J. Chem. Soc. (B), 1969

Molecular Polarisability. The Conformations of 1-Acetyl- and 1,5-Diacetyl-naphthalenes and -anthracenes

By P. H. Gore, J. A. Hoskins, and C. K. Thadani, Brunel University, Acton, London, W.3

R. J. W. Le Fèvre, * L. Radom, and G. L. D. Ritchie, University of Sydney, New South Wales, Australia

Dipole moments and molar Kerr constants ($\times 10^{12}$) at 25° are reported for the following as solutes in carbon tetrachloride: 1-chloroanthracene (1·43 D, +229), 1-cyanoanthracene (4·14 D, +870), 1-acetylnaphthalene (2·89 D, +203), 1-acetylanthracene (2·67 D, +243), 1,5-diacetylnaphthalene (2·13 D, -379), and 1,5-diacetylanthracene (2·13 D, -500). For 1-acetylnaphthalene and 1-acetylanthracene, the experimental results are consistent with effective conformational angles of 46 and 42°, respectively, between the C-CO-C plane and the plane of the aromatic ring. The two diacetyl compounds have been considered as mixtures of *cis*- and *trans*-conformations in which the C-CO-C planes are inclined at 45° to the aromatic plane.

INFORMATION concerning the preferred molecular conformations of 1-acetylnaphthalene, 1-acetylanthracene, 1,5-diacetylnaphthalene, and 1,5-diacetylanthracene has been obtained through measurements of the dipole moments and molar Kerr constants of these compounds as solutes in carbon tetrachloride at 25°. In order to determine the polarisabilities of the 1-anthryl group we have also examined 1-chloroanthracene and 1-cyanoanthracene. Observations and results are recorded and discussed below.

EXPERIMENTAL

Solutes.—1-Acetylnaphthalene, as obtained by the best literature method,¹ contained 8% of the 2-isomer (g.1.c.). It was purified by conversion to the picrate, regeneration on a column of alumina, and distillation (b.p. $ca. 115^{\circ}/0.2$

mm.). 1,5-Diacetylnaphthalene, m.p. 133°, was obtained by the prolonged action of an excess of acetyl chloride and aluminium chloride on naphthalene in boiling carbon disulphide.² 1-Acetylanthracene, m.p. 110.5-111°, and 1,5-diacetylanthracene, m.p. 223.5-224°, were prepared and purified as described earlier.³ 1-Chloroanthracene⁴ was chromatographed on alumina from benzene solution. the eluate filtered through charcoal, the solvent evaporated, and the residue purified by crystallisation from alcohol, and glacial acetic acid; m.p. 81.5° (Found: C, 78.75; H, 3.1; Cl, 16.9. Calc. for C₁₄H₉Cl: C, 79.1; H, 4.25; Cl, 16.75%). 1-Cyanoanthracene⁴ was chromatographed on a long column of alumina, the final fraction being pure, m.p. 141.5-142° (the m.p. is particularly sensitive to small amounts of impurities). All compounds were chromatographically pure (g.l.c. or t.l.c.).

P. H. Gore and C. K. Thadani, J. Chem. Soc. (C), 1966, 1729.
P. H. Gore, J. Chem. Soc., 1959, 1616.

¹ G. Baddeley, J. Chem. Soc., 1949, S99.

² P. H. Gore and C. K. Thadani, unpublished.

Solvents .-- Carbon tetrachloride was fractionated and dried (CaCl₂); benzene was fractionally crystallised, distilled, and dried over sodium. The following data apply at 25° :

	ε1	dı	$(n_1)_{\mathbf{D}}$	$10'B_1$
Carbon tetrachloride Benzene		1·58454 0·87378	$1.4575 \\ 1.4973$	$0.070 \\ 0.410$

Apparatus.—Dielectric constants were determined with apparatus as in ref. 5; associated procedures to give polaris-

