(Cl): $\nu^{Q} = 1030.7 \pm 6.19K + 0.02K^{2}$

(standard error 0.3 cm^{-1})

			Ba	and position	ns in cm ⁻¹ .		.	
P_{Q_R}	ues in R _Q _E	(H) Obs.	Obscalc.	Obs.	Obscale.	Obs.	Br) Obscalc.	(1)‡ Obs.
13		~1271.9						
12		~ 86.2						
11		1301-0						
10		15.5		1315-10				
9		30.43		29.30				
8		46.15		43.94				
7		55.12	-1.82	58.85				
6		70.68	-0.31	75.37				
5		85.25	+0.22	85.30	+0.16			
4		1400.13	+1.05	99-00	-0.17	1398-6	-0.1	~1398∙4
3		14.15	+1.02	1413-20	+0.01	1413-1	+0.2	~1412.6
2		28.03	+0.86	27.25	+0.04	27.4	+0.3	~ 27.0
1		41.85	+0.63	41.00	-0.23	41 ·0	-0.3	~40.7
	0	55.37	+0.11	55.44	+0.19	54.6	0.9	~54.4
	1	68.70	-0.61	67.37		70.2	+0.6	~69.8
	2	83.18	-0.18	84.75		84·1	+0.3	~83.7
	3	96.43	- 0.97	98.82		97.8	0.2	
	4	1511.48		1514.02		1512·3	+0.1	
	5	26.00		31.65				
	6	42.43		46.05				

Table 6. v_9 of CH₃—C=C—C=C—X (X = H, Cl, Br, I)

* Sub-bands from R_{Q_3} to P_{Q_7} are used in the calculation. † Sub-bands from R_{Q_0} to P_{Q_5} are used in the calculation.

‡ No polynomial is fitted to the sub-band frequencies.

Fig. 7. ν_{10} (e) band of CH₃-C=C-C=C-H.

K-val	ies in	em ^{−1} .	(Cl)		
PQK	RQ _K	Obs.	Obscale.	Obs.	Obscalc.
7		988 ·5	+0.1		
6		94·4	+0.1		
5		$1000 \cdot 2$	-0.1		
4		5.8	-0.5	1005.9	+0.5
3		12.7	+0.4	11.3	-0.2
2		18.7	+0.3	18.3	+0.3
1		$24 \cdot 6$	+0.1	$24 \cdot 1$	-0.1
	0	30.9	+0.5	30.7	+0.5
	1	36.4	-0.2	36.9	+0.1
	2	43.0	-0.5	43.7	+0.5
	3	49.4	0.1	49.2	-0.5
	4	55.9	+ 0.1	56.0	-0.1
	5	$62 \cdot 4$	+0.2	62.6	-0.1
	6	68.4	0.2	69 ·1	-0.1
	7	75.2	+0.1	$1076 \cdot 1$	+0.5
	8	81.7	+0.1		
	9	88.5	+0.3		
	10	1094.4	-0.4		

Table 7. ν_{10} of CH_3 —C=C—C=C—X (X = H, Cl)

The ζ_i values for the remaining *e*-type bands may be estimated from the sum rule [30]:

$$\sum_{i} \zeta_{i} = (\text{No. of axial atoms}) - 2 + \frac{B''}{2A''}$$

Assuming a value of 0.40 for ζ_{10} in (Br) the sum $\zeta_{11} + \zeta_{12} + \zeta_{13} + \zeta_{14} = 3.86$ in (H), (Cl) and (Br),

which places each of the individual ζ_i values between 0.86 and 1. These high values imply a small spacing between the Q branches, in accordance with our observations of broad absorption bands with no fine structure for these fundamentals. Fairly good agreement is found for the ζ_i values obtained in the present study and those derived from the force field [2].

Table 8 shows the great similarity in the v_0 and ζ_i values for the respective CH₃ vibrations in the series (H), (Cl), (Br) and (I). The data indicate that the small variations which have been observed in the CH₃—C=C-X series have vanished in the 1,3-pentadiynes due to the larger separation of the X substituent from the CH₃ group.

THERMODYNAMIC FUNCTIONS

The thermodynamic functions were calculated from vapour phase data and from rotational constants given in the previous section. These calculations which include 1,3-pentadiyne, were made for atmospheric pressure in the rigid rotor, harmonic oscillator approximation [31]. Gas values for v_{14} , the lowest bending mode were obtained from difference bands. Gas frequencies which escaped observation, mainly in (I), were estimated from the corresponding phase shifts in the more volatile members of the series. The results are listed in Table 9.

