Conformational equilibria in some cyclic imines: NH and CH stretching vibrations and the axial lone pair

P. J. Krueger and J. Jan

Department of Chemistry, University of Calgary, Calgary 44, Alberta

Received July 31, 19691

The fundamental NH and CH stretching vibrations of a number of cyclic imines have been examined in dilute CCl₄ solution. A *trans* orientation of the N lone pair orbital and one or more hydrogen atoms on adjacent carbons lowers the relevant v_{CH} ("Bohlmann" bands) and raises v_{NH} , reflecting an increase in the s-character of the CH bond(s), consistent with a partial delocalization of the lone pair electrons into the CN bond. Conformations in which this interaction occurs are thermodynamically favored, and the ΔH values for the lone pair axial–equatorial equilibrium in piperidine, pyrrolidine, and indolene are estimated to be 0.4, 0.2, and 0.1 kcal/mole, respectively, in dilute CCl₄ solution. The effects of hetero ring size, *N*-substitution, α -methyl substitution, and the solvent environment

are investigated.

Canadian Journal of Chemistry, 48, 3236 (1970)

Introduction

Conformational problems which arise from different orientations of the nitrogen atom lone pair orbital in heterocyclic compounds (1a) have received much attention in the case of sixmembered rings like piperidine or morpholine, and a variety of methods like i.r. spectroscopy (2–12), n.m.r. spectroscopy (12–22), microwave spectroscopy (23), and dipole moment measurements (24-30) have been employed. The results of these studies have not been uniformly consistent. A comparative review has appeared recently (31), and there has been a full discussion of the question of the "size" of the lone pair on N with respect to other substituents (32, 33). A simple quantitative approach to intramolecular interactions in saturated heterocycles has been achieved (34, 35), from which axial-equatorial equilibria can be predicted.

This investigation shows that the low frequency CH stretching vibrations identified by Bohlmann in some cyclic imines (36) arise in conjunction with a secondary *increase* in the NH stretching frequency, supporting a decrease in the N atom charge density and a partial delocalization of charge into the CN bond (37, 38) when one or more α -CH bonds are *trans* to the lone pair. The hybridization of N in this molecular conformation therefore differs from the hybridization in conformations where no α -CH bond(s) bear this geometrical relation to the lone pair.

It has been possible to assess the spectral changes arising when the electron density on N is

altered, and to make some specific vibrational assignments concerning the origin of CH absorption bands below $\sim 2850 \text{ cm}^{-1}$ through the use of specifically deuterated species.

Experimental

Except where otherwise noted, all the compounds used were commercial products which were purified prior to use and had acceptable physical constants, or they were prepared by standard methods. The deuterated materials α -d₂-piperidine, α -d₂-pyrrolidine, and α, α' -d₄-pyrrolidine were prepared by LiAlD₄ reduction of α -piperidone, α -pyrrolidone, and succinimide respectively. A deuteration level of 95% or better was indicated by n.m.r. spectra.

Spectroscopic measurements were made with a Perkin-Elmer Model 621 i.r. spectrophotometer, and a few spectra were obtained with a Cary Model 81 laser Raman spectrometer. Commercial "spectroquality" CCl_4 was used as a solvent for i.r. measurements at path lengths from 2.0–10.0 cm, except in the CD stretching region where shorter path lengths are required. Spectra in deuterated solvents were also obtained at shorter pathlengths.

A complete list of absorption frequencies is filed in the Depository of Unpublished Data, National Science Library, NRCC, Ottawa, Canada.

Results and Discussion

Piperidine

Figure 1 shows the spectrum of piperidine and α - d_2 -piperidine in the CH and CD stretching regions. Piperidine exhibits normal v_{asym} and v_{sym} CH₂ stretching vibrations² at 2933 and 2850

¹Revision received June 22, 1970

 $^{^{2}}$ The α -, β -, and γ -methylene vibrations in the lone pair equatorial form and the β - and γ -methylene vibrations in the lone pair axial form are likely superimposed to a high degree, leading to relatively broad bands.

KRUEGER AND JAN: CONFORMATIONAL EQUILIBRIA

FIG. 1. Methylene stretching vibrations in the i.r. spectra of (a), (b) α -d₂-piperidine, and (c) piperidine (CCl₄ solutions; 2 cm cells in CH stretching region and 0.1 cm cells in CD stretching region).

cm⁻¹ respectively, and all other piperidines investigated show similar absorptions. Deuteration of one α -methylene group removes the shoulders at 2915 and 2895 cm⁻¹ from v_{asym}, and replaces the low frequency bands at 2730 and 2803 cm⁻¹ with an intermediate band at 2760 cm⁻¹.