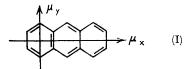
TADIE 1

			TAB	sle l				
Incren	nental	dielectri	ic con	stant	s, dens	ities, 1	efract	ive
		and Ker						
		oanthra						
10 ⁶ w2	1833	2656	3	668	4888	60	57]	4,872
$10^4\Delta \hat{\epsilon}$	53	81		116	145	19	92	448
10⁵∆d	70	107		155	199		46	
$10^4\Delta n$	7	10		14	18	:	23	
$10^{6}w_{2}$	1771	2801	3	439	4431	50	92]	4,872
$10^{11} \tilde{\Delta B}$	185	282	:	347	445	5	12	1497
w	hence X	$\Sigma \Delta \epsilon / \Sigma w_2$	= 3.0	5: ΣΔ	$d/\Sigma w$	= -0	·407;	
	$\Sigma \Delta n$	$\Sigma w_2 = 0$)•377;	$\Sigma \Delta n^s$	$1/\Sigma w_2 =$	= 1·099	;	
		1072	$\Delta B/\Sigma$	$w_2 =$	10.09			
	L-Cvar	loanthra	cene i	n carl	on teti	achlor	ide	
10 ⁶ w2	960	1482		506	1862	22		2785
$10^{4}\Delta\epsilon$	172	262		268	325		04	482
$-10^{5}\Delta d$	58	84		97	109		24	153
$10^{4}\Delta n$	5	7		7	9		10	13
$10^{11}\Delta B$	387	602	:	605	751	9	31	1136
w	hence S	$\Delta \epsilon / \Sigma w_2$	- 17.	58·Σ	$\Lambda d \Sigma_{10}$	= -()·574 ·	
W .	$\Sigma \Delta n$	$\Sigma w_2 = 0$	0.469	$\Sigma \Lambda n^{2}$	$2/\Sigma w_{o} =$	= 1.360):	
		107	$\Sigma \Delta B/\Sigma$	$\Sigma w_2 =$	40.5		,	
		lnaphth						
	I-ACett	rinaphth	alene					
1.05								10
$10^{5}w_{2}$		3	604	45	4	814	87	-
${10^5w_2\over 10^{11}\Delta}$		3	304 347	45 51	4 7	814 925		-
$10^{5}w_{2}$ $10^{11}\Delta$		3	304 347	45 51	4 7	814 925	87	-
$10^{5}w_{2}$ $10^{11}\Delta$	в	3	804 847 107Σ/	$45 \\ 51 \\ \Delta B / \Sigma u$	$\frac{4}{7}$ $v_2 = 11$	814 925 ·4	87 100	-
10 ¹¹ Δ	в	3 3 whence ylanthra	804 847 107Σ/ cene i	$45 \\ 51 \\ \Delta B / \Sigma u$	$\frac{4}{7}$ $v_2 = 11$	814 925 ·4	87 100	-
$\frac{10^{5}w_{2}}{10^{11}\Delta}$ $\frac{10^{6}w_{2}}{10^{4}\Delta\varepsilon}$	B	3 3 whence ylanthra	804 847 107Σ/ cene i	$45 \\ 51 \\ \Delta B / \Sigma u$	$\begin{array}{l} 4\\7\\v_2 = 11\\ \text{oon tetr} \end{array}$	814 925 •4 rachlor	87 100 ide)1
10 ¹¹ Δ 10 ⁶ w ₂	B 1-Acet 2682	3 3 whence ylanthra 3521 4 264 187	804 847 10 ⁷ Σ <i>i</i> ccene i 8024 300 219	$45 \\ 51 \\ \Delta B / \Sigma u \\ 1n \ carl \\ 4382 \\ 330 \\ 237 \\ 237 \\ 351 \\ 237 \\ 351 \\$	$ 4 7 $ $ v_2 = 11 $ $ v_2 = 11 $ $ 4851 $ $ 356 $ $ 260 $	814 925 •4 rachlor 5093 378 268	87 100 ide 5473 408 298	8329 625 441
$10^{11}\Delta$ $10^{4}\omega_{2}$ $10^{4}\Delta\epsilon$ $-10^{5}\Delta d$ $10^{4}\Delta n$	B 1-Acet 2682 207 147 10	3 whence ylanthra 3521 4 264 187 13	804 47 10 ⁷ Σ acene i 2024 300 219 15	$\begin{array}{r} 45\\ 51\\ \Delta B/\Sigma u\\ \text{in carl}\\ 4382\\ 330\\ 237\\ 17\end{array}$	$\begin{array}{l} 4 \\ 7 \\ v_2 = 11 \\ \text{pon tetr} \\ 4851 \\ 356 \\ 260 \\ 20 \end{array}$	814 925 •4 rachlor 5093 378 268 20	87 100 ide 5473 408 298 23	8329 625 441 34
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\varepsilon$ $-10^{5}\Delta d$	B 1-Acet 2682 207 147	3 3 whence ylanthra 3521 4 264 187	804 847 10 ⁷ Σ <i>i</i> ccene i 8024 300 219	$45 \\ 51 \\ \Delta B / \Sigma u \\ 1n \ carl \\ 4382 \\ 330 \\ 237 \\ 237 \\ 351 \\ 237 \\ 351 \\$	$ 4 7 $ $ v_2 = 11 $ $ v_2 = 11 $ $ 4851 $ $ 356 $ $ 260 $	814 925 •4 rachlor 5093 378 268	87 100 ide 5473 408 298	8329 625 441
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\varepsilon$ $-10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$	B 1-Acet 2682 207 147 10 278 whence	3 whence ylanthra 3521 4 264 187 13 360 $\Sigma \Delta \epsilon / \Sigma w_{o}$	$ \begin{array}{r} 304 \\ 447 \\ 4 10^7 \Sigma_{4} \\ ccene i \\ 024 \\ 300 \\ 219 \\ 15 \\ 401 \\ = 7.4 \end{array} $	$\begin{array}{c} 45\\ 51\\ \Delta B/\Sigma u\\ \text{in carl}\\ 4382\\ 330\\ 237\\ 17\\ 465\\ 48; \Sigma \mu\end{array}$	$\begin{array}{l} 4\\7\\ v_2 = 11\\ 0 \text{ on tet}\\4851\\356\\260\\20\\494\\\Delta d/\Sigma w_n\end{array}$	8149254rachlor509337826820545= -0	87 100 ide 5473 408 298 23 571 •388 :	8329 625 441 34