Table 8. ν_0 , ζ_i and $(A'-A'')$ values for CH_3 -	$-C \equiv C - C \equiv C - X (X = \mathbf{H},$	Cl, Br, I) and related molecules*
---	--	-----------------------------------

	Asym. methyl stretch			Asym, methyl bend			Methyl rock		
Sample	vo	ζί	(A' - A'')	vo	ζ_i	(A' - A'')	ν_0	ζi	(A' - A'')
CH, CCCC·H	2977-2	0.08	-0.05	1445.8	-0.34		1028.9	0.40	+0.02
CH ³ ·CCCC·Cl	2976.7	0.08	-0.05	1445.8	-0.34		1028.7	0.40	+0.05
CH ₃ ·CCCC·Br	$2975 \cdot 1$	0.07	0.00	1445.9	-0.35			_	
CH, CCCC·I	~ 2975			∼1445					
$CH_{3} \cdot CC \cdot H [25, 29]$	2980.8	0.06	-0.021	1450.88	-0.311	-0.053	1036.03	0.403	+0.023
$CH_3 \cdot CC \cdot D$ [32]	2980-1	0.075	-0.028	1451.8	-0.35	-0.023	1051.73	0.40	+0.021
CH, CC CI [3]	$2979 \cdot 9$	0.042	-0.046	1453.78	-0.357	-0.028	$1034 \cdot 5$	0.40	+0.002
CH, CC Br [4]	$2978 \cdot 8$	0.051	-0.044	1451.6	-0.35	-0.014	1034.0	0.393	-0.022
$CH_{4} CC I [4]$	2977.5	0.072	-0.050	1450.4	-0.336	-0.024	1032.7	0.383	_
CH ₃ ·CC·CN [33]	$2986 \cdot 5$	0.047	-0.032	1445.33	-0.320	-0.008	1029.76	0.408	+0.026

* The approximation B' = B'' is assumed.

cm⁻¹

	нн Н						$CH_{-}C = C - C = C - C$				
$T(^{\circ}K)$	$-(G^\circ - H^\circ)/T$	s°	$(H^\circ - H_0^\circ)/T$	C_{p}°	$T(^{\circ}K)$	$-(G^\circ - H^\circ)/T$	S°	$(H^{\circ} - H_{0}^{\circ})/T$	C_{p}°		
100	43.28	52.69	9.40	11.90	100	47.73	58 · 4 1	10.68	14.22		
200	50.59	$62 \cdot 60$	12.01	17.26	200	56.21	70.33	14.11	20.39		
273.16	54.62	68.50	13.88	20.66	$273 \cdot 16$	60·94	77.16	16.23	23.51		
298 ·16	55.86	70.36	14.50	21.70	298.16	62.38	79 ·26	16.88	24.44		
300	55.95	70.49	14.54	21.78	300	62.49	79.41	16.92	24.51		
400	60.45	77.27	16.82	25.45	400	67.69	86-93	19.25	27.85		
500	64-43	$83 \cdot 29$	18.86	28.49	500	72.20	93·46	21.26	30.67		
600	68.03	88.72	20.69	31.04	600	76.24	99.27	23.03	33 ·08		
CHC=C-Br						CH_C=C-C=C-I					
$T(^{\circ}K)$	$-(G^\circ - H^\circ)/T$	S°	$(H^\circ - H_0^\circ)/T$	C_{p}°	$T(^{\circ}\mathbf{K})$	$-(G^{\circ}-H^{\circ})/T$	S°	$(H^\circ - H_0^\circ)/T$	C_p°		
100	49.59	60.47	10.88	14.64	100	50.56	61.60	11.04	14.94		
200	58.26	72.69	14.43	20.80	200	59.36	74.01	14.65	21.01		
$273 \cdot 16$	63.08	79.64	16.56	23.84	273.16	64.25	81.02	16.76	23.98		
298.16	64.56	81.77	17.21	24.75	298.16	65.75	83.16	17.41	24.88		
300	64.67	81.92	17.26	24.82	300	65.86	83.31	17.45	24.94		
400	69.96	89.52	19.57	28.08	400	71.20	90.94	19.74	28.17		
500	74.54	96 .09	21.55	30.86	500	75.82	97.53	21.71	30.93		
600	78.63	101.94	23.31	33-23	600	79.94	103.38	23.45	33-29		

Table 9. Thermodynamic functions for $CH_3 - C \equiv C - X$ (X = H, Cl, Br and I). Heat content H° , free energy G° , entropy S° and heat capacity C_p° . The units are caldeg⁻¹ mole^{-1*}

* Values employed for v_{14} : (H) 139, (Cl) 83, (Br) 79 and (I) 76 cm⁻¹.