These spectral features can be accounted for in terms of a *trans* diaxial lone pair/ α -CH interaction, and consequent coupling of the two α -CH₂ group vibrations in the piperidine conformation with an axial lone pair. Figure 2 shows the vibrations that might be expected. The bands at 2915 and 2895 cm⁻¹ can be explained as the two components of v_{asym}, and the bands at 2803 and 2730 cm⁻¹ as the two v_{sym} components.³ Insertion of one α -CD₂ group breaks the coupling

FIG. 2. Projected coupling of asymmetric and symmetric CH stretching vibrations in piperidine conformation with axial lone pair.

and accounts for the appearance of the 2760 $\rm cm^{-1}$ band, while the shoulders at 2915 and 2895 $\rm cm^{-1}$ also become less marked.

In the CD stretching region the interpretation is guided by spectroscopic studies of $CH_3CD_2NH_2$ (38) which show that "normal" v_{asym} and v_{sym} frequencies arise from the conformation which does not have a *trans* lone pair/ α -CD interaction, while the CD₂ frequencies are lowered by 32 and 39 cm⁻¹ respectively if such an interaction is present. This is in agreement with calculations for an XH₂ group showing that v_{sym} is lowered by more than v_{asym} if one of the HX force constants is progressively reduced (39). The four main CD bands in α -d₂-piperidine are therefore interpreted as shown in Table 1.⁴

The shifted v_{sym} band at 2043 cm⁻¹ is unusually intense, which may reflect the high degree of interaction between the axial lone pair on N and the axial α -CD bond, and the greater involvement of the lone pair in v_{sym} relative to v_{asym} (40). No quantitative conclusions can be based on the CH and CD stretching frequencies regarding the relative proportions of lone pair axial and lone pair equatorial conformers, but it is clear that both exist in piperidine in CCl₄ solution.

Measurements in the NH stretching region are collected in Fig. 3. Piperidine (curve *e*, at concentration 3×10^{-3} moles/l) has a main NH band at 3343 cm⁻¹ with a shoulder at 3315 cm⁻¹. The dominant high frequency component is assigned to the NH equatorial (lone pair axial) conforma-

³The band at 2803 cm^{-1} appears to be overlapped with other absorptions and therefore does not disappear entirely on deuteration but is only reduced in intensity relative to the main CH bands. Both the 2803 and the 2730 cm⁻¹ bands were noted in the Raman spectrum of piperidine. The appearance of "Bohlmann bands" in Raman spectra has not been reported to date.

⁴It is recognized that equatorial CD bonds of —CHD groups absorb about 30 cm⁻¹ higher than axial CD bonds in cyclohexanes (1*c*), reflecting slight non-equivalence of the two bonds of CH₂ (or CD₂) groups.

CANADIAN JOURNAL OF CHEMISTRY. VOL. 48, 1970 TABLE 1

	Main CD bands	in α - d_2 -piper	idine	
	v _{asym} (cm ⁻¹)	(v_{CH}/v_{CD})	v_{sym} (cm ⁻¹)	(v_{CH}/v_{CD})
Lone pair equatorial Lone pair axial	2194 2164	1.337 1.347	2100 2043	1.358 1.346

tion, and the increase in frequency ascribed to the partial loss of charge from the N atom. The low frequency component is assigned to the NH axial form. Baldock and Katritzky (5, 6) have recently made similar assignments for piperidine based on gas phase and CCl₄ solution spectra in the first overtone NH region. In the gas phase they conclude that the NH equatorial form of piperidine predominates (*ca.* 60%) with $\Delta H = 0.53 \pm 0.13$ kcal/mole, and that the same holds for CCl₄

solutions with $\Delta H = 0.6 \pm 0.2$ kcal/mole. Our own estimate of ΔH based on badly overlapped NH bands in solution is 0.4 kcal/mole, with the lone pair axial form being the more stable form.

Alkyl Piperidines

The spectrum of 2,2,6,6-tetramethylpiperidine has only CH_3 and normal CH_2 stretching vibrations, the lowest of which lies at 2840 cm⁻¹, in marked contrast to the 2803 and 2730 cm⁻¹

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV CALGARY on 10/17/12 For personal use only.

Methyl Piperidines 0.8 0.6 04 (a) 0.2 2,2,6,6-tetra-Me 0.0 Piperidine (b) cis-2.6-di-Me (c) ABSORBANCE trans-2,6-di-Me (d) 2-Me (e) 3000 2900 2800 2700 2600 FREQUENCY (cm-1)

FIG. 4. Infrared spectra of α -methyl piperidines in the CH stretching region: (a) 2,2,6,6-tetramethylpiperidine, (b) piperidine, (c) cis-2,6-dimethylpiperidine, (d) trans-2,6-dimethylpiperidine, (e) 2-methylpiperidine.

bands of piperidine (Fig. 4a and b). Booth et al. (18) have recently shown from n.m.r. measurements that cis-2,6-dimethylpiperidine has its two methyl groups in the equatorial conformation. Shifted CH absorption at 2790 and 2701 cm⁻¹ confirms that the α -CH bonds are axial⁵ (Fig. 4c), particularly when compared with the corresponding trans-2,6-dimethylpiperidine (Fig. 4d) which only has weak CH absorption below 2840 cm^{-1} consistent with one axial tertiary α -CH

group.⁶ 2-Methylpiperidine exhibits absorption

KRUEGER AND JAN: CONFORMATIONAL EOUILIBRIA

similar to that of piperidine, which would be expected with the methyl group in an equatorial position.