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\varepsilon$ $-10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$	B 1-Acet 2682 207 147 10 278 whence	3 whence ylanthra 3521 4 264 187 13 360 $\Sigma \Delta \varepsilon / \Sigma w_2 = 0$	$\begin{array}{l} 304\\ 347\\ \pm 10^7 \Sigma_{\rm c}\\ {\rm ccene i}\\ 300\\ 219\\ 15\\ 401\\ = 7\cdot 4\\ 0\cdot 396; \end{array}$	45 51 $\Delta B/\Sigma u$ in carl 4382 330 237 17 465 48; $\Sigma \Delta m^3$	$\begin{array}{l} 4\\7\\ y_2 == 11\\ \text{ bon tetr}\\4851\\ 356\\ 260\\ 20\\ 494\\ \Delta d/\Sigma w_2 =\\ \frac{3}{2}/\Sigma w_2 = \end{array}$	8149254rachlor509337826820545= -0	87 100 ide 5473 408 298 23 571 •388 :	8329 625 441 34
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\varepsilon$ $-10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$	B 1-Acet 2682 207 147 10 278 whence	3 whence ylanthra 3521 4 264 187 13 360 $\Sigma \Delta \varepsilon / \Sigma w_2 = 0$	$\begin{array}{l} 304\\ 347\\ \pm 10^7 \Sigma_{\rm c}\\ {\rm ccene i}\\ 300\\ 219\\ 15\\ 401\\ = 7\cdot 4\\ 0\cdot 396; \end{array}$	$\begin{array}{c} 45\\ 51\\ \Delta B/\Sigma u\\ \text{in carl}\\ 4382\\ 330\\ 237\\ 17\\ 465\\ 48; \Sigma \mu\end{array}$	$\begin{array}{l} 4\\7\\ y_2 == 11\\ \text{ bon tetr}\\4851\\ 356\\ 260\\ 20\\ 494\\ \Delta d/\Sigma w_2 =\\ \frac{3}{2}/\Sigma w_2 = \end{array}$	8149254rachlor509337826820545= -0	87 100 ide 5473 408 298 23 571 •388 :	8329 625 441 34
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\epsilon$ $-10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$	$\begin{array}{c} 1 - \text{Acet} \\ 2682 \\ 207 \\ 147 \\ 10 \\ 278 \\ \text{whence } 2 \\ \Sigma \Delta n_{i} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 304 \\ 347 \\ 10^7 \Sigma_4 \\ 10^7 \Sigma_4 \\ 10^2 \Sigma_4 \\ 300 \\ 219 \\ 15 \\ 401 \\ = 7 \cdot 4 \\ 0 \cdot 396 \\ \Sigma \Delta B/2 \end{array}$	$\begin{array}{c} 45\\ 51\\ \Delta B/\Sigma u\\ \text{in carl}\\ 4382\\ 330\\ 237\\ 17\\ 465\\ 18; \Sigma \Delta n^{2}\\ \Sigma \Delta n^{2}\\ \Sigma w_{2} = \end{array}$	$\begin{array}{l} 4\\7\\ v_2 = 11\\ \text{ son tet}\\4851\\ 356\\ 260\\ 20\\ 494\\ \Delta d/\Sigma w_2 =\\ 10.5\end{array}$	814925.4rachlor509337826820545= -0= 1.155	87 100 ide 5473 408 298 23 571 -388; 5;	8329 625 441 34
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\varepsilon$ $-10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$ w	B B 2682 207 147 10 278 γhence 2 ΣΔn 5-Diace	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 304 \\ 447 \\ 2 & 10^7 \Sigma_{12} \\ 10^7 \Sigma_{12} \\ 10^7 \Sigma_{12} \\ 10^7 \Sigma_{13} \\ 10^7 \Sigma_$	$\begin{array}{c} 45\\ 51\\ \Delta B/\Sigma u\\ \text{in carl}\\ 4382\\ 330\\ 237\\ 17\\ 465\\ 18; \Sigma \Delta u\\ \Sigma \Delta u\\ \Sigma \Delta u\\ \Sigma w_2 =\\ \text{in c in c} \end{array}$	$\begin{array}{l} 4\\7\\\\ x_2 = 11\\\\ \text{oon tet}\\4851\\356\\260\\20\\494\\\\\Delta d/\Sigma w_2 = \\10.5\\arbon \end{array}$	8149254rachlor509337826820545= -0= 1.155tetrach	87 100 ide 5473 408 298 23 571 -388; 5; lloride	8329 625 441 34 897
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\varepsilon$ $-10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$ w $1,4$ $10^{6}w_{2}$	B 1-Acet 2682 207 147 10 278 γhence Σ $\Sigma \Delta n_{f}$ 5-Diace	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 304 \\ 347 \\ 10^7 \Sigma_4 \\ 10^7 \Sigma_4 \\ 10^2 \Sigma_4 \\ 300 \\ 219 \\ 15 \\ 401 \\ = 7 \cdot 4 \\ 0 \cdot 396 \\ \Sigma \Delta B/2 \end{array}$	45 51 $\Delta B / \Sigma u$ in carl 4382 330 237 465 48; Σu $\Sigma \Delta n^{2}$ $\Sigma w_{2} =$ ie in c 3	$\begin{array}{l} 4\\7\\ v_2 = 11\\ \text{ son tet}\\4851\\ 356\\ 260\\ 20\\ 494\\ \Delta d/\Sigma w_2 =\\ 10.5\end{array}$	814925.4rachlor509337826820545= -0= 1.155	87 100 5473 408 298 23 571 -388; 5; loride	8329 625 441 34
