1372

CHEMICAL COMMUNICATIONS, 1968

Comparison of Adipedatol with Hydroxyhopane and Hydroxyisohopane

By H. AGETA* and K. SHIOJIMA

(Shôwa College of Pharmaceutical Sciences, Setagaya-ku, Tokyo, Japan)

ADIPEDATOL (I) is a fern triterpenoid of the 30norhopane group having a hemiacetal linkage between C-22 and C-28.1 We report a comparison of compound (I) with hydroxyhopane² (diplopterol)³ (II) with regard to the configuration at C-21 in hopane, which has recently been reported somewhat ambiguously.4

formation of its C-21-isomer, 22-hydroxyisohopane (VI) was not observed by t.l.c., i.r., and g.l.c.

The isomer of (III) at C-21 was also prepared by Grignard reaction of the compound (VII),¹ which was obtained, by treatment of (I) with HCl-dioxan, in high yield. The diol (VIII), {m.p. 269-273°, $[\alpha]_D + 30^\circ$ (c 0.5 in pyridine), v_{max} (KBr) 3300,

Treatment of adipedatol (I) with methylmagnesium iodide gave a diol (III), {m.p. 294-298°, $[\alpha]_{\rm p}$ + 60° (c 0.25 in pyridine), $\nu_{\rm max}$ (KBr) 3210, 1145, and 1032 cm^{-1} }, in good yield. The diol (III) was then oxidised with CrO_3 -pyridine at 0° to afford a hemiacetal (IV), [m.p. ca. 220°, vmax (KBr) 3470 and 1119 cm.⁻¹: τ 4.54s (1H at C-28), 8.68, 8.83, 8.95, 9.01, 9.14, 9.17, and 9.20 (3H each at C-29, C-30, C-27, C-26, C-23, C-25, and C-24, respectively)] with a small amount of a lactone (V), [m.p. 263–267°, v_{max} (KBr) 1727 and 1100 cm.-1]. Wolff-Kishner reduction of (IV) according to Barton's procedure gave an alcohol, m.p. 253-255°, which was proved to be 22-hydroxyhopane (II) by comparison of m.p., i.r. spectra, and t.l.c. with those of an authentic sample. The only product of this reaction was the alcohol (II), and

(VI)=Hydroxyisohopane

1150, and 1037 cm.⁻¹} was oxidised with CrO_3 pyridine to give an aldehyde alcohol (IX), [m.p. 202-205°, vmax (KBr) 3470, 1121 (OH), 2720, and 1712 (CHO) cm.⁻¹]. Wolff-Kishner reduction of (IX) afforded an alcohol (VI), m.p. 225-227°, which was identified as 22-hydroxyisohopane^{2,5} by direct comparison with an authentic sample.

These results suggest that 22-hydroxyhopane (II) should have 21β H-configuration, and 22hydroxyisohopane (VI) the 21aH-configuration, respectively. We conclude that all compounds of the hopane group which can be compared with hydroxyhopane, such as hydroxyhopanone,² diploptene,⁶ adiantone,⁷ neriifoliol,⁸ have the 21β Hconfiguration.

(Received, July 29th, 1968; Com. 1016.)

² G. V. Baddeley, T. G. Halsall, and E. R. H. Jones, J. Chem. Soc., 1961, 3891.

- ⁵ Y. Tsuda, K. Isobe, S. Fukushima, H. Ageta, and K. Iwata, *Tetrahedron Letters*, 1967, 23.
- ⁶ H. Ageta, K. Iwata, and K. Yonezawa, Chem. and Pharm. Bull. (Japan), 1963, 11, 408.
 ⁷ G. Berti, F. Bottari, A. Marsili, J.-M. Lehn, P. Witz, and G. Ourisson, Tetrahedron Letters, 1963, 1283.
 ⁸ G. N. Pandey and C. R. Mitra, Tetrahedron Letters, 1967, 1353.

¹ H. Ageta and K. Iwata, Tetrahedron Letters, 1966, 6069.

 ³ H. Ageta, K. Iwata, and Y. Otake, Chem. and Pharm. Bull. (Japan), 1963, 11, 407.
 ⁴ I. Yoshioka, T. Nakanishi, and I. Kitagawa, Tetrahedron Letters, 1968, 1485; T. Nakanishi, T. Fujiwara, and K. Tomita, *ibid.*, p. 1491.