Measurements in the fundamental NH stretching region were in general agreement with those reported by Baldock and Katritzky (6) for the first overtones. Because the interpretation of the fundamental region is complicated by the presence of combination bands no such data are reported here. Only a single v_{NH} band at 3312 cm^{-1} was observed in 2,2,6,6-tetramethylpiperidine; this corresponds to the low frequency component in those cases with α -CH groups, as expected.

N-Substituent Effects

The effect of substitution on N is summarized in Fig. 5 and in Table 2, which also gives some tentative assignments. In N-benzoylpiperidine the lone pair on N is withdrawn and no absorption occurs below 2855 cm⁻¹ (Fig. 5j). The N-p-tolyl group does not withdraw charge from N as effectively, and weak absorption below 2855 cm⁻¹ remains (Fig. 5h). Although piperidine-N-oxide is held to exist as the N-hydroxypiperidine, its spectrum also shows only very weak absorption below 2855 cm^{-1} (Fig. 5*i*).

On the other hand, electron-donating substituents enhance the perturbed in-phase and out-ofphase α -CH₂ bands near 2780 and 2730 cm⁻¹ relative to the normal CH bands. The particular compounds investigated were N-amino-, N-tbutyl-, N-methyl-, and N-methyl-4-hydroxypiperidine (Fig. 5a-d).⁷

N-Chloropiperidine is a special case with a relatively intense CH band at 2830 cm⁻¹; in view of the absence of absorption near 2730 cm^{-1} , its assignment to "perturbed" a-CH₂ groups is uncertain.

trans-Decahvdroquinoline

According to Booth and Bostock (16) this compound is expected to exist entirely in the conformation shown in Fig. 5f. The perturbed CH bands at 2794 and 2740 cm⁻¹ are consistent with this conformation and an appreciable proportion of axially oriented lone pairs on N.

⁵In-phase and out-of-phase coupling in the lone pair axial conformation.

⁶We thank Dr. H. Booth for making samples of cisand trans-2,6-dimethylpiperidine available.

⁷In N-methylpiperidines the band at 2780 cm⁻¹ is enhanced by v_{sym} of the CH₃ group, which is expected to have one CH bond *trans* to the lone pair.

andra an an an ann an 1997. Annsaichte Annsaichte Annsaichte

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV CALGARY on 10/17/12 For personal use only.

0.8 0.6 0.4 -NH2 0.2 (f) (n) 0.0 N-t-Bu (b) (g) N-Me (h) (c) ABSORBANCE N-Me N-ОН (i) (d) N-CI (e 2900 2800 2700 3000 2900 2800 2700 3100 3000

CANADIAN JOURNAL OF CHEMISTRY. VOL. 48, 1970

FIG. 5. Infrared spectra of N-substituted piperidines in the CH stretching region: (a) N-aminopiperidine, (b) N-t-butylpiperidine, (c) N-methylpiperidine, (d) N-methyl-4-piperidinol, (e) N-chloropiperidine, (f) trans-decahydroquinoline, (g) piperidine, (h) N-p-tolylpiperidine, (i) N-nitrosopiperidine, (j) N-benzoylpiperidine.

FREQUENCY (cm⁻¹)

However, from Fig. 3c it appears that the NH band is a doublet (\sim 3336 and \sim 3316 cm⁻¹), which indicates equatorial as well as axial lone pair orientation.

Piperazines

3240

Relative to piperidines the piperazines exhibit more intense perturbed CH bands, which in some cases are stronger than the normal CH bands (Fig. 6). N,N-Diamino-piperazine and N-amino-N'-methylpiperazine fall into the latter category. This is expected since the substituents are strong

electron donors, and all the CH_2 groups are adjacent to a N atom.

The CH absorption of piperazine is undoubtedly complicated by the existence of conformers with axial-axial, axial-equatorial, and equatorial-equatorial lone pair combinations (25). The spectrum of N,N'-diaminopiperidine is simpler than that of piperidine, since the substituents are probably largely in equatorial orientations, yielding a conformer with two intensified axial lone pairs. Nevertheless, the presence of a v_{asym} CH₂ stretching band in the normal position

KRUEGER AND JAN: CONFORMATIONAL EQUILIBRIA

TABLE 2

Methylene stretching vibrations of some six-membered N-heterocycles
(in cm^{-1} ; measurements in dilute CCl_4 solution)