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\varepsilon$ $-10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$ w	B B 2682 207 147 10 278 γhence Σ $\Sigma \Delta n_{j}$ 5-Diace 225 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 304 \\ 447 \\ \pm 10^7 \Sigma_A \\ \text{accene i} \\ 0024 \\ 300 \\ 219 \\ 15 \\ 401 \\ = 7 \cdot 4 \\ 0 \cdot 396 \\ \Sigma \Delta B/2 \\ \text{thalem} \\ 2925 \end{array}$	45 51 $\Delta B / \Sigma u$ in carl 4382 330 237 17 465 $E \Sigma \Delta m^2$ $\Sigma \Delta m^2$ $\Sigma w_2 =$ ine in c 3	$\begin{array}{l} 4\\7\\7\\2 = 11\\9 \\0 \\0 \\1 \\3 \\5 \\2 \\0 \\2 \\0 \\2 \\0 \\2 \\0 \\2 \\2 \\2 \\2 \\2 \\2 \\2 \\2 \\2 \\2 \\2 \\2 \\2 $	814925·4rachlor509337826820545= -0= 1.155tetrach4191	87 100 ide 5473 408 298 23 571 -388; 5; uloride	8329 625 441 34 897
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\epsilon$ $-10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$ W $1_{1,1}^{1,1}$ $10^{6}w_{2}$ $10^{4}\omega_{2}$	B B 2682 207 10 278 γhence Σ $\Sigma \Delta n_{j}$ 5-Diace 22 14 278 γhence Σ 207 10 278 γhence Σ 207 207 207 207 207 207 207 207	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 304 \\ 447 \\ \pm 10^7 \Sigma_A \\ \text{accene i} \\ 024 \\ 300 \\ 219 \\ 15 \\ 401 \\ = 7 \cdot 4 \\ 0 \cdot 396 \\ \Sigma \Delta B/2 \\ \text{thalem} \\ 2925 \\ 146 \end{array}$	45 51 $\Delta B / \Sigma u$ in carl 4382 330 237 17 465 $E \Sigma \Delta m^2$ $\Sigma \Delta m^2$ $\Sigma w_2 =$ ine in c 3	$\begin{array}{l} 4\\7\\7\\1000 tets\\4851\\356\\260\\20\\494\\\Delta d/\Sigma w_{2}=\\10.5\\arbon t\\462\\177\end{array}$		87 100 5473 408 298 23 571 -388; 5; uloride	8329 625 441 34 897
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\epsilon$ $10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$ $10^{11}\Delta B$ $10^{6}w_{2}$ $10^{6}\Delta\epsilon$ $-10^{5}\Delta d$ $10^{6}\Delta\epsilon$ $-10^{5}\Delta d$	B B 2682 207 147 0 278 yhence Σ $\Sigma \Delta n_i$ 5 -Diace 22 10 278 β δ B δ B	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 304\\ 447\\ \pm 10^{7}\Sigma_{4}\\ \text{accene i}\\ 0.024\\ 300\\ 219\\ 15\\ 401\\ = 7\cdot 4\\ 0\cdot 396\\ ;\\ \Sigma\Delta B/2\\ \text{thalen}\\ 2925\\ 146\\ 156\\ 8\\ 478 \end{array}$	$\begin{array}{c} 45\\ 51\\ \Delta B/\Sigma u\\ \text{in carl}\\ 4382\\ 330\\ 237\\ 17\\ 465\\ 18; \Sigma \Delta m^{2}\\ \Sigma \Delta m^{2}\\ \Sigma w_{2} =\\ \text{ie in c}\\ 3\end{array}$	$\begin{array}{l} 4\\7\\7\\1\\0 \text{ on tet}\\4851\\356\\260\\494\\\Delta d/\Sigma w_2\\2\\\Sigma w_2\\2\\\Sigma w_2\\2\\10.5\\3\\10.5\\10\\574\end{array}$	$\begin{array}{c} 814\\ 925\\ \cdot 4\\ rachlor\\ 5093\\ 378\\ 268\\ 20\\ 545\\ = -0\\ = 1\cdot155\\ tetrach\\ 4191\\ 203\\ 223\\ 11\\ 697\end{array}$	87 100 ide 5473 408 298 298 2571 -388; 5; 10-388; 5;	8329 625 441 34 897 5255 252 275
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\epsilon$ $10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$ $10^{11}\Delta B$ $10^{6}w_{2}$ $10^{6}\Delta\epsilon$ $-10^{5}\Delta d$ $10^{6}\Delta\epsilon$ $-10^{5}\Delta d$	B 1-Acet 2682 207 147 0 278 \forall hence 2 $\Sigma \Delta n_i$ 5-Diace 1 2 1 2 2 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 304\\ 447\\ \pm 10^7\Sigma_4\\ \text{accene i}\\ 300\\ 219\\ 15\\ 401\\ = 7\cdot4\\ 0\cdot396\\ ;\Sigma\Delta B/2\\ \text{thalem}\\ 2925\\ 146\\ 156\\ 8\\ 478\\ = 4\cdot8\\ = 4\cdot8\end{array}$	45 51 $\Delta B / \Sigma w$ in carl 4382 330 237 17 465 18; $\Sigma \Delta m^2$ $\Sigma \Delta m^2$ $\Sigma w_2 =$ ate in c 3 95; Σh	$\begin{array}{l} 4\\7\\7\\y_2 == 11\\y_0 n \ \text{tet} \\4851\\356\\260\\494\\\Delta d/\Sigma w_2 =\\10.5\\arbon \\462\\177\\187\\10\\574\\\Delta d/Ew_2\end{array}$	814925·4rachlor5093378200545= -01.155tetrach419120322311697= -0	87 100 ide 5473 408 298 233 571 -388; 5; uloride {	8329 625 441 34 897 5255 252 252 275 14
