A FACILE SYNTHESIS OF 1,1-BIS(FLUOROXY)PERFLUOROETHANE

A. Sekiya and D. D. DesMarteau¹ Department of Chemistry Kansas State University Manhattan, Kansas 66506

(Received 7 October 1978)

Geminal bis(fluoroxy)perfluoroalkanes were first described in 1967, but no new well characterized examples have been reported since then. In principle, a variety of such compounds should be capable of existence if a method can be found for their synthesis. The three known examples $CF_2(OF)_2$, $^{2-4}$ $CF_3CF(OF)_2^5$ and $(CF_3)_2C(OF)_2^5$ were obtained in the highest yields by the following reactions.

$$CO_2 + F_2 \xrightarrow{CSF} CF_2(OF)_2 \qquad 98\%$$

NaOC(CF₃)₂OH + F₂ $\stackrel{<}{\xrightarrow{}}$ $\stackrel{T}{flow}$ (CF₃)₂C(OF)₂ $\sim 2\%$ + CF₃CF(OF)₂ $\sim 1\%$ + Other Clearly, CF₂(OF)₂ is the only available compound for further synthetic work and some interesting reactions are known.⁶

We were interested in carrying out reactions with $CF_3CF(0F)_2$ and therefore looked for a new method for its synthesis. From a report that $CF_2(0F)_2$ could be obtained in high yield by the CsF catalyzed fluorination of FC(0)OF, an alternate synthesis became obvious.

$$FC(0)OF + F_2 \xrightarrow{CsF} CF_2(OF)_2$$

Fluorination of $R_f C(0)OF$ in the presence of CsF should lead to high yields of $R_f CF(0F)_2$. Unfortunately, acyl hypofluorites are themselves difficult to prepare and they are rather explosive. Kowever, it would only be necessary to have $R_f C(0)OF$ formed as an intermediate at low temperature in the presence of CsF and F_2 for the alternate synthesis to occur.

Previous work by us had shown that acidic hydrogens react very readily with fluorine at low temperature in the presence of CsF.^{8,9} Therefore the following route seemed reasonable.

$$CF_3CO_2H + F_2 \xrightarrow{\langle T \\ CsF \rangle} CF_3C(0)OF$$

 $CF_3C(0)OF + F_2 \xrightarrow{\langle T \\ CsF \rangle} CF_3CF(0F)_2$

Reaction of CF_3CO_2H with excess fluorine in the presence of CsF at -lll° gives $CF_3CF(OF)_2$ in essentially quantitative yield. This preparation makes this unusual compound readily available for the first time and it is very probable that this reaction will succeed with a variety of carboxylic acids. This work is in progress and preliminary evidence for $CF_3CF_2CF(OF)_2$ and $CF_3CF_2CF(OF)_2$ has been found.

Experimental

All reactions were carried out in glass and stainless steel vacuum systems as previously described.⁸ Cesium fluoride (10 g) was dried by heating, placed in a 75 ml ss reactor and treated with 2 atm of F_2 at 22°. The vessel was evacuated and CF_3CO_2H (3 mmol) was condensed onto the CsF at -196°. F_2 (15 mmol) was added and the vessel was held at -111° for 6 hr. Excess fluorine was then removed at -196° by pumping and the product was collected by pumping through a trap at -196° as the reactor warmed in the air. No purification of the product was required.

¹⁹F nmr in CFCl₃ at -20° showed only 3 multiplets. $CF_3^{A}CF^{B}(OF^{C})_2$: ϕ_A^{\star} 77.2,t: ϕ_B^{\star} 112.6,t; ϕ_C^{\star} -150.0,d-q; $J_{AB} \leq 0.5$, $J_{AC} = 10.2$, $J_{BC} = 28.5$ Hz. Mol. wt. 168.8, calcd. 170.01. These data along with the ir spectra agree very closely with the values of Thompson and Prager.⁵

<u>Caution</u>! Extreme care must be used in working with $CF_3CF(0F)_2$ and related compounds. These materials may explode with considerable force under appropriate conditions. They must be considered explosive under all conditions in the absence of appropriate testing.

Acknowledgment

The support of this work by the Army Research Office - Durham (Grant No. DAAG29-77-0071) is gratefully acknowledged.

References

- 1. Alfred P. Sloan Fellow, 1975-77.
- 2. P. G. THOMPSON, J. Am. Chem. Soc., 89, 1811 (1967).
- 3. R. L. CAUBLE and G. H. CADY, J. Am. Chem. Soc., 89, 1962 (1967).
- 4. F. A. HOHORST and J. M. SHREEVE, J. Am. Chem. Soc., 89, 1808 (1967).
- 5. P. G. THOMPSON and J. H. PRAGER, J. Am. Chem. Soc., 89, 2203 (1967).
- 6. M. LUSTIG and J. M. SHREEVE, Advan. Fluorine Chem., 7, 175 (1973).
- 7. R. L. CAUBLE and G. H. CADY, J. Am. Chem. Soc., 89, 5161 (1967).
- 8. D. D. DesMARTEAU, Inorg. Chem., 11, 193 (1972).
- 9. D. D. DesMARTEAU and R. M. HAMMAKER, Israel J. Chem., 17, 103 (1978).