	Asy	mmetric mode	Sym	metric mode
Compound	Normal	Perturbed*	Normal	Perturbed*
Piperidine (P)	2933	2915 sh, 2895 sh	2850	2803, 2730
2-Methyl P	2930	2915 sh	2855	2795, 2728
trans-2,6-Dimethyl P	2925	~2895 sh†	2842	2803†
cis-2,6-Dimethyl P	2925	2910 sh	2855	2790, 2701
2,2,6,6-Tetramethyl P	2925		2840	
Ń-Ámino P	2937	2920 sh, 2887	2855	2781, 2729
N-t-Butyl P	2932	2915 sh	2850	2787, 2743
N-Methyl P	2935	2920 sh, 2903 sh	2852	(2779) [±] , 2735, 2709
N-Methyl-4-piperidinol	2939	2920 sh, 2889 sh	2842	(2780)±, 2728
N-Chloro P	2941	2925 sh, 2905 sh	2855	2830 (?)
N-p-Tolyl P	2932		2859	
Piperidine-N-oxide	2944		2859	
N-Benzoyl P	2938		2855	_
Piperazine (Pz)	2944	2918, 2911, 2883	2855 sh	2825, 2812, 2749, 2733, 2723
N-Methyl-N'-amino Pz	2938	2912, 2877	2842	2810, (2796)‡, 2766, 2738
1.4-Diamino Pz	2938	2911, 2877	2828	2809, 2737
<i>N</i> , <i>N'</i> , <i>N''</i> -Trimethylhexahydro- s-triazine	2940	2892	2841	2787, 2772, 2724

*Belonging to α -CH₂ groups in lone pair axial conformer. †Tertiary α -CH group(s) only. $\ddagger v_{sym}$ of N-CH₃ group.

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV CALGARY on 10/17/12 For personal use only.

(2938 cm⁻¹) indicates that at least some molecules have an axial substituent (equatorial lone pair).

The NH stretching region, with a main band at 3351 cm⁻¹ and a shoulder at 3314 cm⁻¹, shows strong preference for the axial orientation of lone pairs in piperazine (Fig. 3k).

1,3,5-Trimethylhexahydro-s-triazine is expected to show a conformational preference for equatorial substituents (41). Again the CH region is complicated because each methylene is adjacent to two N atoms, of which a significant number must have axial substituents to account for the normal v_{asym} CH₂ intensity at 2940 cm⁻¹. However, trans diaxial lone pair/ α -CH interactions (plus vibrational coupling) account for the intense and complicated absorption below 2835 cm⁻¹.

Pyrrolidines

By analogy with tetrahydrofuran (42) the nonplanar semi-chair conformation appears most reasonable for pyrrolidine (Fig. 7). In conformation (1) an α -CH bond at C-1 is *trans* to the N lone pair while none of the hydrogens at C-4 are *trans.* With inversion at N to form conformer 2,

none of the α -CH bonds are *trans* to the lone pair. A principal difference between piperidine and pyrrolidine should therefore be the absence of coupling between α -CH₂ groups in the latter.

The relevant frequencies and assignments are tabulated in Table 3. Pyrrolidine exhibits a shoulder at 2930 and a band at 2821 cm⁻¹ corresponding to v_{asym} and v_{sym} of a "perturbed" α -CH₂ group. In the α -CD₂ compound the 2930 cm⁻¹ is largely gone (leading to resolution of an underlying weak band at 2911 cm⁻¹), and the 2821 cm^{-1} band is reduced to a shoulder. In the α, α' -di-CD₂ compound both bands are eliminated.

In the CD stretching region pyrrolidine- α - d_2 has "normal" CD₂ stretching frequencies at 2215 and 2110 cm⁻¹ (v_{asym} and v_{sym} , respectively) arising from 2 with the CD_2 group at either C-1 or C-4, and from 1 with the CD_2 group at C-4. "Perturbed" v_{asym} and v_{sym} CD₂ frequencies at 2195 and 2088 cm⁻¹, respectively, must arise from 1 with a 1-CD₂ group; since these bands are relatively more intense conformer 1 with the trans lone pair/ α -CH interaction seems to be favored over 2. The weak CD absorption at 2137 cm^{-1} is probably due to —CHD impurity.

5			
on 10/17/1	-		
y UNIV CALGARY			
n www.nrcresearchpress.com by For personal use only.			
Can. J. Chem. Downloaded from		,	

		CD ₂	
	yrrolidines (cm ⁻¹)		
TABLE 3	lene stretching frequencies in py	CH2	Cummetric
	Methyl		atrio

		C	[2			G	5	
	Asym	metric	Sym	metric	Asym	metric	Symr	netric
Compound	Normal	Perturbed	Normal	Perturbed	Normal	Perturbed	Normal	Perturbed
Pyrrolidine	2962	2930 sh	2872	2821				
Pyrrolidine-α-d2	2960	¢.	2874	2820 sh	2215	2195	2110	2088
(VcH/VcD)					(1.336)	(1.335)	(1.361)	(1.351)
ryrrongine-a,a -a4	9067	ł	2873		2215	2195	2110	2087
(VcH/VcD)					(1.336)	(1.335)	(1.361)	(1.352)
M-Aminopyrrolidine	2957	2928	2875	2789			ļ	

CANADIAN JOURNAL OF CHEMISTRY. VOL. 48, 1970

FIG. 6. Infrared spectra in the CH stretching region: (a) piperazine, (b) 1-amino-4-methylpiperazine, (c) 1,4diaminopiperazine, (d) 1,3,5-trimethyltriazine.