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\epsilon$ $10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$ $10^{11}\Delta B$ $10^{6}w_{2}$ $10^{6}\Delta\epsilon$ $-10^{5}\Delta d$ $10^{6}\Delta\epsilon$ $-10^{5}\Delta d$	B 1-Acet 2682 207 147 0 278 \forall hence 2 $\Sigma \Delta n_i$ 5-Diace 1 2 1 2 2 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} & 04 \\ & 447 \\ & 10^{7}\Sigma_{4} \\ & accene i \\ & 024 \\ & 300 \\ & 219 \\ & 15 \\ & 401 \\ & = 7\cdot4 \\ & 0\cdot396; \\ & \Sigma\Delta B/2 \\ & thalen \\ & 2925 \\ & 146 \\ & 156 \\ & 8 \\ & 478 \\ & = 4\cdot6 \\ & 0\cdot271; \end{array}$	$\begin{array}{c} 45\\ 51\\ \Delta B/\Sigma w\\ \text{in carl}\\ 4382\\ 330\\ 237\\ 17\\ 465\\ 18; \Sigma \Delta m\\ \Sigma \Delta m\\ \Sigma \omega_2 =\\ \text{ie in c}\\ 3\\ 95; \Sigma_{\Delta m} \end{array}$	$\begin{array}{l} 4\\ 7\\ 7\\ y_2 == 11\\ y_3 = 11\\ y_4 = 11\\ y_5 = 11\\$	814925·4rachlor5093378200545= -01.155tetrach419120322311697= -0	87 100 ide 5473 408 298 233 571 -388; 5; uloride {	8329 625 441 34 897 5255 252 252 275 14
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\epsilon$ $10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$ $10^{11}\Delta B$ $10^{6}w_{2}$ $10^{6}\Delta\epsilon$ $-10^{5}\Delta d$ $10^{6}\Delta\epsilon$ $-10^{5}\Delta d$	B 1-Acet 2682 207 147 0 278 \forall hence 2 $\Sigma \Delta n_i$ 5-Diace 1 2 1 2 2 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} & 04 \\ & 447 \\ & 10^{7}\Sigma_{4} \\ & accene i \\ & 024 \\ & 300 \\ & 219 \\ & 15 \\ & 401 \\ & = 7\cdot4 \\ & 0\cdot396; \\ & \Sigma\Delta B/2 \\ & thalen \\ & 2925 \\ & 146 \\ & 156 \\ & 8 \\ & 478 \\ & = 4\cdot6 \\ & 0\cdot271; \end{array}$	$\begin{array}{c} 45\\ 51\\ \Delta B/\Sigma w\\ \text{in carl}\\ 4382\\ 330\\ 237\\ 17\\ 465\\ 18; \Sigma \Delta m\\ \Sigma \Delta m\\ \Sigma \omega_2 =\\ \text{ie in c}\\ 3\\ 95; \Sigma_{\Delta m} \end{array}$	$\begin{array}{l} 4\\7\\7\\y_2 == 11\\y_0 n \ \text{tet} \\4851\\356\\260\\494\\\Delta d/\Sigma w_2 =\\10.5\\arbon \\462\\177\\187\\10\\574\\\Delta d/Ew_2\end{array}$	814925·4rachlor5093378200545= -01.155tetrach419120322311697= -0	87 100 ide 5473 408 298 233 571 -388; 5; uloride {	8329 625 441 34 897 5255 252 252 275 14
$10^{11}\Delta$ $10^{6}w_{2}$ $10^{4}\Delta\epsilon$ $10^{5}\Delta d$ $10^{4}\Delta n$ $10^{11}\Delta B$ $10^{11}\Delta B$ $10^{6}w_{2}$ $10^{6}\Delta\epsilon$ $-10^{5}\Delta d$ $10^{6}\Delta\epsilon$ $-10^{5}\Delta d$	1-Acet 2682 207 147 10 278 yhence Σ $\Sigma \Delta n_i$ 5-Diace a b b b b b b b c b c b b b b b b b c b b c b c b c c b c c c c c c c c c c c c c c c c c c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} & 04 \\ & 447 \\ & 10^7 \Sigma_4 \\ & accene i \\ & 024 \\ & 300 \\ & 219 \\ & 15 \\ & 401 \\ & = 7\cdot4 \\ & 0\cdot396; \\ & \Sigma \Delta B/2 \\ & thalen \\ & 2925 \\ & 146 \\ & 156 \\ & 8 \\ & 478 \\ & = 4\cdot5 \\ & 0\cdot271; \\ & \Sigma \Delta B/2 \end{array}$	$\begin{array}{c} 45\\ 51\\ \Delta B/\Sigma u\\ \text{in carl}\\ 4382\\ 330\\ 237\\ 17\\ 465\\ 18; \Sigma \Delta u\\ \Sigma \Delta u^{2}\\ \Sigma \Delta u^{2}\\ \text{me in c}\\ 3\\ 95; \Sigma \\ w_{2} =\\ \end{array}$	$\begin{array}{l} 4\\7\\7\\y_2 = 11\\y_2 = 11\\y_3 = 11\\y_4 = 11\\y_5 = 11$	$\begin{array}{c} 814\\ 925\\ \cdot 4\\ rachlor\\ 5093\\ 378\\ 268\\ 20\\ 545\\ = -0\\ 545\\ = -0\\ 1\cdot 155\\ tetrach\\ 4191\\ 203\\ 223\\ 11\\ 697\\ = -0\\ = 0.791\\ \end{array}$	87 100 ide 5473 408 298 233 571 -388; 5; uloride {	8329 625 441 34 897 5255 252 252 275 14