Acknowledgement—We are indebted to F. M. NICOLAI-SEN, Chemical Laboratory V, H. C. Ørsted Institute, Copenhagen for his help in recording the far i.r. spectra. The skilful technical assistance of E. R. IVERSEN and the financial support from Nansenfondet (E. K. -J) are gratefully acknowledged.

REFERENCES

- J. LAMOTTE, J. C. LAVALLEY and R. ROMANET, J. Chim. Phys. 70, 1077 (1973).
- [2] A. ROGSTAD, L. BENESTAD and S. J. CYVIN, J. Mol. Structure In press.
- [3] D. W. DAVIDSON and H. J. BERNSTEIN, Can. J. Chem. 33, 1226 (1955) and references cited.
- [4] R. A. NYQUIST, Spectrochim. Acta. 21, 1245 (1965).
- [5] P. KLABOE, E. KLOSTER-JENSEN and S. J. CYVIN, Spectrochim Acta 23A, 2733 (1967).
- [6] B. MINASSO and G. ZERBI, J. Mol. Structure 7, 59 (1971).
- [7] E. KLOSTER-JENSEN, Tetrahedron 27, 33 (1971).
- [8] E. HEILBRONNER, V. HORNUNG, J. P. MAIER and E. KLOSTER-JENSEN, J. Amer. Chem. Soc. 96, 4252 (1974).
- [9] J. B. ARMITAGE, E. R. H. JONES and M. C. WHITING, J. Chem. Soc. 1993 (1952).
- [10] J. B. ARMITAGE, E. R. H. JONES and M. C. WHITING, J. Chem. Soc. 44 (1951).
- [11] H. H. SCHLUBACH and V. WOLF, Ann. 568, 141 (1950).
- [12] C. H. Prévost, Compt. rend. 182, 854 (1926).
- [13] W. CHODKIEWICZ, Ann. Chim. (Paris), 2, 819 (1957).
- [14] F. BOHLMANN and P. HERBST, Chem. Ber. 91, 1631 (1958).

- [15] E. R. H. JONES, G. LOWE and P. V. R. SHANNON J. Chem. Soc. C 139 (1966).
- [16] E. K. PLYLER, A. DANTI, L. R. BLAINE and E. D. TIDWELL, J. Res. Natl. Bur. Stand. 64, no. 1 (1960).
- [17] Tables of Wavenumbers for the Calibration of Infrared Spectrometers, I.U.P.A.C. Report, Butterworth (1961).
- [18] J. W. LEVIN, Spectrochim. Acta, 25A, 1157 (1969).
- [19] G. A. HEATH, L. F. THOMAS, E. J. SHEBBARD and J. SHERIDAN, Disc. Faraday Soc. 19, 38 (1955).
- [20] R. TRAMBARULO and W. GORDY, J. Chem. Phys. 18, 1613 (1950).
- [21] L. F. THOMAS, E. I. SHERRARD and J. SHERIDAN, Trans. Faraday Soc. 51, 619 (1955).
- [22] S. L. GERHARD and D. M. DENNISON, Phys. Rev. 43, 197 (1933).
- [23] W. A. SETH-PAUL and G. DJIKSTRA, Spectrochim. Acta 23A, 2861 (1967).
- [24] I. NAKAGAVA and T. SHIMANOUCHI, Spectrochim. Acta 18, 513 (1962).
- [25] R. K. THOMAS and H. W. THOMPSON, Spectrochim. Acta 24A, 1337 (1968).
- [26] W. D. GWINN, J. Chem. Phys. 55, 477 (1971).
- [27] A. BJØRSETH and R. STØLEVIK, unpublished work.
- [28] J. C. LAVALLEY and N. SHEPPARD, Spectrochim. Acta 28A, 2091 (1972).
- [29] J. L. DUNCAN, I. J. WRIGHT and D. ELLIS, J. Mol. Spectry. 37, 394 (1971).
- [30] D. R. J. BOYD and H. C. LONGUET-HIGGINS, Proc. Roy. Soc. (London), A213, 55 (1952).
- [31] G. HERZBERG, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, Princeton, (1945).
- [32] R. K. THOMAS and H. W. THOMPSON, Spectrochim. Acta 24, 1353 (1967).
- [33] R. TUBINO, G. DELLEPIANE and G. ZERBI, J. Chem. Phys. 50, 621 (1969).