In pyrrolidine- $\alpha, \alpha' - d_4$ the same four bands appear, with no new features such as would be expected if two α -CD bonds were *trans* to the lone pair. Although the asymmetric CD₂ band was more difficult to resolve, the apparent peak at 2207 cm⁻¹ shows both high and low frequency shoulders consistent with the spectrum of the α -CD₂ compound.

In the NH stretching region pyrrolidine has a main band at 3362 cm^{-1} with a shoulder at 3320 cm^{-1} (Fig. 3c), confirming that **1** is favored over **2**. From the temperature dependence of these bands the enthalpy difference is estimated as $\sim 0.2 \text{ kcal/mole.}$

The intensity of the perturbed v_{sym} CH₂ stretching vibration at 2789 cm⁻¹ in N-amino-

pyrrolidine is almost equal to that of the normal $v_{asym} CH_2$ band (Fig. 8e). This spectrum provides further evidence that only one "Bohlmann band" is induced below 2850 cm⁻¹ in pyrrolidine, even if the electron density on N is increased. The perturbed $v_{asym} CH_2$ stretching vibration is tentatively assigned to the band at 2928 cm⁻¹ in the N-amino compound.

If the electron density is removed from N, as in indoline (Fig. 8b), the CH absorption below 2850 cm⁻¹ is reduced to two very weak bands at 2796 and 2708 cm⁻¹. Figure 3h shows that in the NH stretching region the conformer with the pyrrolidine ring of type **1** and having the aromatic ring fused on the C-4 side now absorbs only very weakly at 3483 cm⁻¹, while the conformer with the pyrrolidine ring of the type **2** having the lone pair delocalized into the fused aromatic ring is much more abundant and absorbs strongly at 3403 cm⁻¹. Both bands can be shifted by deuteration. Conformer **1** is more stable than conformer **2** by ~ 0.1 kcal/mole in dilute CCl₄ solution.

Morpholine

The CH stretching region of morpholine (Fig. 8a) is surprisingly like that of piperazine, with the exception of changes in relative intensities. This suggests that the lone pair orbitals on oxygen may play a similar role to those on nitrogen in shifting certain CH bands. This effect has been investigated further in this laboratory, using simpler model compounds (43).

In the NH stretching region (Fig. 3j) morpholine shows the same strong preference for axial orientation of the lone pair as piperazine.⁸

3-Azabicyclo[3.2.2]nonane

The weak CH absorption below 2850 cm⁻¹ (Fig. 8c) suggests that some molecules exist in a conformation where *trans* N lone pair/ α -CH₂ interaction is possible. This is consistent with molecular models. In the NH region the spectrum resembles that of morpholine (Fig. 3*j*).

Effect of Heterocyclic Ring Size

The i.r. spectra of cyclic imines of ring size 3-7 have been investigated (44), and the increase in v_{CH} as ring size decreases is well known. The frequency assignments for 3-membered hetero-

⁸In agreement with recent conclusions by Baldock and Katritzky (6) for morpholine in the gas phase and in dilute CCl_4 solution.

CANADIAN JOURNAL OF CHEMISTRY, VOL. 48, 1970

FIG. 7. Methylene stretching vibrations in the i.r. spectra of (a) pyrrolidine, (b) α -d₂-pyrrolidine, and (c) α , α' -d₄-pyrrolidine.

cyclic rings are firmly based (45), and the bands at 2935, 2903, and 2896 cm⁻¹ in ethyleneimine (aziridine) must be overtones and/or combination bands (Fig. 9*a*). Similar absorptions are observed in 2-methylaziridine (Fig. 9*b*), although a doublet $v_{\rm NH}$ is observed for the latter (Fig. 3*a* and *b*) because of *cis-trans* isomerism of the CH₃ group and the NH (46). The $v_{\rm NH}$ components at 3322

 $\begin{array}{ccc} CH_3/NH \ cis & CH_3/NH \ trans \\ (Low \ frequency \ v_{NH}) & (High \ frequency \ v_{NH}) \end{array}$

and 3305 cm^{-1} are shifted to 2465 and 2453 cm⁻¹ on deuteration.

By analogy with mono-substituted cyclobutanes (47), azetidine should exist in two conformations with lone pair orientations that are

5 Lone pair "axial" (two *trans* CH/lone pair interactions) high frequency ν_{NH}(3387 cm⁻¹)

 $\begin{array}{c} 6 \\ \text{Lone pair "equatorial"} \\ \text{(no trans CH/lone pair interaction)} \\ \text{low frequency } \nu_{\text{NH}}(3339\ \text{cm}^{-1}) \end{array}$

The lowest CH frequency (2859 cm⁻¹) has the highest intensity, and this band is tentatively related to the quasi-*trans* orientation of α -CH bonds to the lone pair in **5**. It should be noted that the electron donor ability of N in cyclic imines is

- en tet de la tet de la tet de Calanda de la tet de la tet de

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV CALGARY on 10/17/12 For personal use only.