1,0-	Diacetyla	ununacen	e in benze	sne	
2055	2388	2471	2604	3125	3444
56	62	63	76	78	96
3554	4428	4707	4781	4800	
90	108	111	112	117	
1464	2007	2102	2533	2623	2896
41	53	56	65	66	78
3	4	4	5	5	5
whence Σ	$\Delta \varepsilon / \Sigma w_{2} =$	= 2.526;	$\Sigma \Delta d / \Sigma w_{s}$	= 0.263:	
1,5-Diacet	tylanthra	cene in ca	rbon teti	achloride	
		228	262	306	
$10^{11}\overline{\Delta}B\dots$	· · · · · · · · · · ·	43	49	54	
	2055 56 3554 90 1464 41 3 whence $\Sigma \sum \Delta n/2$ 1,5-Diace $10^{6}w_{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

whence
$$10^{7}\Sigma\Delta B/\Sigma w_{2} = -18\cdot 3$$

ations were standard.^{6a} Kerr effects at 589 nm. were recorded photometrically.7


Results.-These are listed in usual form in Tables 1 and 2. The symbols are those previously explained.^{5,6,8}

Previous Measurements .- The molar Kerr constant of 1-acetylnaphthalene is somewhat lower than that reported⁹ previously (+341), presumably owing to the presence of a little of the 2-isomer in the earlier sample. No data are on record for the other compounds examined.

DISCUSSION

Calculation of Molar Kerr Constants.-Standard procedures 66, c, 10 are used to obtain theoretical molar Kerr constants by addition of bond and group polarisability tensors. Anisotropic polarisabilities * used in calculations are summarised in Table 3. We have assumed valence angles of 120° around the carbonyl carbon, and that the carbonyl group moment acts along the C=O link.

Principal Polarisabilities of the 1-Anthryl Group.— From measurements of the depolarisation ratio of scattered light, Lapouyade and Bothorel¹¹ determined the anisotropy in the polarisability tensors of several 1- and 9-substituted anthracenes. They reported that the anisotropies of the 1- and 9-substituted molecules were not equal, with the 9-substituted anthracene consistently being more anisotropic. Comparison of the molar Kerr constants of 1-chloro- and 1-cyano-anthracene (+229, +870) with those reported previously ^{12,13} for 9-chloro-

and 9-cyano-anthracene (+172, +787) suggests that the anisotropy could be larger in the 1-substituted molecules. However, we have observed larger dipole moments in the 1-substituted anthracenes, and these may account for the larger Kerr constants. Because of the asymmetry of the 1-anthryl group, the directions of the two principal

* Polarisabilities quoted throughout in 10⁻²⁴ cm.³ (Å³) and molar Kerr constants in 10⁻¹² e.s.u.

⁶ A. D. Buckingham, J. Y. H. Chau, R. J. W. Le Fèvre, D. A. A. S. Narayana Rao, and J. Tardif, J. Chem. Soc., 1956, 1405.

⁶ R. J. W. Le Fèvre, (a) ' Dipole Moments,' Methuen, London, 3rd edn., 1953, ch. 2; (b) J. Proc. Roy. Soc. New South Wates, 1961, 95, 1; (c) Adv. Phys. Org. Chem., 1965, 3, 1.
 ⁷ R. J. W. Le Fèvre and G. L. D. Ritchie, J. Chem. Soc., 1963,

4933.

⁸ C. G. Le Fèvre and R. J. W. Le Fèvre, J. Chem. Soc., (a) 1953, 4041; (b) 1954, 1577; (c) Rev. Pure Appl. Chem. (Australia), 1955, **5**, 261; (d) 'Physical Methods of Organic Chemistry,' ed. Weissberger, Interscience, New York, 3rd edn., 1960, vol. 1, ch. 36, p. 2459. ⁹ R. J. W. Le Fèvre and A. Sundaram, J. Chem. Soc., 1962,

4756.

¹⁰ J. M. Eckert and R. J. W. Le Fèvre, J. Chem. Soc., 1962, 1081.

¹¹ R. Lapouyade and P. Bothorel, Compt. rend., 1967, 265, 707.

¹² R. J. W. Le Fèvre, L. Radom, and G. L. D. Ritchie, J. Chem. Soc., 1968, 775.

¹³ P. H. Gore, J. A. Hoskins, R. J. W. Le Fèvre, L. Radom, and G. L. D. Ritchie, to be published.

TABLE 2

Polarisations, refractions, dipole moments, and molar Kerr constants calculated from Table 1

Solute I-Chloroanthracene I-Cyanoanthracene I-Acetylnaphthalene I,5-Diacetylanthracene I,5-Diacetylanthracene I,5-Diacetylanthracene	$\begin{array}{c} \operatorname{CCl}_4^* \\ \operatorname{CCl}_4 \\ \operatorname{CCl}_4 \\ \operatorname{CCl}_4 \\ \operatorname{CCl}_4 \end{array}$	$lpha \epsilon_1$ 3.05 17.58 $10.32 \dagger$ 7.48 4.95 2.53	$\beta \\ -0.257 \\ -0.362 \\ -0.399 \\ +0.338 \\ -0.335 \\ 0.301 \\ \end{array}$	$\gamma' n^{2}_{1}$ 1.099 1.360 1.155 0.791 0.572	${}_{\infty}P_{2}$ (cm. ³) 117.7 429.3 228.6 163.2 187.1	72·0 78·4 79·0 67·4	μ (D) * 1·43 4·14 2·89 † 2·67 2·13 2·13	γ 0.259 0.322 0.185 † 0.272 0.186	$\delta + 144 + 579 + 163 + 150 - 237 - 260$	$\begin{array}{r} 10^{12} {}^{\infty} ({}^{\mathrm{m}} K_2) \\ + 229 \\ + 870 \\ + 203 \\ + 243 \\ - 379 \\ - 500 \end{array}$
1,5-Diacetylanthracene	C_6H_6	$2 \cdot 53$	0.301	0.572	187-1	9 0 ·1	2.13			
		* Cal	culating ass	uming bi	P = 1.05 K	n. † Re	f. 9.			

axes lying in the aromatic plane may not coincide with those of the 9-anthryl group. There is thus the possibility that the moment along the C-X link $(\mu_{\rm X})$ induces a moment $(\mu_{\rm X})$ in the highly polarisable long axis of anthracene [see (I)], so that the resultant moment is not directed along the 1,4-axis of the molecule. We have taken the value of the dipole moment of the 9-substituted molecule $\mu_{\rm Y}$, and by using the polarisabilities for anthracene derived from 9-substituted anthracenes, we have calculated the induced moments $\mu_{\rm X}$ required to give agreement between the molar Kerr constants of the 1and 9-substituted molecules. The resultant moments, μ (calc.), derived from $\mu_{\rm X}$ and $\mu_{\rm Y}$ are compared with the observed values, μ (obs.), in Table 4. The reasonable

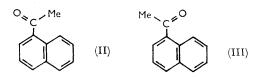
TABLE 3

Anisotropic polarisabilities of bonds, groups and

molecules

	lioioouioc	,		
	$\mathbf{b}_{\mathbf{L}}$	$\mathbf{b}_{\mathbf{T}}$	$\mathbf{b_{V}}$	Ref.
С-н	0.65	0.65	0.65	a
С–С	0.97	0.26	0.26	а
С=О	2.30	1.40	0.46	b
1-Anthryl	$23 \cdot 81$	35.25	15.23	12
1-Naphthyl	15.95	$21 \cdot 15$	10.65	C
9-Chloroanthracene	27.84	37.32	16.88	12
9-Cyanoanthracene	30.41	36.52	17.42	13

^a R. J. W. Le Fèvre, B. J. Orr, and G. L. D. Ritchie, *J. Chem. Soc.* (B), 1966, 273. ^b C. G. Le Fèvre, R. J. W. Le Fèvre, and B. P. Rao, *J. Chem. Soc.*, 1959, 2340. ^c R. J. W. Le Fèvre and L. Radom, *J. Chem. Soc.*, 1967, 1295.