> No estas de constante de la constante La constante de la constante de

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV.CALGARY on 10/17/12 For personal use only.

FIG. 8. Infrared spectra in the CH stretching region: (a) morpholine, (b) indoline, (c) 3-azabicyclo[3.2.2] nonane, (d) pyrrolidine, (e) N-aminopyrrolidine.

known to follow the ring size order 4 > 5 > 6 > 7 > 3 (48). In *N*-benzoyl azetidine where the lone pair has been delocalized the lowest frequency CH band is found at 2885 cm⁻¹.

The only large ring imine investigated was heptamethyleneimine, which has normal v_{asym} and v_{sym} CH₂ modes at 2920 and 2850 cm⁻¹, respectively, and weak absorption below 2850 cm⁻¹ (Fig. 9*d*). In the NH region the main band at 3381 cm⁻¹ shows some asymmetry on the high frequency side.

Solvent Effect Studies

The v_{CD} shift of CDCl₃ when amines are added to it until the "free" CD band at 2252 cm⁻¹

FIG. 9. Infrared spectra in the CH stretching region: (a) aziridine, (b) 2-methylaziridine, (c) azetidine, (d) heptamethyleneimine.

disappears (49) shows a dual basicity for piperidine and N-alkylpiperidines (Fig. 10). Similar spectra are obtained if CCl₄ is used as a ternary solvent. The relative intensities for the two CD···N bands do not, however, represent the relative proportions of the less basic (lone pair axial, $\Delta v_{CD} \approx 33 \text{ cm}^{-1}$) and more basic (lone pair equatorial, $\Delta v_{CD} \approx 75 \text{ cm}^{-1}$) forms under these conditions. Lord *et al.* (50) have shown that the integrated v_{CD} intensity of CDCl₃ increases dramatically on hydrogen bond formation, e.g. for $\Delta v_{CD} = 36 \text{ cm}^{-1}$ on hydrogen bond formation with pyridine the CD band intensity increases more than 20-fold. Thus Fig. 10 grossly accentuates the low frequency CD···N band (lone pair

3246

Peak intensities of CH bands in piperidines* relative to 2935 cm⁻¹ (normal asymmetric CH₂ stretch) set at 1.00 **TABLE 4**

				·	•		
		Piperidine			N-Methylp	iperidine	
Solvent	2850 cm^{-1} †	2803 cm ⁻¹	2730 cm ⁻¹	2852 cm^{-1}	$2779 \mathrm{cm}^{-1}$ ‡	2735 cm ⁻¹	2709 cm^{-1}
CCI4	0.37	0.31	0.24	0.30	0.53	0.22	0.16
Pure liquid	0.56	0.42	0.32	0.45	0.68	0.37	0.28
Solid film (–135 °C)	0.31	0.32	0.32	ł	[[
CDCI,	0.38	0.28	0.12	0.37	0.51	0.17	0.13
$(CD_3)_2 C = 0$	0.44	0.27	0.07	0.34	0.48	0.20	0.09
ĊD <u>,</u> Ċ≡N	0.44	0.27	0.16	0.36	0.52	0.23	0.17
$(CD_3)_2S=0$	0.48	0.28	0.20	0.39	0.53	0.27	0.19
ĊD ₃ ÕD§	$\int 0.45$	$\ll 0.28$	0.09	0.48	0.45	0.16	0.07
	Ì (2856)	(2833 broad, overlapped	(2747)	(2857)	(2803)	(2741)	(2710)
* Frequencies slightly solve	ent denendent: values	cited in dilute CCL s	olution.				

*requence sugnity solvent dependent; values cited in diude CU4 solution. FNormal symmetric CH2 stretching vibration of N lone pair equatorial conformer. ¥v_{in} of N-CH3 group. §Reference bands shifted very little, other bands moved to higher frequencies as indicated.

CANADIAN JOURNAL OF CHEMISTRY. VOL. 48, 1970

FIG. 10. Fundamental CD stretching vibrations of $CDCl_3$: (a) in dilute CCl_4 , (b) in N-t-butylpiperidine, (c) in N-methylpiperidine, and (d) in piperidine.

equatorial form). Nevertheless it provides some further evidence that the lone pair axial conformer is *less* basic than the lone pair equatorial conformer.

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV CALGARY on 10/17/12 For personal use only.

While the concentration of axially oriented *t*-butyl groups is normally considered to be negligible (1*b*), *N*-*t*-butylpiperidine appears to have some, although if $\varepsilon_{\text{CD}...N}^{axia1}(2170 \text{ cm}^{-1}) > \varepsilon_{\text{CD}...N}^{equatoria1}$ (2219 cm⁻¹) a very small percentage of axial *t*-butyl groups could account for the observed spectrum.

For piperidine and N-methylpiperidine in which ca. 60 and 66%, respectively, of the N-substituent are now deemed to be equatorial in benzene solution (6), the low frequency CD···N chloroform complex band predominates, but probably only because of its intrinsically greater extinction coefficient.

The axial-equatorial equilibrium in piperidines is expected to show some solvent sensitivity, and CH spectra were obtained for piperidine and *N*-methylpiperidine in a variety of deuterated solvents (Table 4). The projected properties of the two conformers are summarized in Fig. 11.

Since only peak height ratios for these overlapped bands are readily obtained, the data can only be interpreted qualitatively. The 2730 cm⁻¹ band in piperidine assigned to the lone pair axial

FIG. 11. Projected properties of N lone pair axial and equatorial conformers in piperidine and N-methylpiperidine.

form has the highest relative intensity in the pure liquid and in low temperature solid film spectra. In the glassy film spectrum, where the resolution is improved, the 2850 cm⁻¹ normal v_{asym} CH₂ band has the lowest relative intensity. In the crystalline state the concentration of the lone pair axial form has previously been held to increase (3). In dimethyl sulfoxide- d_6 , acetonitrile- d_3 , chloroform-d, acetone- d_6 , and methanol- d_4 the 2730 cm⁻¹ piperidine band is relatively less intense than in CCl₄ solution, and decreases in the order given. In all cases except the low temperature solid film the 2850 cm^{-1} band is relatively more intense than in CCl₄ solution. These changes can be explained by increased stabilization of the more polar conformer (N lone pair equatorial) in polar solvents, and in the case of CDCl₃ and CD₃OD, also by preferential stabilization of the lone pair equatorial form by hydrogen bonding. Obviously a number of factors must be involved, some of which are mentioned in Fig. 11.

While the CH frequencies are not markedly solvent dependent, the CD₃OD solution appears exceptional. The frequency of the normal v_{asym} CH₂ reference band is hardly altered but all the others are shifted to higher frequencies (Table 4). This is consistent with hydrogen bonding in the lone pair axial form, thereby reducing the effective charge on N and in turn making the α -CH₂ bands in this conformer more normal.

N-Methylpiperidine shows roughly similar behavior in deuterated solvents, although the relative decrease in the 2709 cm⁻¹ band with respect to the value in CCl_4 solution is not as

CANADIAN JOURNAL OF CHEMISTRY. VOL. 48, 1970

great. In CD₃CN no significant change in the low frequency band is noted, and in $(CD_3)_2SO$ a small increase is observed. The lower solvent sensitivity of the conformational equilibrium in M-methylpiperidine may arise from the fact that the N lone pair can always be trans to at least one CH bond (of the methyl group) in both conformations, plus the greater steric hindrance in the N-methyl axial position.

The assistance of Miss Marelle Law with some of the experimental measurements is gratefully acknowledged. This work was supported by the U.S. Army Research Office, Durham, North Carolina, U.S.A., under Grant No. DA-ARO-D-31-124-G658.

- 1. E. L. ELIEL, N. L. ALLINGER, S. J. ANGYAL, and G. A. MORRISON. Conformational analysis. Inter-science Publishers, New York, N.Y. 1966. (a) p. 244–

- G. 1966). Chem. Abstr. 66, 23941 j (1967).
 T. V. TITOVA, O. S. ANISIMOVA, and Y. A. PENTIN. Opt. Spectrosc. 23, 495 (1967).
 R. W. BALDOCK and A. R. KATRITZKY. Tetrahedron Lett. 1159 (1968).
 P. W. DWARDAN A. D. Y. CHARDAN A. C. KATRITZKY.
- 6. R. W. BALDOCK and A. R. KATRITZKY. J. Chem. Soc. (B) 1470 (1968).
- T. MASAMUNE. Chem. Commun. 244 (1968).
- 8. T. MASAMUNE and M. TAKASUGI. Chem. Commun. 625 (1967).
- T. MASAMUNE, M. TAKASUGI, and M. MATSUKI. Bull. Chem. Soc. Jap. 41, 2466 (1968).
 F. MOLL. Tetrahedron Lett. 5201 (1968).
 C. Y. CHEN and R. J. W. LEFEVRE. Tetrahedron
- Lett. 1611 (1965).
- J. B. LAMBERT, R. G. KESKE, R. E. CARHART, and A. P. JOVANOVICH. J. Amer. Chem. Soc. 89, 3761 (1967). 13. M. J. T. ROBINSON. Tetrahedron Lett. 1153 (1968).
- 14. J. B. LAMBERT and R. G. KESKE. J. Amer. Chem. Soc. 88, 620 (1966).
- P. J. BRIGNELL, A. R. KATRITZKY, and P. L. RUSSELL. Chem. Commun. 723 (1966).
 H. BOOTH and A. H. BOSTOCK. Chem. Commun. 177 (1967).
- H. BOOTH, Chem. Commun. 802 (1968).
 H. BOOTH, J. H. LITTLE, and J. FEENEY. Tetra-hedron, 24, 279 (1968).
- 19. R. K. HARRIS and R. A. SPRAGG. Chem. Commun.
- 314 (1966). 20. P. J. BRIGNELL, A. R. KATRITZKY, and P. L. RUSSELL. J. Chem. Soc. (B) 1459 (1968).
- 21. H. BOOTH and J. H. LITTLE. Tetrahedron, 23, 291 (1967).