TABLE 4

Dipole moment components in substituted anthracenes

	$\mu_{\mathbf{Y}}$	$\mu_{\mathbf{X}}$	μ (carc.)	μ (obs.)
1-Chloroanthracene	1.36	0.59	1.48	1.43
1-Cyanoanthracene	4.13	0.77	$4 \cdot 20$	4.14

agreement between observed and calculated values suggests that the anthryl group polarisabilities derived from data on 9-substituted anthracenes are, to a fair approximation, applicable to 1-substituted anthracenes. We have therefore used these in the calculations which follow.

1-Acetylnaphthalene.—Molar Kerr constants have been calculated for various conformations of 1-acetylnaphthalene defined by the angle, θ , between the planes of the C-CO-C group and the aromatic nucleus. Conformations in which the C=O link is directed away from (II), and towards (III), the naphthalene nucleus but having the same value of θ , have identical theoretical Kerr constants. However, because of the smaller size of the oxygen compared with the methyl of the acetyl group, the latter situation (III) is considered the more likely.

Comparison of the calculated Kerr constants (Table 5) with the observed (+203) suggests an effective conformational angle of 42° for 1-acetylnaphthalene.

TABLE 5

Molar Kerr constants of 1-acetylnaphthalene

θ:	0°	42°	45°	90°
mK	+705	+210	+148	-410

1-Acetylanthracene.—Calculated molar Kerr constants for 1-acetylanthracene are shown in Table 6; the angle θ is as defined for 1-acetylnaphthalene. Comparison with the observed value (+243) indicates an effective conformational angle of 46° for this molecule. This result is close to the angle (42°) obtained for 1-acetylnaphthalene in which the steric situation is very similar.

TABLE 6

Molar Kerr constants for 1-acetylanthracene					ne
	θ:	0°	45°	46°	90°
$\mathbf{m}K$	••••	+1179	+260	+236	-658

1,5-Diacetylnaphthalene.—Because of the results for 1-acetylnaphthalene and 1-acetylanthracene, we have assumed that in 1,5-diacetylnaphthalene the C-CO-C planes are inclined at approximately 45° to the aromatic plane. Further, we have considered only the isomers in which each acetyl group is in the sterically more favourable orientation (III). These two forms [represented schematically in the projection diagrams (IV) and (V) may then be classified as cis (IV) and trans (V) and their dipole moments and molar Kerr constants are shown in Table 7. In addition, the mole fractions χ_{cis} and χ_{trans} derived from the dipole moment and Kerr constant data are included. The experimental results for 1,5-diacetylnaphthalene are thus consistent with a mixture of cis (38%) and trans (62%) conformers in which the planes of the C-CO-C groups are inclined at approximately 45° to the naphthalene plane.


1,5-Diacetylanthracene.—Because of the low solubility of this compound in carbon tetrachloride the dipole

429

Dipole moments and molar Kerr constants for conformations of 1,5-diacetylnaphthalene

	μ (D)	$_{m}K$
cis	3.43	1110
trans	0	+50
Observed	2.13	-379
Xeis	0.39	0.37
Xtrans	0.61	0· 63

moment was measured in benzene. However, the compound was sufficiently soluble in carbon tetrachloride for an estimate of the Kerr constant to be made in this solvent. The results have again been interpreted in terms

of cis (IV) and trans (V) forms in which the angle between the C-CO-C planes and the aromatic plane is 45° . Calculated and observed quantities are summarised in Table 8.

TABLE	8	
Dipole moments and mol	ar Kerr co	nstants for
conformations of 1,5-d	liacetylant	hracene
	μ (D)	$_{m}K$
cis	3.43	1834
trans	0	+157
Observed	2.13	-500
Xcis	0.39	0.33
Xtrans	0.61	0.67

In this case, the experimental molar Kerr constant and dipole moment are consistent with the presence of ca. 36% of the *cis*-form. The result is close to that (38% cis) obtained for the analogous and sterically similar naphthalene derivative. For both 1,5-diacetyl-naphthalene and 1,5-diacetylanthracene the *trans*-conformer is more favoured than the polar *cis*-form, as would be predicted.

The award of a C.S.I.R.O. Senior Post-graduate Studentship to L. R. is gratefully acknowledged. We thank Mrs. J. Morgan for the g.l.c. analyses.

[8/1679 Received, November 18th, 1968]