- 22. J. B. LAMBERT and R. G. KESKE. Tetrahedron Lett. 2023 (1969).
- P. J. BUCKLEY, C. C. COSTAIN, and J. E. PARKIN. Chem. Commun. 668 (1968).
 M. ARONEY and R. J. W. LEFEVRE. J. Chem. Soc.
- 3002 (1958). 25. N. L. ALLINGER, J. G. D. CARPENTER, and F. M.
- KARKOWSKI. Tetrahedron Lett. 3345 (1964).
- N. L. ALLINGER, J. G. D. CARPENTER, and F. M. KARKOWSKI. J. Amer. Chem. Soc. 87, 1232 (1965).
 R. J. BISHOP, L. E. SUTTON, D. DINEEN, R. A. Y. JONES, A. R. KATRITZKY, and R. J. WYATT. J. Chem. Soc. (B) 492 (1967). Chem. Soc. (B) 493 (1967). N. W. J. PUMPHREY and M. J. T. ROBINSON. Chem.
- 28. N. W. J. PUMPHREY and M. J. T. KOBINSON. Chem. Ind. 1903 (1963).
 M. J. ARONEY, C. Y. CHEN, R. J. W. LEFEVRE, and J. D. SAXBY. J. Chem. Soc. 4269 (1964).
 M. J. ARONEY and R. J. W. LEFEVRE. J. Chem. Soc. 2002 (1959). 21(1) (1970).
- 3002 (1958); 2161 (1960).
- F. G. RIDDELL. Quart. Rev. 21, 364 (1967).
 N. L. ALLINGER, J. A. HIRSCH, and M. A. MILLER. Tetrahedron Lett. 3729 (1967).
- N. L. ALLINGER and J. C. TAI. J. Amer. Chem. Soc. 33. 87, 1227 (1965).

- 87, 1227 (1965).
 34. A. R. KATRITZKY. Bull. Soc. Chim. Fr. 3585 (1967).
 35. P. J. BRIGNELL, K. BROWN, and A. R. KATRITZKY. J. Chem. Soc. (B) 1462 (1968).
 36. F. BOHLMANN. Ber. 91, 2157 (1958).
 37. H. P. HAMLOW, S. OKUDA, and N. NAKAGAWA. Tetrahedron Lett. 2553 (1964).
 38. P. J. KRUEGER and J. JAN. Can. J. Chem. This issue
- issue. 39. H. WOLFF and D. STASCHEWSKI. Z. Elektrochem.
- 66, 140 (1962).
 40. P. J. KRUEGER. Can. J. Chem. 40, 2300 (1962).
 41. R. F. FARMER and J. HAMER. Tetrahedron, 24, 829 (1962). (1968).
- (1968).
 D. GAGNAIRE and P. VOTTERO. Bull. Soc. Chim. Fr. 2779 (1963). J. C. EVANS and J. C. WAHR. J. Chem. Phys. 31, 655 (1959).
 P. J. KRUEGER, J. JAN, and H. WIESER. J. Mol. Struct. 5, 375 (1970).
 Y. N. SHEINKER and E. M. PERESLENI. Zh. Fiz. Kbip. 32, 2112 (1058).
- Khim. 32, 2112 (1958).
- 45. A. R. KATRITZKY and A. P. AMBLER. In Physical methods in heterocyclic chemistry. Vol. 1. Edited by A. R. Katritzky. Academic Press, New York, N.Y. 1963. pp. 176-178.
- 46. A. LATTES, R. MARTINO, and R. MATHIS-NOEL. C.R. 263C, 49 (1966).
 47. (a) W. G. ROTHSCHILD. J. Chem. Phys. 45, 1214
- (1966). (b) J. R. DURIG and W. H. GREEN. J. Chem. Phys. 47, 673 (1967). (c) J. R. DURIG and A. C. MORRISSEY. J. Chem. Phys. 46, 4854 (1967).
 48. E. LIPPERT and H. PRIGGE. Ber. Bunsenges. Phys.
- Chem. 67, 554 (1963).
- E. W. ABEL, D. A. ARMITAGE, and G. R. WILLEY. Trans. Faraday Soc. 60, 1257 (1964).
 R. C. LORD, B. NOLIN, and H. D. STIDHAM. J. Amer. Chem. Soc. 77, 1365 (1955).

3248

on 10/17/12

Can. J. Chem. Downloaded from www.nrcresearchpress.com by UNIV CALGARY For personal use only.